Webs Related to K-Loops and Reflection Structures

By E. Gabrieli, B. Im, and H. Karzel

Abstract

We give a characterization of webs $\left(\mathcal{P}, g_{1}, g_{2}, \mathfrak{g}\right)$ which are related to A_{l}-loops, weak K-loops, K-loops and reflection structures. We also obtain a geometric proof of Kreuzer's result that the concept of K-loop is equivalent to that of Bruck loop.

1 Introduction

By the works of G. Bol and W. Blaschke [1], K. Reidemeister [18] and G. Thomsen [19] we know that there is a correspondence between loops and webs (cf. Theorem 4.1). In the last years the so called K-loops gained particular interest (cf. $[3,4,5,7,8,11,13,14,20,21]$). The notion of a K-loop $(E,+$) is defined among the loops as follows.

For $a, b \in E$, let $a^{+}: E \rightarrow E ; x \mapsto a+x, \delta_{a, b}:=\left((a+b)^{+}\right)^{-1} \circ a^{+} \circ b^{+}$, let $-a \in E$ be defined by $a+(-a)=0$ and let $v: E \rightarrow E ; x \mapsto-x$ be the negative map. The loop $(E,+)$ is called an A_{l}-loop if for all $a, b \in E$ the permutation $\delta_{a, b}$ is an automorphism of the loop $(E,+)$, i.e. $\delta_{a, b} \in \operatorname{Aut}(E,+)$, a weak K-loop if moreover $\delta_{a,-a}=$ id and a K-loop if furthermore $v \in \operatorname{Aut}(E,+)$ (automorphic inverse property) and $\delta_{a, b}=\delta_{a, b+a}$ for all $a, b \in E$.

Recently it has been proved in [13] by A. KREUZER that the concept of a K-loop is equivalent to that of a Bruck loop. A Bruck loop $(E,+)$ is a Bol loop, i.e. a loop satisfying the Bol identity

$$
a^{+} \circ b^{+} \circ a^{+}=(a+(b+a))^{+}, \quad \forall a, b \in E
$$

which, moreover, satisfies the automorphic inverse property (cf. [13]).
K-loops are closely related to invariant reflection structures. A triple $\left(\mathcal{P},{ }^{\circ} ; 0\right)$ consisting of a non-empty set \mathscr{P}, a fixed element $0 \in \mathscr{P}$ and a map ${ }^{\circ}: \mathscr{P} \rightarrow J:=$ $\left\{\sigma \in \operatorname{Sym} \mathscr{P} \mid \sigma^{2}=\mathrm{id}\right\} ; x \mapsto x^{\circ}$ such that:

B1 $\forall a \in \mathscr{P}: a^{\circ}(0)=a$
is called a reflection structure and an invariant reflection structure if moreover

[^0]B2 $\forall a, b \in \mathcal{P}: a^{\circ} \circ b^{\circ} \circ a^{\circ}=\left(a^{\circ} \circ b^{\circ}(a)\right)^{\circ}$
is satisfied. By [4] we have
(1.1) Let $(\mathscr{P},+)$ be a right loop, (i.e. for all $a, b \in \mathscr{P}$ the equation $a+x=b$ has a unique solution $x \in \mathscr{P}$ and there is $a \in \mathscr{P}$ with $a+0=0+a=a$.) and for $a \in \mathscr{P}$ let $a^{\circ}:=a^{+} \circ v$. Then:
(i) If $(\mathscr{P},+)$ has the property

$$
\begin{equation*}
\forall a, b \in \mathscr{P}: a-(a-b)=b \tag{*}
\end{equation*}
$$

then $\left(\mathcal{P},{ }^{\circ} ; 0\right)$ is a reflection structure;
(ii) If $(\mathcal{P},+)$ is a K-loop, then $\left(\mathscr{P},{ }^{\circ} ; 0\right)$ is an invariant reflection structure.

By [7] the converse is also true
(1.2) Let $\left(\mathcal{P},{ }^{\circ} ; 0\right)$ be a reflection structure and for $a, b \in \mathscr{P}$ let $a^{+}:=a^{\circ} \circ 0^{\circ}$ and $a+b=a^{+}(b)$. Then:
(i) $(\mathcal{P},+)$ is a right loop with $(*)$;
(ii) If $\left(\mathcal{P},{ }^{\circ} ; 0\right)$ is invariant, then $(\mathcal{P},+)$ is a K-loop.

Remark. In [7] the following statements of Theorem 6.1 were proved completely (cf. [7], (6.1)(3) and (4)) :
(i) $0^{\circ} \circ \mathscr{P}^{\circ} \circ 0^{\circ}=\mathscr{P}^{\circ} \Longleftrightarrow \nu \in \operatorname{Aut}(\mathcal{P},+)$;
(ii) $\left(\mathcal{P},{ }^{\circ} ; 0\right)$ is invariant $\Rightarrow(\mathscr{P},+)$ is a weak K -loop with $v \in \operatorname{Aut}(\mathscr{P},+)$.

In order to show (ii) in (1.2) we have still to prove the property:

$$
\begin{equation*}
\forall a, b \in \mathcal{P}: \delta_{a, b}=\delta_{a, b+a} . \tag{1}
\end{equation*}
$$

This can be done in the following way by modifying the proof of [8], (3.3):
Proof. Let $a, b \in \mathscr{P}, c:=a+b=a^{\circ}{ }^{\circ} 0^{\circ}(b), d:=b+a$ and $e:=a+(b+a)=a+d$. Then

$$
\begin{align*}
& c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ}(0)=c^{\circ}(c)=0, \tag{2}\\
& d=d^{\circ}(0)=b^{\circ} \circ 0^{\circ} \circ a^{\circ}(0) \tag{3}
\end{align*}
$$

and

$$
e=e^{\circ}(0)=a^{\circ} \circ 0^{\circ} \circ d^{\circ}(0) \stackrel{(3)}{=} a^{\circ} \circ 0^{\circ} \circ b^{\circ} \circ 0^{\circ} \circ a^{\circ}(0)
$$

By B1 and B2 this equation implies

$$
\begin{equation*}
e^{\circ}=a^{\circ} \circ 0^{\circ} \circ b^{\circ} \circ 0^{\circ} \circ a^{\circ} \tag{4}
\end{equation*}
$$

Again, since $b^{\circ} \circ 0^{\circ} \circ a^{\circ} \circ c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ}(0) \stackrel{(2)}{=} b^{\circ} \circ 0^{\circ} \circ a^{\circ}(0) \stackrel{(3)}{=} d$ we obtain by B1 and B2:

$$
\begin{equation*}
d^{\circ}=b^{\circ} \circ 0^{\circ} \circ a^{\circ} \circ c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ} \tag{5}
\end{equation*}
$$

Now

$$
\begin{gathered}
\delta_{a, b+a}=\left(e^{+}\right)^{-1} \circ a^{+} \circ d^{+}=0^{\circ} \circ e^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ d^{\circ} \circ 0^{\circ} \\
\stackrel{(4),(5)}{=} 0^{\circ} \circ\left(a^{\circ} \circ 0^{\circ} \circ b^{\circ} \circ 0^{\circ} \circ a^{\circ}\right) \circ a^{\circ} \circ 0^{\circ} \circ\left(b^{\circ} \circ 0^{\circ} \circ a^{\circ} \circ c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ}\right) \circ 0^{\circ} \\
=0^{\circ} \circ c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ} \circ 0^{\circ}=\left(c^{+}\right)^{-1} \circ a^{+} \circ b^{+}=\delta_{a, b}
\end{gathered}
$$

The purpose of this paper is to characterize the structure of webs corresponding to A_{l}-loops, weak K-loops, K-loops and reflection structures. Our main results are stated in (3.2), (3.3), (4.2), (5.1), (6.4): By the proofs of (1.3), (3.2), (3.3) and (4.2) we have a purely geometric proof of Kreuzer's result ([13]) that Bruck loops and K-loops are the same. The most important step in the proof is that the Bol identity and the automorphic inverse property imply that the loop is an A_{l}-loop. A geometric proof of this result is also contained in [2].

2 Basic concepts concerning nets and chain-nets related to K-loops

Let \mathscr{P} be a non-empty set and let \mathscr{G}_{1} and \mathscr{g}_{2} be subsets of the power set of \mathscr{P}; the elements of \mathcal{P}, respectively of \mathcal{g}_{1} and \mathscr{g}_{2} will be called points, respectively generators. The triple $\left(\mathscr{P}, \mathcal{g}_{1}, g_{2}\right)$ is called a net, if for each $X \in \mathcal{g}_{1} \cup \mathcal{g}_{2},|X| \geq 2$ and if the following two conditions are valid:

N1 For each point $x \in \mathscr{P}$, for each $i \in\{1,2\}$ there is exactly one generator $G \in \mathscr{g}_{i}$ with $x \in G$; such generator will be denoted by $[x]_{i}$.
$\mathbf{N} 2$ Any two generators X_{1} and X_{2} of distinct classes \mathscr{C}_{1} and \mathscr{g}_{2} intersect in exactly one point.

Let $J:=\left\{\alpha \in \operatorname{Sym} \mathscr{P} \mid \alpha^{2}=\mathrm{id}\right\}$ and $J^{*}:=J \backslash\{\mathrm{id}\}$ ($=$ set of all involutions). We denote by $\Gamma:=\operatorname{Aut}\left(\mathscr{P}, \mathscr{g}_{1} \cup \mathscr{g}_{2}\right)$ the group of all permutations χ of \mathscr{P} with the property:

$$
\forall X \in g_{1} \cup g_{2}: \chi(X) \in g_{1} \cup g_{2} .
$$

Clearly, for each $\chi \in \operatorname{Aut}\left(\mathscr{P}, \mathscr{g}_{1} \cup \mathscr{g}_{2}\right)$ and for each $x \in \mathcal{P}$ we have either
(1) $\chi\left([x]_{1}\right)=[\chi(x)]_{1}$ and $\chi\left([x]_{2}\right)=[\chi(x)]_{2}$ or
(2) $\chi\left([x]_{1}\right)=[\chi(x)]_{2}$ and $\chi\left([x]_{2}\right)=[\chi(x)]_{1}$.

Let $\Gamma^{+}:=\operatorname{Aut}\left(\mathscr{P}, g_{1}, g_{2}\right)$, respectively Γ^{-}be the set of all automorphisms of type (1), respectively (2). If $\Gamma^{-} \neq \emptyset$ then Γ^{+}is a normal subgroup of Γ of index 2.

For the point set \mathscr{P} of our net $\left(\mathcal{P}, \mathcal{F}_{1}, \mathscr{F}_{2}\right)$ we introduce the following binary operation:

$$
\square: \mathscr{P} \times \mathscr{P} \rightarrow \mathcal{P} ;(x, y) \mapsto x \square y:=[x]_{1} \cap[y]_{2}
$$

A subset $S \subset \mathscr{P}$ is called a subnet if $\forall x, y \in S: x \square y \in S$.
(2.1) If \mathcal{N} denotes the set of all subnets, then \mathcal{N} is \cap-closed and for the associated closure operation $X^{\square}:=\cap\{N \in \mathcal{N} \mid X \subseteq N\}$ for $X \subset \mathscr{P}$ we have:

$$
X^{\square}=X \square X:=\{x \square y \mid x, y \in X\} .
$$

Proof. Let $x, y, x^{\prime}, y^{\prime} \in X$, then $(x \square y) \square\left(x^{\prime} \square y^{\prime}\right)=x \square y^{\prime}$.
(2.2) $\Gamma^{+}=\operatorname{Aut}(\mathscr{P}, \square)$ and Γ^{-}is the set of all antiautomorphisms of (\mathscr{P}, \square).

Proof. Let $x, y \in \mathscr{P}, \alpha \in \Gamma^{+}$and $\beta \in \Gamma^{-}$, then $\alpha(x \square y)=\alpha\left([x]_{1} \cap[y]_{2}\right)=$ $[\alpha(x)]_{1} \cap[\alpha(y)]_{2}=\alpha(x) \square \alpha(y)$ and $\beta(x \square y)=\beta\left([x]_{1} \cap[y]_{2}\right)=[\beta(x)]_{2} \cap$ $[\beta(y)]_{1}=\beta(y) \square \beta(x)$. Now let $\alpha \in \operatorname{Aut}(\mathcal{P}, \square)$ and let β be an antiautomorphism of (\mathscr{P}, \square). Then $[x]_{1}=x \square \mathcal{P},[x]_{2}=\mathcal{P} \square x$ and so $\alpha\left([x]_{1}\right)=\alpha(x) \square \alpha(\mathscr{P})=$ $\alpha(x) \square \mathcal{P}=[\alpha(x)]_{1}, \alpha\left([x]_{2}\right)=\mathscr{P} \square \alpha(x)=[\alpha(x)]_{2}, \beta\left([x]_{1}\right)=\mathscr{P} \square \beta(x)=$ $[\beta(x)]_{2}, \beta\left([x]_{2}\right)=\beta(x) \square \mathscr{P}=[\beta(x)]_{1}$.

A subset $C \subset \mathscr{P}$ is called a chain of the net $\left(\mathscr{P}, \mathscr{q}_{1}, \mathscr{q}_{2}\right)$ if the following condition holds:
$\mathbf{N} \mathbf{3} \forall X \in \mathscr{q}_{1} \cup \mathscr{q}_{2}:|X \cap C|=1 ;$
Let \mathcal{C} be the set of all chains of $\left(\mathcal{P}, \mathscr{g}_{1}, \mathscr{g}_{2}\right)$. If $\mathcal{C} \neq \emptyset$ and $C \in \mathcal{C}$, then $\forall X \in \mathcal{g}_{1} \cup \mathcal{g}_{2}:$

$$
|C|=|X|=\left|\mathscr{q}_{1}\right|=\left|\mathscr{q}_{2}\right| \quad \text { and } \quad|\mathscr{P}|=\left|\mathscr{q}_{1}\right|^{2} .
$$

(2.3) For each $C \in \mathcal{C}$ let

$$
\widetilde{C}: \mathcal{P} \rightarrow \mathcal{P} ; x \mapsto\left[[x]_{1} \cap C\right]_{2} \cap\left[[x]_{2} \cap C\right]_{1}
$$

and let $\widetilde{\mathfrak{C}}:=\{\tilde{C} \mid C \in \mathcal{C}\}$, then we have:
(1) $\widetilde{\mathbb{C}} \subset \Gamma^{-}$and $\tilde{\mathcal{C}}^{2} \subset \Gamma^{+}$;
(2) $\widetilde{C} \circ \widetilde{C}=$ id and $\operatorname{Fix} \widetilde{C}=C$, i.e., $\sim: \mathcal{C} \rightarrow \Gamma^{-} ; X \mapsto \widetilde{X}$ is an injection.
(2.4) Let $\alpha \in \Gamma^{-}$. If $\alpha \in J^{*}$, then $\operatorname{Fix} \alpha \in \mathcal{C}$; if Fix $\alpha \in \mathcal{C}$, then $\widetilde{\operatorname{Fix}} \alpha=\alpha$.

Proof. Let $X \in \mathcal{g}_{1} \cup \mathcal{g}_{2}$ for instance $X \in \mathcal{g}_{1}$. Then $\alpha(X) \in \mathcal{g}_{2}$, since $\alpha \in \Gamma^{-}$and therefore $c:=X \cap \alpha(X)$ is a point. If $\alpha \in J^{*}$ then $\alpha(c)=c$ and c is the only fixed point of α contained in X. Hence Fix $\alpha \in \mathcal{C}$. Now let $C:=\operatorname{Fix} \alpha \in \mathcal{C}, ; x \in \mathscr{P}$ and $x_{i}:=[x]_{i} \cap C(i \in\{1,2\})$. Then $x=x_{1} \square x_{2}, \alpha\left(x_{i}\right)=x_{i}$ and since $\alpha \in \Gamma^{-}$, $\alpha(x)=\alpha\left(x_{1} \square x_{2}\right)=\alpha\left(x_{2}\right) \square \alpha\left(x_{1}\right)=x_{2} \square x_{1}=\widetilde{C}(x)$ by (2.2).
(2.5) $\forall A, B, C \in \mathcal{C}$ we have:
(1) $\tilde{A}(B) \in \mathcal{C}$;
(2) $\widetilde{A(B)}=\widetilde{A} \circ \widetilde{B} \circ \widetilde{A}$;
(3) $\underset{\sim}{\operatorname{Aix}}(\underset{\sim}{\widetilde{A}} \circ \underset{\sim}{B})=(A \cap \underset{\sim}{B})$;
(4) $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \in J^{*} \Leftrightarrow \widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \in \widetilde{\mathcal{C}}$;
(5) $\left.\widetilde{A}\right|_{g_{1}}=\left.\widetilde{B}\right|_{g_{1}} \Longleftrightarrow A=B$.

Proof. (1): If $X \in g_{1} \cup \underset{\sim}{\underset{A}{g}} 2$, then $|\widetilde{A}(B) \cap X|=|\widetilde{A}(B \cap \widetilde{A}(X))|=|B \cap \widetilde{A}(X)|=1$ since $\widetilde{A} \circ \widetilde{A}=i d$, thus $\widetilde{A}(B) \in \mathcal{C}$.
(2): From $\widetilde{A}, \widetilde{B}$ and $\widetilde{A} \circ \widetilde{B} \circ \widetilde{A} \in \Gamma^{-}, \operatorname{Fix}(\widetilde{A} \circ \widetilde{B} \circ \widetilde{A})=\widetilde{A}(\operatorname{Fix}(\widetilde{B}))=\widetilde{A}(B)$, we obtain by (2.4) $\widetilde{A} \circ \widetilde{B} \circ \widetilde{A}=\widetilde{A(B)}$.
(3): Let $\alpha:=\widetilde{A} \circ \widetilde{B}$ and let $x, y \in A \cap B$, then $\alpha \in \Gamma^{+}$by (2.3,(1)). $x, y \in \operatorname{Fix} \alpha$ by (2.3, (2)) and so by (2.2) $\alpha(x \square y)=\alpha(x) \square \alpha(y)=x \square y$, i.e. by $(2.1),(A \cap B)^{\square}=$ $(A \cap B) \square(A \cap B) \subseteq \operatorname{Fix} \alpha$. Now let $x \in \operatorname{Fix} \alpha$ then $\widetilde{A}(x)=\left[[x]_{1} \cap A\right]_{2} \cap\left[[x]_{2} \cap\right.$
$A]_{1}=\widetilde{B}(x)=\left[[x]_{1} \cap B\right]_{2} \cap\left[[x]_{2} \cap B\right]_{1}$. Therefore $\left[[x]_{1} \cap A\right]_{2}=\left[[x]_{1} \cap B\right]_{2}$ and $\left[[x]_{2} \cap A\right]_{1}=\left[[x]_{2} \cap B\right]_{1}$. This implies $a:=[x]_{1} \cap\left[[x]_{1} \cap A\right]_{2}=[x]_{1} \cap A=$ $[x]_{1} \cap B \in A \cap B$ and $b:=[x]_{2} \cap A=[x]_{2} \cap B \in A \cap B$, and so $x=a \square b$, i.e. Fix $\alpha \subseteq(A \cap B)^{\square}$.
(4): " \Rightarrow " Let $\alpha:=\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \in J^{*}$. By (2.3, (1)) $\alpha \in \Gamma^{-}$and so by (2.4) $\alpha=\widetilde{\operatorname{Fix} \alpha} \in \widetilde{\mathbb{C}}$.

Two chains $A, B \in \mathcal{C}$ are called orthogonal and denoted by $A \perp B$, if $A \neq B$ and $\widetilde{A}(\underline{B})=B$. This relation is symmetric since $\widetilde{A}(B)=B$ implies by (2.5, (2)) $\widetilde{B}=\widetilde{A(B)}=\widetilde{A} \circ \widetilde{B} \circ \widetilde{A}$, hence $\widetilde{A}=\widetilde{B} \circ \widetilde{A} \circ \widetilde{B}=\widetilde{B(A)}$ and so $A=\widetilde{B}(A)$ by (2.3, (2)).

Let $A^{\perp}:=\{X \in \mathcal{C} \mid X \perp A\}$. Now we are going to consider subsets δ of the set \mathcal{C} of chains satisfying certain conditions. $\& \subset \mathcal{C}$ is called transitive, respectively regular if
T $\forall A, B \in s: \exists C \in s: \widetilde{C}(A)=B$, respectively
$\overline{\mathrm{T}} \forall A, B \in s: \exists_{1} C \in s: \widetilde{C}(A)=B$,
symmetric if
$\mathbf{S} \forall A, B \in \mathcal{S}: \widetilde{A}(B) \in \mathcal{S}$.
The quadruple $\left(\mathcal{P}, \mathcal{g}_{1}, \mathcal{g}_{2}, f\right)$ is called a web if δ satisfies the following condition $\mathbf{N 1}{ }^{\prime} \forall x \in \mathscr{P} \exists_{1}[x]_{3} \in \&$ with $x \in[x]_{3}$.

Theorem 2.6. Let $\mathcal{L} \subset \mathcal{C}$ be a symmetric and regular set of chains and let $O \in \mathcal{L}$ be fixed. For each $A \in \mathcal{L}$ let $A^{\prime} \in \mathcal{L}$ such that $\widetilde{A}^{\prime}(O)=A(c f . \overline{\mathbf{T}})$ and for all $A, B \in \mathcal{L}$ let $A \oplus B:=\widetilde{A^{\prime}} \circ \widetilde{O}(B)$. Then (\mathcal{L}, \oplus) is a K-loop.
Proof. By (2.3, (2)) and (2.5, (1)) for each $A \in \mathcal{L}, \tilde{A}$ induces an involutory permutation on the set \mathcal{C}, and since \mathcal{L} is symmetric, we have $\widetilde{A}(\mathcal{L})=\mathcal{L}$. Therefore we can consider $\widetilde{\mathcal{L}}:=\left\{\left.\widetilde{L}\right|_{\mathcal{L}}: L \in \mathcal{L}\right\}$ as a subset of $J_{\mathcal{L}}^{*}:=\left\{\sigma \in \operatorname{Sym} \mathcal{L} \mid \sigma^{2}=\mathrm{id} \neq \sigma\right\}$. Since \mathcal{L} is regular, the map ${ }^{\circ}: \mathcal{L} \rightarrow J_{\mathcal{L}}^{*}: X \mapsto X^{\circ}:=\left.\widetilde{X}^{\prime}\right|_{\mathscr{L}}$ is an injection, i.e. $\left(\mathcal{L},{ }^{\circ} ; 0\right)$ is a reflection structure. Since \mathcal{L} is symmetric, $\left(\mathcal{L},{ }^{\circ} ; 0\right)$ is invariant by (2.5, (2)). Therefore, our Theorem 2.6 is a consequence of (1.2).

Finally, we consider a correspondence between chain-nets and permutation groups (cf. [10], 15.1). We assume $\mathcal{C} \neq \emptyset$ and fix an element $E \in \mathcal{C}$. For each $C \in \mathcal{C}$ let

$$
\widehat{C}: E \rightarrow E ; \quad x \mapsto\left[[x]_{1} \cap C\right]_{2} \cap E
$$

then \widehat{C} is a permutation of E, and if $\gamma \in \operatorname{Sym} E$, the set $C(\gamma):=\{x \square \gamma(x) \mid x \in$ $E\}$ is a chain.
(2.7) Let $J(E):=\left\{\sigma \in \operatorname{Sym} E \mid \sigma^{2}=\mathrm{id}\right\}, J^{*}(E)=J(E) \backslash\{i d\}, \gamma \in \operatorname{Sym} E$, $a \in E, b:=\gamma(a)$ and $C:=C(\gamma)$, then:
(1) $a \square b \in C$ and $\gamma(b)=a \Longleftrightarrow b \square a \in C$;
(2) $\gamma \in J(E) \Longleftrightarrow C \perp E$ or $C=E$;
(3) If $\gamma \in J(E)$ then $\gamma=\left.\widetilde{C}\right|_{E}$;
(4) $\forall \alpha, \beta \in \operatorname{Sym} E: C(\alpha) \perp C(\beta) \Longleftrightarrow \alpha^{-1} \circ \beta \in J^{*}(E)$.
(2.8) (Extension Theorem) For $\sigma \in \operatorname{Sym} E$ let

$$
\sigma_{1}:\left\{\begin{array}{lll}
\mathcal{P}:=E \square E & \longrightarrow & \mathscr{P} \\
x \square y & \longmapsto & \sigma(x) \square y
\end{array} \quad, \quad \sigma_{2}:\left\{\begin{array}{lll}
\mathcal{P} & \longrightarrow & \mathcal{P} \\
x \square y & \longmapsto & x \square \sigma(y)
\end{array}\right.\right.
$$

and $\bar{\sigma}=\sigma_{1} \circ \sigma_{2}$ and let $S:=C(\sigma)$. Then
(1) $\forall \gamma \in \operatorname{Sym} E: \sigma_{1}(C(\gamma))=C\left(\gamma \circ \sigma^{-1}\right), \sigma_{2}(C(\gamma))=C(\sigma \circ \gamma), \bar{\sigma}(C(\gamma))=$ $C\left(\sigma \circ \gamma \circ \sigma^{-1}\right)$, i.e., $\sigma_{1}, \sigma_{2}, \bar{\sigma} \in \operatorname{Aut}\left(\mathcal{P}, \mathcal{g}_{1}, \mathcal{g}_{2}, \mathcal{C}, \perp\right)$;
(2) $\forall \sigma, \tau \in \operatorname{Sym} E:(\sigma \circ \tau)_{1}=\sigma_{1} \circ \tau_{1},(\sigma \circ \tau)_{2}=\sigma_{2} \circ \tau_{2}, \overline{\sigma \circ \bar{\tau}}=\bar{\sigma} \circ \bar{\tau}$;
(3) If $\sigma \in J(E)$, then $\bar{\sigma}=\widetilde{S} \circ \widetilde{E}=\widetilde{E} \circ \widetilde{S}$;
(4) If $S \perp E$ or $S=E$, then $\overline{\left(\left.\widetilde{S}\right|_{E}\right)} \equiv \widetilde{\sim} \circ \widetilde{E}=\widetilde{E} \circ \widetilde{S}$;
(5) Let $A, B, C, D \in E^{\perp}$, then $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C}=\left.\left.\left.\widetilde{D} \Longleftrightarrow \widetilde{A}\right|_{E} \circ \widetilde{B}\right|_{E} \circ \widetilde{C}\right|_{E}=\left.\widetilde{D}\right|_{E}$.

Proof. (1): $\sigma_{1}(C(\gamma))=\sigma_{1}(\{x \square \gamma(x) \mid x \in E\})=\left\{\sigma(x) \square \gamma \circ \sigma^{-1} \circ \sigma(x) \mid x \in\right.$ $E\}=C\left(\gamma \circ \sigma^{-1}\right)$ and $\sigma_{1}(C(\alpha))=C\left(\alpha \circ \sigma^{-1}\right) \perp \sigma_{1}(C(\beta))=C\left(\beta \circ \sigma^{-1}\right) \stackrel{(2,7,(4))}{\Longleftrightarrow}$ $\sigma \circ \alpha^{-1} \circ \beta \circ \sigma^{-1} \in J^{*}(E) \Longleftrightarrow \alpha^{-1} \circ \beta \in J^{*}(E) \stackrel{(2,7,(4))}{\Longleftrightarrow} C(\alpha) \perp C(\beta)$.
(3): By (2.7, (3)), $\sigma=\left.\widetilde{S}\right|_{E}$ hence $\bar{\sigma}(x \square y)=\sigma(x) \square \sigma(y)=\widetilde{S}(x) \square \widetilde{S}(y) \stackrel{(2.3,(1))}{=}$ $\widetilde{S}(y \square x)=\widetilde{S} \circ \widetilde{E}(x \square y)$, i.e. $\bar{\sigma}=\widetilde{S} \circ \widetilde{E}$.
(4) : is a consequence of (3) and (2.7, (3)) and (5) follows from (4).

3 Chain nets associated with reflection structures

In this section, let $\left(E,{ }^{\circ} ; 0\right)$ be a reflection structure and $\left(\mathcal{P}:=E \times E, \mathcal{g}_{1}, \mathcal{g}_{2}, \mathcal{C}\right)$ (with $g_{1}:=\{\{x\} \times E \mid x \in E\}$ und $g_{2}:=\{E \times\{x\} \mid x \in E\}$) the chain net corresponding to the symmetric group Sym E with the identifications $x=(x, x)=$ $x \square x$ for $x \in E$, hence $0=(0,0)$ and $E=\{(x, x) \mid x \in E\}$.

Since $E^{\circ}:=\left\{a^{\circ} \mid a \in E\right\} \subset J(E)$ and $a^{\circ}(0)=a$ by (B1), we have $a^{\circ} \in J^{*}(E)$ if $a \neq 0$. For $0 \in E$ we have the two cases, $0^{\circ} \in J^{*}(E)$ and $0^{\circ}=i d$.
From (2.7, (3)), (2.8, (3)) we obtain:
(3.1) For $a \in E$ let $a^{c}:=C\left(a^{\circ}\right)=\left\{x \square a^{\circ}(x) \mid x \in E\right\} \in \mathcal{C}$ be the graph of the map a° and $\tilde{a}:=\widetilde{a^{c}}$ the reflection in the chain a^{c}. Then
(1) $\widetilde{\widetilde{a}}=\overline{a^{\circ}} \circ \widetilde{E}=\widetilde{E} \circ \overline{a^{\circ}}, a^{\circ}=\widetilde{\widetilde{a}} \mid E, a^{c} \in E^{\perp} \cup\{E\}$ and $\widetilde{a} \circ \widetilde{b} \circ \widetilde{c}=\widetilde{\sim}$ $\overline{a^{\circ} \circ b^{\circ} \circ c^{\circ}}=\overline{a^{\circ} \circ b^{\circ} \circ c^{\circ} \circ \widetilde{E} \text {, in particular } \widetilde{a}\left(b^{c}\right)}=\widetilde{a} \circ \widetilde{b} \circ \widetilde{a}=\widetilde{E} \circ$ $a^{\circ} \circ b^{\circ} \circ a^{\circ}$ and $\widetilde{a}\left(b^{c}\right)=C\left(a^{\circ} \circ b^{\circ} \circ a^{\circ}\right) \subset E^{\perp} \cup\{E\}$, hence $\widetilde{a}\left(b^{c}\right) \in E^{c}:=$ $\left\{a^{c} \mid a \in E\right\} \Longleftrightarrow a^{\circ} \circ b^{\circ} \circ a^{\circ} \in E^{\circ} ;$
(2) If $0^{\circ} \neq$ id, then $E^{c} \subset E^{\perp}$ and $\overline{E^{\circ}}\left(0^{c}\right):=\left\{\overline{a^{\circ}}\left(0^{c}\right) \mid a \in E\right\}=E^{\sim}\left(0^{c}\right):=$ $\left\{\widetilde{a}\left(0^{c}\right) \mid a \in E\right\}=\left\{C\left(a^{\circ} \circ 0^{\circ} \circ a^{\circ}\right) \mid a \in E\right\} \subset E^{\perp} ;$
(3) If $0^{\circ}=$ id, then $E=0^{c} \in E^{c} \subset E^{\perp} \cup\{E\}, \widetilde{0}=\widetilde{E}$ and $\overline{E^{\circ}}\left(0^{c}\right)=E^{\sim}\left(0^{c}\right)=$ $\{E\}$;
(4) $\forall x \in[0]_{1} \cup[0]_{2} \quad \exists_{1} a^{c} \in E^{c}: x \in a^{c}$;
(5) $\bigcup E^{c}=\mathscr{P} \Longleftrightarrow E^{\circ}$ acts transitively on E;
(6) $\left(\mathscr{P}, \mathscr{g}_{1}, \mathscr{g}_{2}, E^{c}\right)$ is a web $\Longleftrightarrow E^{\circ}$ acts regularly on E;
(7) $\overline{E^{\circ}}\left(0^{c}\right) \subset E^{c} \Longleftrightarrow \forall a \in E: a^{\circ} \circ 0^{\circ} \circ a^{\circ} \in E^{\circ} \Rightarrow E \subset \bigcup E^{c}$;
(8) $a^{\circ} \circ E^{\circ} \circ a^{\circ}=E^{\circ} \Longleftrightarrow \widetilde{a} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{g}_{1} \cup g_{2}, E^{c}\right)$;
(9) $\left(E,{ }^{\circ} ; 0\right)$ is invariant $\Longleftrightarrow E^{c}$ is symmetric;
(10) If $\left(E,{ }^{\circ} ; 0\right)$ is invariant, then E° acts regularly on E and $\left(\mathscr{P}, g_{1}, \mathcal{g}_{2}, E^{c}\right)$ is a symmetric web such that there is an $F \in \mathcal{C}$ with $E^{c} \subset F^{\perp} \cup\{F\}$ and we have for each $a \in E$ the commutative diagramm

(11) (Immersion theorem) If $\left(E,{ }^{\circ} ; 0\right)$ is invariant and if Fix $a^{\circ} \neq \emptyset$ for each $a \in E$, then Fix a° consists of a single element $a^{\prime} \in E$ and $\left(E^{c}, \square, 0^{c}\right)$ with

$$
\left(a^{c}\right)^{\square}:\left\{\begin{array}{lll}
E^{c} & \rightarrow & E^{c} \\
x^{c} & \mapsto & a^{\prime}\left(x^{c}\right)=C\left(a^{\prime \circ} \circ x^{\circ} \circ a^{\prime \circ}\right)
\end{array}\right.
$$

is a reflection structure isomorphic to $\left(E,{ }^{\circ} ; 0\right)$.
If we call $\left(E,{ }^{\circ} ; 0\right)^{c}:=\left(\mathscr{P}:=E \times E, g_{1}, \varnothing_{2}, E^{c}\right)$ the chain-derivation of the reflection structure $\left(E,{ }^{\circ} ; 0\right)$ then we can state the following characterization theorems:
(3.2) Let $\left(E,{ }^{\circ} ; 0\right)$ be an invariant reflection structure, $\mathcal{W}:=\left(\mathcal{P}, \mathscr{g}_{1}, g_{2} ; 马\right):=$ $\left(E,{ }^{\circ} ; 0\right)^{c}$ and \mathcal{C} the set of chains of $\left(\mathcal{P}, \mathcal{g}_{1}, \mathcal{g}_{2}\right)$. Then \mathcal{W} is a web, \mathcal{G} is symmetric and there is an $E \in \mathcal{C}$ such that $Q \subset E^{\perp} \cup\{E\}$.

If $\left(\mathcal{P}, g_{1}, g_{2} ; \mathcal{G}\right)$ is a chain net such that:
(O1) $\exists E \in \mathcal{C}: g \subset E^{\perp} \cup\{E\}$
is satisfied, then we call $\left(\mathcal{P}, \mathcal{g}_{1}, \mathcal{g}_{2} ; \mathcal{g}\right)^{E}:=\left(E ;\left.\widetilde{g}\right|_{E}\right)$ the reflection derivation in E and if moreover
(O2) $\exists 0 \in E: \forall x \in E \quad \exists \mid x^{g} \in \mathcal{G}: 0 \square x \in x^{g}$
is valid, then the map

$$
\circ:\left\{\begin{array}{lll}
E & \rightarrow & \operatorname{Sym} E \\
x & \mapsto & x^{\circ}:=\widetilde{x^{g}}
\end{array}\right.
$$

is an injection and $\left(\mathcal{P}, \mathcal{g}_{1}, \mathcal{q}_{2} ; \mathcal{G}\right)^{E, 0}:=\left(E,{ }^{\circ} ; 0\right)$ is a reflection structure.
(3.3) Let $\mathcal{W}=\left(\mathscr{P}, \mathscr{g}_{1}, \mathscr{g}_{2} ; \mathcal{G}\right)$ be a web such that $\mathbf{(O 1)}$ is satisfied and \mathcal{G} is symmetric. Then for each $0 \in E,\left(E,{ }^{\circ} ; 0\right):=\left(\mathcal{P}, g_{1}, g_{2} ; \mathcal{g}_{2}\right)^{E, 0}$ is an invariant reflection structure and moreover W is isomorphic to $\left(E,{ }^{\circ} ; 0\right)^{c}$.

4 Applications to K-loops

In this section let $\left(\mathscr{P}, g_{1}, g_{2}\right)$ be a net, \mathcal{C} the set of all chains of $\left(\mathcal{P}, g_{1}, g_{2}\right)$ and \mathscr{g} a subset of \mathcal{C} such that there is a generator $Y \in \mathcal{g}_{1}$ satisfying the condition:
$\mathbf{N} 1^{\prime}$ For each $y \in Y$ there is exactly one $G \in \mathcal{g}$ with $y \in G$; we set $[y]_{3}:=G$.

Then fixing a point $0 \in Y$ the chain $E:=[0]_{3}$ can be turned in a right loop $(E,+)$ with the neutral element 0 : For all $a, b \in E$ let

$$
a^{+}: E \rightarrow E ; \quad x \rightarrow\left[\left[Y \cap[a]_{2}\right]_{3} \cap[x]_{1}\right]_{2} \cap E
$$

and $a+b:=a^{+}(b)$. We set $w:=\left(\mathscr{P}, g_{1}, \mathscr{g}_{2} ; \mathscr{Q}\right)$ and $w^{0+}:=(E,+)$ and call this the loop derivation in the point 0 . This derivation exists for each point $0 \in \mathscr{P}$ where $[0]_{1}$ satisfies $\mathbf{N} 1^{\prime}$. If on the other hand $(E,+)$ is a right loop with neutral element $0, a^{+}: E \rightarrow E ; x \mapsto a+x$ for $a \in E$ and $E^{+}:=\left\{a^{+} \mid a \in E\right\}$ then the chain derivation $(E,+)^{c}:=\left(E, E^{+}\right)^{c}$ gives us a chain net $\left(\mathcal{P}, \mathcal{g}_{1}, g_{2} ; \mathcal{q}\right)(\mathscr{g}:=$ $\left\{C\left(a^{+}\right) \mid a \in E\right\}$) where $[0 \square 0]_{1}$ satisfies $\mathbf{N} 1^{\prime}$. Clearly $\left((E,+)^{c}\right)^{0+}=(E,+)$ if 0 denotes the point $0 \square 0$, and $\left(\mathcal{W}^{0+}\right)^{c}=\mathcal{W}$ if for $0 \in \mathscr{P},[0]_{1}$ satisfies $\mathbf{N 1}^{\prime}$.

We have (cf. [9], (2.5), [10], p. 81):
(4.1) If $\mathcal{W}=\left(\mathcal{P}, g_{1}, g_{2} ; g\right)$ is a web, then for each $0 \in \mathcal{P}, \mathcal{W}^{0+}$ is a loop with the neutral element 0 ; if $(E,+)$ is a loop, then $(E,+)^{c}$ is a web.

By (1.1) and (1.2) there is a one to one correspondence between reflection structures $\left(E,{ }^{\circ} ; 0\right)$ and right loops $(E,+)$ satisfying the condition $(*)$ of (1.1) : If $\left(E,{ }^{\circ} ; 0\right)$ is given, then we set $\left(E,{ }^{\circ} ; 0\right)^{+}:=(E,+)$ where $a+b:=a^{\circ} \circ 0^{\circ}(b)$ and if we start from $(E,+)$, we set $(E,+)^{\circ}:=\left(E,^{\circ} ; 0\right)$ where $a^{\circ}:=a^{+} \circ \nu$ and $v: E \longrightarrow E$; $x \mapsto-x$. Here we have $\left((E,+)^{\circ}\right)^{+}=(E,+)$ and $\left(\left(E,{ }^{\circ} ; 0\right)^{+}\right)^{\circ}=\left(E,^{\circ} ; 0\right)$.
(4.2) Let $(E,+)$ be a right loop, $w=\left(\mathscr{P}, \mathscr{C}_{1}, \mathscr{g}_{2} ; \mathscr{G}\right):=(E,+)^{c}$ and $0^{c}:=$ $C(v)=\{x \square(-x) \mid x \in E\}$. Then:
(1) The following statements are equivalent:
(i) $(E,+)$ satisfies $(*)$ of (1.1);
(ii) $g \subset\left(0^{c}\right)^{\perp} \cup\left\{0^{c}\right\}$.
(2) Equivalent are:
(i) $(E,+)$ is a right loop satisfying the Bol condition: $\forall a, b \in E: a^{+} \circ b^{+} \circ$ $a^{+}=\left(a^{+}(b)\right)^{+}$;
(ii) $(E,+)$ is a Bol loop;
(iii) G is symmetric;
(iv) W is a Bol web.
(3) Equivalent are:
(i) $(E,+)$ is a K-loop;
(ii) ϱ is symmetric and $g \subset\left(0^{c}\right)^{\perp} \cup\left\{0^{c}\right\}$;
(iii) \mathcal{W} is a Bol web with the additional property: $\exists A \in \mathcal{C}: \mathcal{G} \subset A^{\perp} \cup\{A\}$.

Proof. This theorem is a consequence of (1.1), (1.2), (3.1), (3.2) and (3.3). We have only in (2) to show that \mathcal{W} is a web since then the symmetry is equivalent to the property that each Bol configuration closes. Let $x \in \mathcal{P}$ be given, $x_{1}:=$ $[x]_{2} \cap[0]_{1}, x_{2}:=[x]_{1} \cap\left[x_{1}\right]_{3}, x_{3}:=[0]_{1} \cap\left[x_{2}\right]_{2}$. Then since \mathcal{g} is symmetric, $X:=\left[\widetilde{x_{1}}\right]_{3}\left(\left[x_{3}\right]_{3}\right) \in g$ and since $\left[\widetilde{x_{1}}\right]_{3}\left(x_{3}\right)=x$, we have $x \in X$. Suppose there is a further $U \in g$ with $x \in U$, then $x_{3}=\left[\widetilde{x_{1}}\right]_{3}(x) \in\left[\widetilde{x_{1}}\right]_{3}(U) \in g$ with $x_{3} \in[0]_{1}$, hence $\left[\widetilde{x_{1}}\right]_{3}(U)=\left[x_{3}\right]_{3}$ by $\mathbf{N} \mathbf{1}^{\prime}$ and so $U=X$.

Remark. Let $\left(E,^{\circ} ; 0\right)$ be a reflection structure, $(E,+):=\left(E,^{\circ} ; 0\right)^{+},\left(\mathcal{P}, \mathscr{g}_{1}, \mathcal{g}_{2}\right.$; $\mathcal{G}):=\left(E,^{\circ} ; 0\right)^{c}$ and $\left(\mathcal{P}, \mathcal{G}_{1}, \mathcal{G}_{2} ; \mathcal{H}\right):=(E,+)^{c}$, then $\left(0^{\circ}\right)_{1}(\mathcal{g})=\mathscr{H}(\mathrm{cf} .(2.8))$.

5 Web configurations related to properties of K-loops

Here let $\mathcal{W}=\left(\mathcal{P}, g_{1}, g_{2} ; \mathcal{G}\right)$ be a web and for $x \in \mathscr{P}$ let $[x]_{3} \in \mathcal{G}$ with $x \in[x]_{3}$. We remark that the closing of web configurations characterizing certain classes of webs can be expressed elegantly by using reflections in elements of g. The condition RE If $a \in \mathscr{P}, b_{i} \in[a]_{i}, c_{i j}:=\left[b_{i}\right]_{j} \cap\left[b_{j}\right]_{i}$ for $i, j \in\{1,2,3\}$ with $i \neq j$, then $\left[c_{12}\right]_{3} \cap\left[c_{23}\right]_{1} \cap\left[c_{31}\right]_{2} \neq \emptyset$
which characterizes the Reidemeister webs can be written in the form:
$\mathbf{R E}^{\prime}$ If $A, B, C, D \in \mathscr{q}$ with $\operatorname{Fix}\left(\left.\tilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{D}\right|_{g_{1}}\right) \neq \emptyset$, then $\left.\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{D}\right|_{g_{1}}=i d_{g_{1}}$.
Proof. Let $X \in \mathcal{g}_{1}, a:=A \cap X, b_{1}:=D \cap X, b_{2}:=[a]_{2} \cap B$ and $c_{12}:=$ $\left[b_{1}\right]_{2} \cap\left[b_{2}\right]_{1}$. Then $\widetilde{\sim}(\underset{\sim}{X})=\widetilde{D}\left([a]_{1}\right)=\left[b_{1}\right]_{2}, \widetilde{B} \circ \widetilde{A}(X)=\widetilde{B}\left([a]_{2}\right)=\left[b_{2}\right]_{1}$ and we have: $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{D}(X)=X \Longleftrightarrow \widetilde{C} \circ \widetilde{D}(X)=\widetilde{C}\left(\left[b_{1}\right]_{2}\right)=\widetilde{B} \circ \widetilde{A}(X)=$ $\left[b_{2}\right]_{1} \Longleftrightarrow c_{12} \in C \Longleftrightarrow C=\left[c_{12}\right]_{3}$.
We assume $\left[c_{12}\right]_{3}=C$. Let $Y \in \mathcal{g}_{1}, b_{3}:=Y \cap A=Y \cap[a]_{3}, c_{13}:=\left[b_{1}\right]_{3} \cap\left[b_{3}\right]_{1}=$ $\underset{\sim}{D} \cap \underset{\sim}{Y}$ and $c_{23}:=\left[b_{2}\right]_{3} \cap\left[b_{3}\right]_{2}=B \cap\left[b_{3}\right]_{2}$. Then $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{D}(Y)=Y \Longleftrightarrow$ $\widetilde{C} \circ \widetilde{D}(Y)=\widetilde{C}\left(\left[c_{13}\right]_{2}\right)=\widetilde{B} \circ \widetilde{A}(Y)=\widetilde{B}\left(\left[b_{3}\right]_{2}\right)=\left[c_{23}\right]_{1} \Longleftrightarrow\left[c_{12}\right]_{3} \cap\left[c_{23}\right]_{1} \cap$ $\left[c_{13}\right]_{2} \neq \emptyset$. This shows the equivalence of RE and $\mathbf{R E}^{\prime}$.

Figure 1.
If we add in $\mathbf{R E}$, respectively in $\mathbf{R E}^{\prime}$ the assumption $c_{12} \in[a]_{3}$, respectively $B=D$ then we obtain the conditions BO, respectively $\mathbf{B O}^{\prime}$ characterizing the Bol webs which are equivalent to (cf. [15], (1.2), [2]):
$\mathbf{B O}^{\prime \prime} \mathcal{g}$ is symmetric.
The stronger assumption $c_{12}=b_{3}$ in RE leads to the condition HEX describing the hexagonal webs, a condition which is equivalent to
$\mathbf{H E X}^{\prime}$ If $X \in \operatorname{Fix}\left(\left.\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{B}\right|_{g_{1}}\right)$, then $\widetilde{B} \circ \widetilde{C}(X) \in \operatorname{Fix}\left(\left.\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{B}\right|_{g_{1}}\right)$.

If $p \in \mathscr{P}$ is fixed and HEX is valid for $c_{12}=b_{3}=p$, then we denote this condition by HEX(p) and call \mathcal{W} hexagonal with respect to p. HEX(p) can be expressed by:
$\operatorname{HEX}(\mathbf{p})^{\prime}$ If $[p]_{1} \in \operatorname{Fix}\left(\widetilde{A} \circ\left[\widetilde{p]_{3}} \circ \widetilde{C} \circ\left[\left.\widetilde{p]_{3}}\right|_{g_{1}}\right)\right.\right.$, then $\left[\widetilde{p]_{3}} \circ \widetilde{C}\left([p]_{1}\right) \in \operatorname{Fix}(\widetilde{A} \circ\right.$ $\left[\widetilde{p]_{3}} \circ \widetilde{C} \circ\left[\widetilde{p]_{3}} \mid g_{1}\right)\right.$.
(5.1) Let $0 \in \mathcal{P}$ be fixed, let $E:=[0]_{3}$ and let $(E,+):=\mathcal{W}^{0+}$ be the derived loop and let $N:=C(v)=\{x \square(-x) \mid x \in E\} \in \mathcal{C}$. For each $a \in E$ let $a^{+}: E \rightarrow E$; $x \mapsto a+x,-a$, respectively $\sim a$ be defined by $a+(-a)=0$, respectively $\sim a \pm a=0$. For $x \in E$ let x be identified with $[x]_{1}$ and let $\bar{x}:=[0 \square x]_{3}$ and $\widetilde{x}:=\widetilde{\bar{x}}$. Moreover let $a, b \in E, c:=a+b$ and $d:=b+a$. Then:
(1) $\forall x \in E:-x=\sim x \Longleftrightarrow \operatorname{HEX}(\mathbf{0}) \Longleftrightarrow E \in N^{\perp} \cup\{N\} \Longleftrightarrow \widetilde{v}=\widetilde{E} \circ \widetilde{N}$;
(2) $\delta_{a, a}=$ id $\Longleftrightarrow(a+a)^{+}=a^{+} \circ a^{+} \Longleftrightarrow \widetilde{a}(E) \in g_{\text {; }}$
(3) $\forall x \in E: \delta_{x,-x}=x^{+} \circ(-x)^{+}=i d \Longleftrightarrow \widetilde{E} \in \operatorname{Aut}(\mathcal{P}, g)$;
(4) $\mathbf{B O}^{\prime \prime} \Rightarrow \widetilde{E} \in \operatorname{Aut}(\mathcal{P}, \mathcal{Q}) \Rightarrow \mathbf{H E X}(0)$;
(5) $\delta_{a, b}=\left.\widetilde{c} \circ \widetilde{a} \circ \widetilde{E} \circ \widetilde{b}\right|_{g_{1}}$;
(6) $\delta_{a, b+a}=\left(\delta_{b, a}\right)^{-1} \Longleftrightarrow a^{+} \circ b^{+} \circ a^{+}=(a+(b+a))^{+} \Longleftrightarrow \tilde{a} \circ \tilde{E}(\bar{b}) \in \mathcal{G}$;
(7) $\delta_{a, b}=\left.\left(\delta_{b, a}\right)^{-1} \Longleftrightarrow \widetilde{b} \circ \widetilde{E} \circ \tilde{a} \circ \tilde{c} \circ \tilde{a} \circ \widetilde{E} \circ \tilde{b} \circ \tilde{d}\right|_{g_{1}}=\mathrm{id}_{g_{1}}$;
(8) $\delta_{a, b}=\left.\delta_{a, b+a} \Longleftrightarrow \tilde{c} \circ \tilde{a} \circ \widetilde{E} \circ \tilde{b} \circ \tilde{d} \circ \widetilde{E} \circ \tilde{a} \circ \widetilde{d}\right|_{g_{1}}=\mathrm{id}_{g_{1}}$;
(9) $\delta_{a, b} \in \operatorname{Aut}(E,+) \Longleftrightarrow \forall X \in \mathcal{G}, \exists X^{\prime} \in \mathcal{G}: \tilde{X}^{\prime} \circ \widetilde{E} \circ \widetilde{c} \circ \widetilde{a} \circ \widetilde{E} \circ \widetilde{b} \circ \widetilde{E} \circ \widetilde{X} \circ$ $\left.\widetilde{b} \circ \widetilde{E} \circ \widetilde{a} \circ \widetilde{c}\right|_{g_{1}}=\mathrm{id}_{g_{1}}$.

6 Point-reflections related to a web and the negative map of the corresponding loop

In this section let $\mathcal{W}=\left(\mathscr{P}, g_{1}, g_{2}, g_{3}\right)$ be a web, then $\left(\mathscr{P}, g_{1}, g_{3}\right)$, respectively ($\left.\mathcal{P}, g_{2}, g_{3}\right)$ is a net and g_{2}, respectively g_{1} can be considered as a chain-set. Therefore for $A \in \mathcal{g}_{2}$, respectively $A \in \mathcal{g}_{1}$ we define (according to (2.3)) the map $\widetilde{A}: \mathcal{P} \rightarrow \mathcal{P} ; x \mapsto\left[[x]_{i} \cap A\right]_{j} \cap\left[[x]_{j} \cap A\right]_{i}$ with $\{i, j\}=\{1,3\}$, respectively $\{i, j\} \in\{2,3\}$.

We call a pair $(0, \sigma) \in \mathscr{P} \times S_{3}$ (S_{3} denotes the symmetric group of three elements) a frame of reference and the bijection

$$
\mathscr{P} \rightarrow[0]_{\sigma(3)} \times[0]_{\sigma(3)} ; \quad x \mapsto\left([x]_{\sigma(1)} \cap[0]_{\sigma(3)},[x]_{\sigma(2)} \cap[0]_{\sigma(3)}\right)
$$

the corresponding coordinatization function. In order to simplify our considerations we discuss only the case $\sigma=$ id and $E:=[0]_{3}$. Then $\mathscr{P}=E \square E=\{x \square y \mid x, y \in$ $E\}$ and x, y are the coordinates of the point $x \square y$.

For each $q \in \mathscr{P}$ and for each $\sigma \in S_{3}$ we define now a permutation of the line $[q]_{\sigma(3)}$ fixing the point q by

$$
q_{\sigma}:[q]_{\sigma(3)} \rightarrow[q]_{\sigma(3)} ; \quad x \mapsto\left[\left[[x]_{\sigma(2)} \cap[q]_{\sigma(1)}\right]_{\sigma(3)} \cap[q]_{\sigma(2)}\right]_{\sigma(1)} \cap[q]_{\sigma(3)}
$$

which we will call a turn of $[q]_{\sigma(3)}$ about q.
Remark. \mathcal{W} is hexagonal with respect to q if and only if $q_{\sigma} \circ q_{\sigma}=\mathrm{id}$.

Now we extend the turn q_{σ} to a permutation of \mathscr{P} via (2.8). In order to answer the question whether $\overline{q_{\sigma}} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{g}_{\sigma(3)}\right)$ we need the following bend-configuration with respect to a point $q \in \mathscr{P}$ and a permutation $\sigma \in S_{3}$:
$\operatorname{BE}(q ; \sigma)$ Let $\sigma \in S_{3}, \tau_{i} \in S_{3} \backslash A_{3}$ with $\tau_{i}(1)=i$ (hence $\tau_{1}=(23), \tau_{2}=(12)$, $\left.\tau_{3}=(13)\right)$,
and let

$$
\tau_{\sigma(i) q}(p):=\left[\left[[p]_{\sigma(i)} \cap[q]_{\sigma \circ \tau_{i}(2)}\right]_{\sigma \circ \tau_{i}(3)} \cap[q]_{\sigma(i)}\right]_{\sigma \circ \tau_{i}(2)} \cap[q]_{\sigma \circ \tau_{i}(3)}
$$

We say that the bend-configuration closes if for all $p \in \mathcal{P}$:

$$
\bigcap_{i \in\{1,2,3\}}\left[\tau_{\sigma(i) q}(p)\right]_{i} \neq \emptyset
$$

Figure 2. BE(0; id)
(6.1) (Characterization Theorem) For $q \in \mathscr{P}$ and $\sigma \in S_{3}$ the following statements are equivalent:
(1) $\overline{q_{\sigma}} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{g}_{\sigma(3)}\right)$;
(2) The bend-configuration $\mathbf{B E}(q ; \sigma)$ with respect to q and σ closes.

Proof. We may assume $\sigma=\mathrm{id}, q=0, E=[0]_{3}$. We set $\tau_{i}:=\tau_{i 0}(i \in\{1,2,3\})$. Let $A \in \mathcal{g}_{3}, a \in E$ such that $a \square 0 \in A$ and $A^{\prime}:=\left[\overline{0_{\mathrm{id}}}(a \square 0)\right]_{3}=\left[0_{\mathrm{id}}(a) \square 0\right]_{3}$. For all $p:=x_{1} \square x_{2}$ with $x_{1}, x_{2} \in E$, we have by definition $\overline{0_{\mathrm{id}}}(p)=\left[\tau_{1}(p)\right]_{1} \cap\left[\tau_{2}(p)\right]_{2}$ and $p \in A \Longleftrightarrow \tau_{3}(p) \in A^{\prime}$. Then $\overline{0_{\mathrm{id}}}(A) \in g_{3} \Longleftrightarrow \overline{0_{\mathrm{id}}}(A)=A^{\prime} \Longleftrightarrow \forall p=$ $x_{1} \square x_{2} \in A:\left[\tau_{1}(p)\right]_{1} \cap\left[\tau_{2}(p)\right]_{2} \in A^{\prime}:=\left[\tau_{3}(p)\right]_{3}$.
(6.2) Let $q \in \mathscr{P}, \sigma \in S_{3}, \omega \in A_{3}, \tau \in S_{3} \backslash A_{3}$, then we have:
(1) If $\tau \circ \sigma(1)=\sigma(2)$, then $q_{\sigma} \circ q_{\tau \circ \sigma}=\mathrm{id}_{[q]_{\sigma(3)}}$ and $\overline{q_{\sigma}} \circ \overline{q_{\tau \circ \sigma}}=\mathrm{id}$;
(2) If $\overline{q_{\sigma}} \in \operatorname{Aut}\left(\mathscr{P}, g_{\sigma(3)}\right)$, then $\overline{q_{\omega \circ \sigma}}=\overline{q_{\sigma}}$ and $\overline{q_{\tau \circ \sigma}}={\overline{q_{\sigma}}}^{-1}$ (i.e. if the bendconfiguration with respect to q closes for one permutation $\sigma_{0} \in S_{3}$ then it closes for all permutations $\sigma \in S_{3}$);
(3) If $\overline{q_{\sigma}} \in \operatorname{Aut}\left(\mathcal{P}, \mathcal{g}_{\sigma(3)}\right)$ and $q_{\sigma} \circ q_{\sigma}=\mathrm{id}$, then $\overline{q_{\sigma}} \in \operatorname{Aut}\left(\mathcal{P}, \mathcal{g}_{\sigma(1)}, \mathcal{q}_{\sigma(2)}\right.$, $\left.\mathcal{g}_{\sigma(3)}\right) \cap J$. In this case we call $\overline{q_{\sigma}}$ the point-reflection in q related to the web.

Proof.
(1): Without loss of generality we may assume $q=0$ and $\sigma=\mathrm{id}$. One verifies by the definition of turn that for each $x \in[0]_{3}:: 0_{\text {id }} \circ 0_{(12)}(x)=x$ and this implies $\overline{0_{i d}} \circ \overline{0_{(12)}}=\mathrm{id}$.

Figure 3.
(2): We may assume $\omega=$ (123). Then Fig. 2 shows that $\overline{0_{i d}}=\overline{0_{(123)}}$ is equivalent to the fact that the bend-configuration with respect to 0 and $\sigma=$ id closes. Therefore by (6.1) and (1) the statements of (2) are valid.

Now let $0 \in \mathcal{P}$ be fixed, $E:=[0]_{3},(E,+):=\mathcal{W}^{0+}$ and $N:=C(\nu)=$ $\{x \square(-x) \mid x \in E\}$ (cf. (4.2)). Then $N \in \mathcal{C}$ by $v \in \operatorname{Sym} E$ and we can state:
(6.3) The following statements (1), (2), (3) are equivalent:
(1) $v \in \operatorname{Aut}(E,+)$;
(2) The bend-configuration $\mathbf{B E}(0$; id) with respect to 0 and $\sigma=$ id closes;
(3) $\bar{v}=\overline{0_{\text {id }}} \in \operatorname{Aut}\left(\mathscr{P}, g_{3}\right)$.

Under the assumption $\widetilde{E} \in \operatorname{Aut}\left(\mathcal{P}, g_{3}\right)$ also (1), (2), (3) and (4) are equivalent:
(4) $g_{3} \subset N^{\perp} \cup\{N\}$.

Proof.
$"(1) \Longleftrightarrow(2) "$ The map $E \times E \rightarrow \mathcal{P},(a, b) \mapsto p:=b \square(a+b)$ is a bijection and we have $\tau_{1}(p)=(-b) \square 0=\nu(b) \square 0, \tau_{2}(p)=-(a+b)=\nu(a+b), \tau_{3}(p)=$
$0 \square(-a)=0 \square \nu(a) . v(a)+v(b)=\left[\overline{v(a)} \cap[v(b)]_{1}\right]_{2} \cap E=\left[\left[\tau_{3}(p)\right]_{3} \cap\left[\tau_{1}(p)\right]_{1}\right]_{2} \cap$ E hence $v(a)+v(b)=v(a+b) \Longleftrightarrow\left[\tau_{2}(p)\right]_{2} \ni\left[\tau_{3}(p)\right]_{3} \cap\left[\tau_{1}(p)\right]_{1}$.
$"(2) \Longleftrightarrow(3) ": c f .(6.1)$.

Figure 4.
Now let $\widetilde{E} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{D}_{3}\right)$. Then $\bar{v}=\widetilde{E} \circ \tilde{N}$ by (5.1, (4)) and (5.1, (1)), and so: $\bar{v} \in \operatorname{Aut}\left(\mathcal{P}, \mathcal{g}_{3}\right) \Longleftrightarrow \widetilde{N} \in \operatorname{Aut}\left(\mathcal{P}, g_{3}\right)$. Clearly (4) $\Rightarrow \widetilde{N} \in \operatorname{Aut}\left(\mathcal{P}, \mathcal{g}_{3}\right)$. Now let $\widetilde{N} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{g}_{3}\right)$ and $X=\bar{x} \in g_{3}$. Then $0 \square x,(-x) \square 0 \in X$, hence $\widetilde{N}(0 \square x)=\widetilde{E} \circ \bar{\nu}(0 \square x)=\widetilde{E}(0 \square(-x))=(-x) \square 0 \in \widetilde{N}(X) \in g_{3}$ and so $X=$ $[(-x) \square 0]_{3}=\tilde{N}(X)$, i.e. $g_{3} \subset N^{\perp} \cup\{N\}$.

Remark. Theorem (4.6) of [2] proves that the loop corresponding to a 3-web satisfying the Bol condition, such that the bend-configuration closes, satisfies the automorphic inverse property. Theorem (6.3) proves the equivalence between the automorphic inverse property in a loop (not necessary a Bol loop) corresponding to a 3 -web and the closure of the bend-configuration.

From (4.2, (3)) and (6.3) we obtain the result:
Theorem 6.4. $(E,+)$ is a K-loop if and only if G_{3} is symmetric and the bendconfiguration $\mathbf{B E}(0 ; \mathrm{id})$ with respect to 0 and $\sigma=\mathrm{id}$ closes.

References

[1] W. Blaschke and G. Bol, Geometrie der Gewebe. Springer 1938.
[2] M. Funk and P. T. Nagy, On collineation groups generated by Bol reflections. J. Geometry 48 (1993), 63-78.
[3] E. Gabrieli and H. Karzel, Point-reflection geometries, geometric K-loops and unitary geometries. Results Math. 32 (1997), 66-72.
[4] \qquad , Reflection geometries over loops. Results Math. 32 (1997), 61-65.
[5] B. Im and H. Karzel, Determination of the automorphism group of a hyperbolic K loop. J. Geometry 49 (1994), 96-105.
[6] H. Karzel, Symmetrische Permutationsmengen. Aequat. Math. 17 (1978), 83-90.
[7] \qquad , Recent developments on absolute geometries and algebraization by K-loops. To appear in Discrete Math. (1999).
[8] H. Karzel and A. Konrad, Reflection groups and K-loops. J. Geometry 52 (1995), 120-129.
[9] H. Karzel and H.-J. Kroll, Perspectivities in circle geometries. Geometry von Staudt's point of view. Ed. by P. Plaumann and K. Strambach. Dordrecht-BostonLondon, 1981, 51-99.
[10] , Geschichte der Geometrie seit Hilbert. Wiss. Buchgesellschaft 1988.
[11] H. Karzel and H. Wefelscheid, A geometric construction of the K-loop of a hyperbolic space. Geom. Dedicata 58 (1995), 227-236.
[12] G. KIst, Theorie der verallgemeinerten kinematischen Raüme. Beiträge zur Geometrie und Algebra 14 (1986), TUM-M 8611, 1-142.
[13] A. Kreuzer, Inner mappings of Bol loops. Math. Proc. Camb. Phil. Soc. 123 (1998), 53-57.
[14] A. Kreuzer and H. Wefelscheid, On K-loops of finite order. Results Math. 25 (1994), 79-102.
[15] H. Kühlbrandt, Automorphismen von 2-Strukturen. Beiträge zur Geometrie und Algebra 5 (1979), TUM-M 7910, 49-65.
[16] _, Über ein Problem von H. Karzel. Beiträge zur Geometrie und Algebra 6 (1980), TUM-M 8010, 17-21.
[17] P. T. Nagy and K. Strambach, Loops as invariant sections in groups, and their geometry. Can. J. Math. 46(5) (1994),1027-1056.
[18] K. Reidemeister, Topologische Fragen der Differentialgeometrie V, Gewebe und Gruppen. Math. Z. 29 (1929), 427-435.
[19] G. Thomsen, Topologische Fragen der Differentialgeometrie XII, Schnittpunktsätze in ebenen Geweben. Abh. Math. Sem. Univ. Hamburg 7 (1930), 99-106.
[20] A. A. Ungar, Weakly associative groups. Results Math. 17 (1990) 149-168.
[21] \qquad , Group-like structure underlying the unit ball in real inner product spaces. Results Math. 18 (1990) 355-364.

Eingegangen am: 12. Mai 1998
in revidierter Fassung am: 29. April 1999
Author's addresses: Elisabetta Gabrieli, Mathematisches Seminar der Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany.
E-Mail: gabrieli@math.uni-hamburg.de.
Bokhee Im, Department of Mathematics, Chonnam National University, Kwangju 500-757, Rep. of Korea.
E-Mail: bim@chonnam.chonnam.ac.kr.
Helmut Karzel, Mathematisches Institut, Technische Universität München, D-80290 München, Germany.
E-Mail: karzel@mathematik.tu-muenchen.de.

[^0]: 1991 Mathematics Subject Classification. 20N05, 53A60.
 Key words and phrases. Web, weak K-loop, K-loop and reflection structure.
 The first author was supported by a grant from the Vigoni project. The second author wishes to acknowledge the financial support of the Korea Research Foundation, 1997.

