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Webs with Rotation and Reflection Properties 
and their Relations with Certain Loops 

By B. IM, H. KARZEL, and H.-J. Ko 

Abstract. In a web one can define in a natural way reflections in generators and a 
kind of rotations in points. The structure of the webs and the corresponding loops 
in which some of these maps are automorphisms will be studied in a synthetic 
way. 

1 Introduction and Notations 

Let W := (~ ,  ~1,  ~2,  ~3)  be a web, i.e. a nonempty set if" and three subsets ~i  of 
the power set ~3(~) of ~ such that 

W l  Vx �9 ~ ,  Vi �9 {1,2, 3}, 31 [X]i �9 ~i : X �9 [X]i, 

W2 Vi, j � 9  V A � 9  V B � 9  
2 andlet  ~ := ~1U$2U~3.  In this paper we let (J j 3) �9 $3, i.e. {1,2,3} = { i , j , k } ,  

unless specified otherwise, and for x, y �9 ff~ let 

x D i j Y : = [ x ] i n [ y ] j  and x l - ]y :=x l -312y .  

Each automorphism et �9 Aut('W) := Aut (~ ,  ~), respectively/3 �9 Aut(ff', ~i U 
~j)  induces a permutation ~1 �9 $3, respectively/31 �9 $2 defined by a([x]t)  = 
[c~(x)],~,(/), l �9 {1,2, 3}, respectively/5(Ix]t) = {/~(x)]~,(t), l �9 {i, j}. We set 

Aut(a 9, ~i U ~ j )+  := {/5 �9 Aut (~ ,  gi U {~j) I fi' = id}, 

Au t (~ ,  ~i U g j ) -  := {fl �9 Aut (~ ,  gi U ~j )  ] fl, = (i, j)} 

and 

Aut(W) + := {or e Aut(W) I or' = id}. 

By W1 and W2 each automorphism ~ E Aut(34 ~) is completely determined by its 
action on two generators A E gi, B �9 gj  or on one generator and the corresponding 
permutation c~ I �9 $3. 

A subset C C ~ is called an i-chain if for each Y �9 gj  U gk the intersection 
Y A C  consists of a single point. Let C i :-~- {C �9 ~ ( f f g )  I V X  �9 ~ \ ~ i  : ICnXI = 1} 
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be the set of  all i-chains, then ~i C I~i. To each chain C E el ,  in particular to each 
generator there corresponds a reflection 

--, J,; x [[xb n c]k n [[xl  n c ] j ,  

i.e. an involution of the set ~ fixing exactly the points of C and interchanging the 
generators of  Sj and ~k, i.e. C ~ Au t (~ ,  ~j  U ~k). r will be called a chain 
reflection (of type i). Then by [5, (2.3, 2.4, 2.5)1 we have: 

1.1 'v'C, D E (~i, V0 E if9 : 

(1) C o C = id, F i x C  = C, C(D)  E ei, a n d C ( D )  = C o D o C, 
(2) YX ~ ~j  : C ( X )  ~ ~ ,  YY E ~ �9 C(Y)  E ~j, henceC E Aut (~ ,  S j U ~ k ) - ,  

(3) [o]/([o]j) = [o]k, 
(4) 'Ca E Aut(ff ~, ~j U ~k)- withot 2 = id " Fixot E C andF~xet = e~. 

Two chains A, B 6 Ci are called orthogonal and denoted by A _L B if A ,.~ B 
and A(B) = B. We set a • := {X 6 e i  [ X _1_ A}. By (1.1.3), [ ~ j  o [0]i o 

[0]k([0]i) = [0]i. If  [0]j o [0]i o [0]kl[o]/ = idl[oli, then W is called hexagonal with 
respect to 0. 

Besides the reflections in chains or generators one can define in a web ~W in a 
natural way a kind of local maps called rotations: If  g is one of the cyclic permu- 
tations (132) or (123) E A3 and if 0 E ~ is a point of  the web W, let Yo be the 
permutation of the set [0] :=  [0]1 U [0]2 O [0]3 defined by 

go(x) = [0]• f'l [x]y-~(i) f o rx  E [0]i, i E {1,2, 3}. 

1.2 Let g := (132) or (123) E A3. Then for  each O E ffJ, the group < go > 
generated by the rotation go is a subgroup of  the permutation group Sym([O]) and 
we have." 

(1) Fix(go) = {0} and (go)Z(x) = [O'-~y(i)(x)forx E [0]i, i E {1,2, 3}, 

[013(X) = [013 o [0] l (X)  = [0]2 o [013(X) / f x  E [011 

((132)o)2(x) = [0]'-~(x) = [0]'-~1 o [0]"2(x) = 10]"~ o [0]'-"l(X) t fx  E [012, 

[012(X) = [012 o [013(X) = [0]1 o [012(X) ifx ~ [0]3 

(2) (go) 6 = id r "W is hexagonal with respect to O, 

'~1 o [0121101 i f g  = (132) 
(3) (go) 6 = id r162 (1/0) 2 = | [ ' ~2  

[0]ll[0] / fg  (123)" O 

Note that (2/o) -1 = (t/-1)0 and that go induces on the set {[011, [0]2, [0]3} the 
permutation g, while (go) 2 induces ?/-1, and (go) 3 and (go) 6 the identity. I f  there is 
an automorphism co of the web W such that the restriction wl[o] coincides with one 
of the maps (]to) 6, (go) 3, (go) 2 or go, then co is unique by (2.8) and is called the au- 
tomorphic extension and we say that the point 0 is n-extendable for n E { 1,2, 3, 6} 

6 
if col[o] = (go) ~. Clearly if col[o] = go, then coZ][ol = (g0) 2 and o93110] = (g0) 3, 
i.e. if 0 E ~ is 6-extendable, then also 1-, 2- and 3-extendable, and if 0 is 2- and 
3-extendable, then also 6-extendable. If  for n ~ {1, 2, 3, 6} a point 0 E ~ is n- 
extendable and if moreover (go) 6 = id, i.e. the web W is hexagonal with respect 
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to 0 by the above (1.2), then 0 is called n-rotational. Moreover if each point of  a 
web W is n-extendable, respectively n-rotational, then "W is called a n-extendable, 
respectively n-rotational web. 

From the definition it follows that ?'o and (y0) 2 are distinct from the identity on 
[0], but for (yo) 3 this is not provable. We call 0 a characteristic 2 point if (yo) 3 = id. 
Clearly if 0 is a characteristic 2 point, then W is hexagonal with respect to 0 and 0 
is trivially 2-rotational and if moreover 0 is 3-rotational, then also 6-rotational. 

Remarks. 1. We have (Vo) -1 = (yo) 2 r (yo) 3 = id r 2/0 has the order 3 
=~ W is hexagonal with respect to 0 in the following way: Let (a, b, c, d) c ~4 .  
If  [a]i = [b]i, [b]j = [c] j ,  [c]i  = [d]i and [d]j = [a]j, then (a, b, c, d) is called 
a parallelogram, if moreover [a]k = [c]k, respectively [a]k = [c]k and [b]k = 
[d]k, then (a, b, c, d) is called a parallelogram with a diagonal, respectively a Fano- 
parallelogram. Hexagonal with respect to 0 means: Each parallelogram (a, b, c, d) 
with 0 E {a, b, c, d} and with a diagonal is a Fano-parallelogram. 

2. If  W is hexagonal with respect to 0, then ?'o has either the order 6 or 3. I f  Y0 
has order 6, then (y0) 3 is involutory and we call (y0) 3 a quasi-reflection with respect 
to 0. 

The m a p ? ' 0 b e l o n g s t o t h e g r o u p  E0 := {or ~ Sym[O] [ 3or' c $3 : u 
{1,2, 3} : r = [0]r For all cr 6 E0 and i, j c {1,2, 3} we associate in a 
natural way permutations r and tri of  the whole point set ff~ (cf. (2.6)). 

Remark. In [1, Chap.V] BELOUSOV considers the maps (?'o)1 and ((?'0)3)1, and 
calls (g0)l rotation if (?'o)1 ~ Aut(W) and ((?'o)3)1 central symmetry if ((?'o)3)1 
Aut(W). 

We recall, fixing a point 0 ~ ff~, the set E := [0]k can be turned via a loop- 
derivation L(W; 0; i, j )  into a loop (E, +) ,  where 0 is the neutral element of  
(E, +) .  The binary operation "+" of L(W;  0; i, j )  is given by (cf. [5]) 

E x E - +  E 

+ :  I(x,y)-,x + y : = [ [ [ O ] i f - ) [ x ] j ] k O [ Y ] i ] j A E .  

A bijection [3ij : E • E ---> E; (x, y) --+ x IJij y is a coordinatization of W. 
For a loop (E, + )  we define: 'Ca E E, let a + : E ---> E; x ~-+ a -I- x, - a  := 

( a + ) - l ( 0 ) ,  and --~a the solution o f x  + a = 0, i.e. - a  is the right inverse of  a and 
"~ a the left inverse. Instead of a + ( - b )  we write a - b. Also 'Ca, b 6 E, let 

8a,b := ((a + b)+)  -1 a + b + o o and v : E ~  E ; x w - > - x .  

A loop (E, + )  is called a Bol-loop if for all a, b E E, a + o b + o a + = (a + (b + 
a)) +. And a Bol-loop is called a Bruck-loop if v E Aut(E,  + )  and Moufang-loop if 
v is an antiautomorphism (cf. [8] p. 4, 5). Between a web 3V and a loop derivation 
(E, + )  :=  L(W;  0; i, j )  we have by (2.5) the connection: [0]j E Aut('W) <:> v is 
an antiautomorphism of (-E, +) .  

We will need the following configurational statements: By the local Thomsen 
condition (T, 0; i, j )  we understand: 
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(T, 0; i , j )  Yx E [0]i, Vy e [0]j �9 [0]k n [[X]k n [Y]i]j n [[Y]k n [x]j]i • r 
and by the local Reidemeister condition (R, 0, i) 

(R, 0, i) Let p, q ~ [0]i, pk := [0]k N [p]j, qj := [0]j n [q]k, P' := [Pk]i n [q]j 
and q' := [qj]i n [P]k, then [[p']k n [0]j]i = [[q']j n [0]k]i, 
where {i, j ,  k} = {1,2, 3}. 

(T, 0; i, j) ,  respectively (R, 0, i) is the specialization of the Thomsen-TIt, re- 
spectively Reidemeister-RE condition (cf. [7, p. 80, 81], [11], [12]). 

We will show in Theorem (3.2) that a point 0 of "W is 3-extendable if there is an 
i E {1, 2, 3} such that (R, 0, i) is satisfied. Hence by (1.2) we obtain that 0 is 3- 
rotational if "W is hexagonal with respect to 0 and (R, 0, i) is satisfied. For the loop 
derivation (E, +) := L(W; 0; i, j )  this is equivalent to: 'Ca, b E E : - ( a + b ) + a  = 
- b  (cf. (3.3)). Then we make the assumption that the web "W contains 2-extendable, 
respectively 2-rotational points. By (2.7), (3.6), the remarks on (3.6) and the results 
of [5, section 6] we have: 

1.3 Theorem. For a point 0 of  a web W the following properties (1), (2), (3) and 
(4), respectively (5) and (6), respectively (7) and (8) are equivalent: 

(1) 0 is a 2-extendable point, 
(2) For (E, +) = L('W; 0; i, j), i, j E {1,2, 3}, i 7~ j the map v is an automor- 

phism o f ( E ,  +) (cf  (3.6)), 
(3) The bend-configuration BE(0; id) closes, i.e. Yp  c ~ : 

[ [[ [P]I n [0]3]2 n [01113 N [01211 n [ [[ [p]2 n [01113 O [01211 n [0]3]2 ~ 

[ [[[P]3 n [01211 n [01312 N [01113 ~ q~ 

(cf  [5, (6.3)1), 
(4) I f  W is coordinatizedby (E, +) = L('W; 0; i, j ) ,  then the map 

X [-]ij Y w-~ ( - x )  [3ij ( - y )  E Aut('W). 

(5) 0 is a 2-rotational point, 
(6) For (E, +) = L('W; 0; i, j ) ,  v is an involutory automorphism o f (E ,  +), 
(7) 0 is a characteristic 2 point, 
(8) For (E, +) := L('W; 0; i, j ) ,  v is the identity. 

By Theorem (3.8) a point 0 is then 6-extendable if the local Thomsen condition 
(T, 0; i, j )  is valid and on the algebraic side that means: Ya, b E (E, +) : b + (a - 
b) = a, i.e. (E, +) is a crossed-inverse loop by the terminology of Bruck [2]. The 
similar result of (3.8) is in [1, Theorem 5.4]. Moreover we also obtain Theorem 
(3.9) which states the property of the orbit [p ]i := [~,(p) [ X 6 ~i} of a point 

6 ~ ,  i E [1, 2, 3}, related to a 2-rotational point, if there is an E E ~i with 
E E Aut(W). 

2 Local Symmetries 

In our web "W = (~,  ~1, $2, ~3), we consider two generators A, B 6 ~ / o f  the 
same type. Then by (1.1) A E Aut(~, ~j U ~ )  if {j, k} = {1,2, 3}\{i} and A(B)  E 

Ci, but in general ,4(B) is not contained in ~i. Therefore 
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2.1 Let A E 8i ,  then 

(1) A c Au t (~ ,  8) r ,7, ~ Aut(ff~, 8i), 
(2) I f .4  E Aut(~ ,  8i) ,  then W is hexagonal with respect to each point x c A. 

For the following let 0 c if" be fixed, let (E, +)  :=  L(W; 0; 1, 2) be the corre- 
sponding loop, and note that [] :=  []12. Then we have: 

2.2 W is hexagonal with respect to 0 if and only if Ya E E �9 - a  + a = O. 

Now we consider the map /~. Since x = b[]c, we obtain ffS(x) = c[]b, 
ffS(0[]a) = a [ ]0  and we have: E ~ Aut(ff ~,83) r c[]b ~ [a[]013 r b = 
~ a  + c  = ~ a  + (a + b ) .  

For b = - a  we obtain - a  = ~ a and so: 

2.3 E ~ Aut(ff ~, 83) r162 Ya, b E E : b = - a  + (a + b), i.e. Ya E E : ~-a,a = id. 

Next we consider the map 4~ :=  [011. By x = [0[]c]2n[01--la]3, b = [0F]b]2n[0]3 
we have: q~(x) = [0[]c]3 n [0[]a]2 = [0[]c]3 fq [a]2 and ~b(b) = [0[]b]3 fq [0]2 = 
(-b)l-10. Since [b]l = [X]l, we have: ~b E Aut(ff ~, 81) r ~b(x) = [01--1c]3 fl [a]2 E 
[ - b [ ] 0 ] l  = I -b ]1  r a = c + ( - b )  = (a + b) - b. This gives us the result: 

2.4 [0 ] lEAUt( f f  ~ , 8 1 ) r  

Finally we study the map gr :=  [0]2. Here we have x = [-al--10]3fq[b[]0]l, hence 
~(x)  = [-al--]0]l f"l [bl--1013 = I - a ] 1  f-) [OF] ~b]3  and c = [0]3 f'l [c[]0]l,  hence 
~p(c) = [011 n [cF-q0]3 = [011 n [OF] "~ c]3. This implies [ ~ b  + ( - a ) ] 2  = laP(x)]2 
and [~c]2  = [~(a  + b)]2 = [~P(c)]2 = [~ (a  + b)]2. Since [x]2 = [a + bh ,  we 
have: ~r E Aut (~ ,  82) r [ ~ b + ( - a ) ] 2  = [ ~ ( a + b ) ] 2  ~ ~ b + ( - a )  = ~ ( a + b ) .  
For b = 0 we obtain - a  = ~ a and so: 

2.5 [0]2 E A u t ( ~ , 8 2 )  r Ya, b E E : - ( a + b )  = - b +  ( - a ) ,  i.e. v is an 
antiautomorphism. 

Now we s.~tudy the following question: Let a be one of  the permutations of  the 
set {(Y0)', [0]i[[0] I i 6 {1, 2, 3}} of  Sym[O], where ~'0 was introduced in Section 1 
(cf. (1.2)). When is cr extendable to an automorphism ~- of  ( ~ ,  8)?  These maps 
belong to the class Eo of  permutations of  the set [0] = [011 U [0]2 U [0]3 defined by 
E0 :=  {a E Sym[O] I u ~ {1,2, 3} �9 a([0]i)  6 {[011, [0]2, [0]3}}. To each a 6 Eo 
there correspond the following permutations ~rij and o" i of  the set ~ :  Let a '  E $3 be 
defined by a([0]i)  = [0]o,(i) and let i '  :=  a ' ( i )  for i ~ {1, 2, 3}, then 

~ = [0] i  [-]ji [ 0 ] j  ~ ff~ = [0 ]F  [~j:F [ 0 ] j :  

~Yi,j " IX [-']ji Y --> a (x )  []j'i' a(y) 

and r 
�9 = [ o ] / D i k  = [0] i ,  Dj, , [O]i, 

ai �9 I x  F]Tk Y ~ a (x )  D 7 ~ a ( y )  

Note that a3 is equal to the extension ~- considered in the Extension Theorem (2.8) 
of [5]. Then aij, respectively ai is an extension of  a I[o]iu[o]j, respectively a I[o]i onto 
ff~. And the generators X E 8i, Y E 8 j ,  Z E 8k have the images: I f x j  :=  X n 
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[0 ] j ,  Xk : =  Xfq [0 ]k ,  Yi : =  Y("I[0]i,  yk : =  YM[0]k, Zi : =  Z N [ 0 ] i ,  z j  : =  Z A [ 0 ] j ,  
then 

X = [xj] i  = [O]i["]ji x j ,  

Y = [Yi]j = Y i D j i [ O ] j  = [O]jI--]ijYi = Yi[-qjk[O]i, 

Z ~-- [Zi]k = ZiDkj[O]i ,  = [O]il'-]jk Zi, 

and so 

( r i j (X )  = [O]i ' [ -] j / i 'a(x j )  = [~r(xj)]  i, C ~i ' ,  

a i j ( Y )  = a(yi)[~j , i ,[O]j ,  = [a(y i ) ] j ,  ~ ~ j , ,  

a i ( Y )  = ai(Yi[3jk[O]i) = a(yi)Vqj,k,[O]i , = [a(y i ) ] j ,  E ~ j , ,  

a i ( Z )  = [O]i'[-]j'k'a(Zi ) = [a(Zi)]k '  E ~k' .  

So we have proved: 

2.6 For all  a c Eo, the maps  aij and ak are i somorphisms f r o m  ( ~ , ~i , ~ j ) onto 

(ff~, ~i '  , ~ j ' )  with r [[0]IU[0]j = (7 [[0]iU[0]j, aij  =- a j i  and ak [[0]k = a [[0k. 

Next we discuss when for a c Eo the maps aij and ak are automorphisms of 
(~', ~). 

Definition. Let a E Eo and let (x, y) E [0]i • [0]j. Then a is called (i , j)- faithful  

if x lN j iY  E [0]k =~ a ( x ) [ ~ j , i , a ( y )  C [0]k,, and k-faithful  if [x]k = [Y]k =~ 

[a(x)]k,  = [a(y)]k,.  

2.7 For a E EO we have 

(1) aij([O]k) E ~ r a is (i,j)-faithful, 

(2) aij I~i = aikl~i r a is i-faithful,  
(3) aij I[o] = a r a is (i,j)- and i- fai thful  r a is i- and j - fa i th fu l  r aij ]~i = 

aikl#i A a j i l# j  = a jk l# j ,  
(4) aij E Aut(3 9, ~) =~ a is (i , j)-faithful and k-faithful, 
(5) aij c A u t ( ~ ,  ~) r 'Ca, b E [0]i • [0]j and c c [0]i with [C]k = [aVqjib]k : 

a ( a ) [ 3 j , i , a ( b )  E [a(c)]k,, 
(6) aij = aik r aij ~ Aut(5 ~, ~) A a is i-faithful, 

(7) ak I[0]i = a I[0]i r a is j - fa i th fu l  r ak I[0]ku[0]i = ai I[0]ku[0]i = a I[0]~u[0]i, 
(8) ak[[0] = a r a is i- and j - fa i th fu l  r aij = ak, 
(9) ak E Aut(5  ~,~)  r F o r a ,  b ~ [0]k, c ~ [0]i with [C]k = [a[]ijb]k : 

[a(c)]k, = [ a ( a ) R i , j ,  a(b)]k,, 
(10) ak = a j  r ak ~ Aut(5  ~, ~) A a is i-faithful, 

(11) aij = a j  r Fora ,  b, c E [0]j with [C]kM[O]i C [[a]kM[b]i]j : a([C]kA[O]i) E 

[[a(a)]k, N [(r(b)li ,]j , .  

Proof. (2) Let X c ~i and x j  := X M [0]j, xk := X M [0]k, hence X = [xj] i  

[Xk]i. Then by (2.6), a i j ( X )  = [a(x j ) ] i , ,  and a i k ( X )  = [a(Xk)]i,.  Hence a i j ( X )  = 
a i k (X )  r [ f f (x j )] i ,  = [r r a is/-faithful.  
(3) By (2.6), aijl[o] = a r aijl[ok = al[ok, which implies aij([O]k) = [0]k,, 
hence by (l),  a is (i, j)-faithful.  Now we assume that a is (i, j)-faithful.  Let 
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x E [0]k, x j  := [x]i 0 [0]j hence x = [0]k fq [xj]i and [x]i = [xj]i. Then 
O'ij(X) = aij([O]k) 0 [~7(Xj)]i, = [0]k, I-1 [cr(x j)]i, = if(X) 4:~ [cr(Xj)]i, = [a(X)]i,, 
hence a is/-faithful,  and clearly if a is (i, j)-faithful and/-faithful,  then also j -  
faithful. Finally let a be i- and j-faithful and let xi ~ [0]i, x j  E [0]j such that 
x :=  XjVqi j  Xi E [0]k.  Then [x]i = [x j ] i  and [x]j = [ x i ] j ,  and by the i- and 
j-faithful assumption, [o'(x)]i, = [a(xj)] i ,  and [a(x)] j ,  = [r Therefore 
[0]k, 9 a ( x )  = [a(x)]i ,  fh [a(x)] j ,  = [a(xj)] i ,  A [a(xi )] j ,  = a ( x  j ) I - l i , j ,a(xi ) ,  i.e. 
a is (i, j)-faithful. And the last equivalence is immediate from the above (2). 
(6) Let aij ~- a i k ,  then by (2.6), aij c Aut (~ ,  ~) and by (2.7.2), a is/-faithful.  
Now let aij c Aut(3 9, ~) and a is /-faithful, and let p E 3 9, p j  := [P]i A 
[0]j, Pi := [P]j 71 [0]i and qk := [P]i A [0]k, qi := [P]k f) [0]i, hence p = 
[Pi]j (1 [Pj]i = [qi]k fq [qk]i and [Pj]i = [qk]i. Since a is/-faithful, [a(pj )] i ,  = 
[a(qk)]i, and since aij c Aut(5 ~, ~), a i j (P)  = [a(pi )] j ,  fq [a(pj )] i ,  E [a(qi)]k,, 
thus ai j (P)  = [a(qi)]k' (q [a(pj )] i '  = [a(qi)]k~ (1 [cr(qk)]i' = aik(P) .  

(10) Let ak = aj ,  then akl[0]j = aj l[o] j  (2~)al[0]j, i.e. a is/-faithful by (2.7.7), 
and ak c Aut(8 9, ~) by (2.6). Now let crk c Aut(3 9, ~) and a /-faithful and let 
p E ~ ,  ak := [p]iO[O]k, aj  := [p]iN[O]j, bk := [p]jN[O]k andc j  := [p]kN[O]j. 
Then p = [ak]i f) [bk]j = [aj]i 71 [Cj]k and [ak]i = [aj]i. Since a is/-faithful,  
[o'(ak)]i, = [a(aj)]i , ,  and since ak E Aut (~ ,  ~), a~(p) = [a~(cj)]k, 71 [a(aj)]i , .  
Therefore a j  (p) = [a (aj)]i, n [a (cj)]~, = ak (p) if a (c j )  = a~ (c j ) ,  i.e. if a I[o]j = 
a~ I[o]~, i.e. by (2.7.7)if  a is/-faithful. [] 

2.8 For each y E A3 \{id} and each 0 ~ ~ the map y0(E E0) is 1-, 2- and 3- 
faithful by definition and so are the maps (yo) 2 and (yo) 3. Therefore by (2.7.8) for 
q5 = (yo) i E Eo we have 4~ = 4~kl[ol with ~bij = ~k  and moreover by (2.7.10) if 
4~k E Aut(W), then ~b i = fbij for all i, j ~ { 1,2, 3}, i # j ,  hence the automorphic 
extension ~bk (=  ~9i = ~ i j )  of r is unique. 

3 Extensions of Local Symmetries and Some Orbits 

Firstly we discuss when the maps yo, (Yo) 2 and (yo) 3 are extendable. For the con- 
venience, we set the maps 06 := Yo, 03 := (yo) 2 and 0 := (yo) 3, where y is taken 
as (132) 6 A3. We consider the maps [0]i I[0] and 03 in the following: 

3.1 Let y = (132) c $3, i c {1,2, 3} a n d j  := y(i) ,  k := y ( j ) .  Then." 

(1) ([0]il[Ol)i = [0]i, 
(2) 03l[oli = [0jj o [~0]kl[0]i and (03)i -~- ( [ 0 ] j  O [0]kltol)i, 
(3) (03)i = [0]j o [0]k r [0]k E Aut (~ ,  ~k) =~ (03) 3 = id[o], 
(4) Let [0]k c Aut (~ ,  ~k), hence (03) i  = [0]j o [0]k by (3). Then 

(03) i  is  an isomorphismf.~rom ( ~ ,  ~j U ~ )  onto ( ~ ,  ~j U ~k), and 
(03)  i E Aut(~ ,  ~) ~ [0]j q Aut (~ ,  ~j),  

(5) /f[0]i ,  [0]j E Aut (~ ,  ~), then [0]k C Aut (~ ,  ~ )  and 
(03) i  ~--- (03)  j = (03)k C Aut (~ ,  ~), i.e. Tr is 3-rotational with respect to O. 
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Proof (1) To [0]i I[Ol there corresponds the transposition ( j ,  k). Therefore, if p c 
ff~, pj  j ~  [p]j n[0]i and Pk := [p]kN[O]i, (hence p = pj I-]jk Pk = [Pj]j N[pk]k), 
then ([0]i I[Ol)i (P) = [Pj]k n [Pk]j = [0]i(p). 
(2) and ( 3 )  By (1.2.1) ,  03([0]i) = 062([0] i )  = [ ~ j  o [~k([0]/) and to 03 and 
to .~ := [0]j o [0]kl[0] there corresponds the same permutation ~r. Thus (03) i = 

([0]j o [oh Iron), -- (4,)i ands(2) is completely proved. Now (_..~)i (P) = [4~(Pj)]k N 
[qS(pk)]i = [[O]k(pj)]k n [[O]k(Pk)]i and [0]j o [0]k(p) = [[0]k(Pj)]k N [q]i, where 
q := [0]j O [[0]k(p)]k. We have 

(qS)i(p) = [0]j o [0]k(p) r q = [0]k(pk) r [0]t(p)  C [[0]k(pk)]k. 

Since p ~ ~ is arbitrary and [P]k = [Pk]k, we obtain the equivalence of (3). If 
[0]k 6 Aut (~ ,  ~k), then W is hexagonal with respect to 0 by (2.1) and we obtain 
(03) 3 = idtoL_by (1.2.2). 
(4) Since [0]i(~j) = ~k and [0]i(_._~k) = Sj , .we obtain (03)i(~;j)  = ~k and  by 

assumption (03) i (~k)  = [0]~j o [0]k(~k)  = [0 ] j (~ ;k )  = ~i .  Therefore,~ (03)i E 

Aut ( f f  ~, ~)  r (03) i (~ i )  = [0]j  o [0]k(~;i) = [0] j (~ ; j )  = ~ j  r [0] j  C Aut ( f f  ~, ~ j ) .  
(5) [0]'-~ (1.1) ~ (1.1) = [0 ] i ( [0 ] j )  = [0]i o [0]j  o [0]i C A u t ( ~ ,  ~). [ ]  

3.2 Theorem.  The following statements are equivalent: 

(1) (R, 0, 1) is satisfied, 
(2) (03)1 E Aut(~ ,  g), 
(3) Ya, b E E : ~ ( a + b ) + a = ~ b ,  
(4) u E {1,2, 3} : (R, O, i) is satisfied, 
(5) u c {1,2, 3} : (03)i E Aut (~ ,  ~), 
(6) 0 is a 3-extendable point. 

Proof Let X c ~1 and ql ~ X be given. We set E := [0]3 and construct: 

P := [q']3 n [011, a := P3 := [P]2 N E, b := X N E, 

q2 := X n [0]2, q := [q213 O [0]1. 

Then [q']2 O [0]3 = a + b, q = 0[S](.-~b), p '  := [P311 N [q]2 = aU](~b) 
and r := [P']3 N [0]2 = [a[q("~b)]3 N [0]2 and we have: [a + b]l = [[q']2 n 
[01311 = [r]l r r = (a +b)l-q0 r ~ ( a  + b )  + a  = "~b. Moreover, let 
s := [q']2 N [011. Then q' = [P]3 N [s]2, (03)(p) = a[Z0, 03(s) = (a + b)lS]0, 
hence (03)l(q')  = [al-]0]l n [(a + b)E]0]3 = [all N [(a q- b)l--10]3 and q2 := [q]3 n 
[0]2, (03) (q) = "~ bU]0, 03 (0) = 0, hence (03) 1(q2) --- ]"~ blS]0]l N [0]3 = ~ b. 
Therefore (03)1(X) c ~2 r (03)1(X) = [~b]2 r p '  = [all N [(a-k-b)D0]3, 
so (R, 0, 1) r ~ ( a  + b) + a = ~ b .  Since (R,O, i )  r162 (R,0 ,  j ) ,  we have the 
equivalence of statements (1), (2), (3), (4) and (5). Since 03 is 1-, 2- and 3-faithful, 
we have (03)i1[0] = 03, and so if (2) is assumed, then 0 is a 3-extendable point. [] 

If "W is 3-extendable and hexagonal with respect to 0, then it is 3-rotational with 
respect to 0. So by (2.2) and (3.2) we obtain: 

3.3 The following statements are equivalent." 
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(1) W is 3-rotational with respect to O, 
(2) For (E, +)  := L( 'W;0; i, j )  �9 Va, b 6 E : - ( a  + b )  + a  = - b .  

3.4 Under the assumption 

(0) Va, b 6  E : " ( a + b ) + a = " ~ b ,  

the following three assertions are equivalent: 

(1) Va, b ~ E : (a + b ) - b  = a ,  
(2) Va, b ~ E :  - ( a  + b) = - b  + ( - a ) ,  
(3) Va, b E E "  - a + ( a + b ) = b .  

Proof  (1) =r (2) If we set a := "--b, then we obtain - b  = ~ b  from (1), and (0) 
resumes the form - ( a  -t- b) + a = - b .  We substitute in (1) a to - b ,  b to - a  and 
obtain ( - b  - a) + a = - b .  Together with (0) this implies - ( a  + b) = - b  + ( - a ) .  

Similarly applying - b  = --, b, we see that (2) ::r (3) and (3) ::r (1). [] 

From (2.3), (2.4), (2.5), (3.2) and (3.4) it follows 

3.5 Let W be 3-extendable with respect to O, then 

(1) The three assertions [0]i 6 Aut (~ ,  $ij.~) for  i E {1,2, 3} are equivalent, 
(2) I f  there is an i ~ {1, 2, 3} such that [0]i E Aut (~ ,  $), then W is 3-rotational 

with respect to 0 (cf  (1) and (3.1)). 

Next we study the turn 0" = (06) 3. 

3.6 The following statements are equivalent: 

(1) 3i E {1, 2, 3} �9 (O)i C aut ( f f  ~, ~), 
(2) Vi 6 {1,2, 3} : (O)i 6 Aut (~ ,  ~), 
(3) Vx 6 ~ : [0]2 o [011 o [013([X]l ) n [0]3 o [0]2 o [0]l([X]2) n [0]1 o [0]3 o 

[012([x]3) 94 ~b, 
(4) For (E, +)  := L(acF; 0; i, j ) ,  v 6 Aut(E, +). 

Proof  The per~autation corresponding to 0 in $3 is the identity. Therefore (0)1 E 
Aut (~ ,  ~) <=> (0)1 c Aut (~ ,  ~1) 'r Vx ~ ff~ i f x L : =  [x ]2n [0 ] l ,X3 :=  [x]3n[0] l ,  
y := [x]an[0]3, Y2 :~-- [y]2n[0]l ,  then [O(x2)]2N[0(x3)]3 =: x '  6 [[0(yz)]2n[01311. 
This last statement is equivalent to (3). Consequently (1), (2) and (3) are equivalent. 
(3),r (4) Le tx  c ~ , a  := [[x]3N[01112N[013, b := [x]ln[0]3 andc := [x]2n[013. 

-- -- : [ [  ] o E01 , Then c a § b, - a  [[x]3 N [01211 O [0]3, - b  [b]2 n [01113 n [012 1 

--C = .[[[X]2 n [01113 n [~01211 n [013, and - c  = - a  + ( - b )  r [ - c ]2  n [-b]l  n 
i -  

[[~a]2 M[01113 ~ ~b. But [0]2 o [011 o [013([X]l) = [0]2 o [0]l([b]2) = [ - b ] l ,  [~3 o 

[0]2 o [011([x]2).,_= [013([-c]1) = [ - c ] :  and [011 o [0]3 o [012([x]3) = [011 o 
[0]'-~3([-a]l) = [011([-a]2) = [ [ - a ]2  N [01113. This shows the equivalence of (3) 
and (4). [] 

Remarks. 1. The statement (3) of (3.6) expresses that the bend-configuration 
BE(0;  id) of [5, Section 6] closes. 
2. From (2.8) and (3.6) it follows that the point 0 is 2-extendable if and only if 
for (E, +)  := L(W; 0; 1,2) the map v is an automorphism of (E, +).  I f 0  is even 
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2-rotational then by (2.2), v 2 = id, and 0 is a characteristic 2 point if and only if 
v = id. 
3. If  a point p E ~ is 2-rotational then by (2.8), (yp)3 is uniquely extendable to 
an automorphism of W which we denote by ~" and which we call reflection in the 
pointp;  we have then ~ '  = id(E $3), p E Fix(~),  ~2  = id, and ~" = id r p is a 
characteristic 2 point. 
4. There are webs W with 2-rotational points p such that ~" 7~ id and IFix(~)l > 2. 

Now we consider the map 06 = (132)0 c IE0 and ask when (06)3 E Au t (~ ,  ~), 
i.e. (06)3(~3) = $2 is true. For the answer we need the following (3.7): 

3.7 If(T, O; i,j) is valid, then so is (T, O; k, i). 

Proof Let x E [0]k, y E [0]i and q := [0]j n [[x]j n [Y]k]i. Then [Y]k N [q]i = 
[x]j N[y]k shows [0]k n [[Y]k n[q]i]j = [0]k n[ [x] j  N[y]k]j = [0]k N[x]j  = {x}. By 
(T, 0; i, j ) ,  y E [0]i and q E [0]j imply 4~ # [0]k N [[Y]k N [q]i]j n [[q]k N [Y]j]i = 
{x} n [[q]k n [Y]j]i, i.e. x E [[q]k n [Y]j]i and so q 6 [[x]i n [Y]j]k. Hence the 
statement (T, 0; k, i) is valid. [] 

3.8 Theorem.  The following statements are equivalent: 

(1) 3i E {1,2, 3} : (06)i E Au t (~ ,  ~), 
(2) u E {1, 2, 3} : (06)i E Au t (~ ,  ~), 
(3) (T, 0; 1,2) is satisfied, 
(4) Ya, b E E : ~ b + ( a + b )  = a, i.e., b + ( a - b )  = a, i.e. ( E , + )  i sa  

crossed-inverse loop ([1, Theorem 5.4]). 

Proof Let X 6 g3 \ {E}, x := X n [011, x2 := X n [0]2. Then 06(x2) = x and so 
if (06)3(g3) = g2, then (06)3(X) = [x]2. Now let p E X, y := [p]l  n [0]2, Pa := 
[P]I n[013, p2 : =  [p]2N[013, q : =  [x ]2n[y]3 .  Then firstlyx E [0]l, y E [012, p = 
[x]3n[y] l ,  q = [y]3N[x]2 and [0]3n[p]zN[q] l  # q~ i f (T ,  0; 1,2) holds. Secondly 
06(Pl) = y, 06(P2) = [P2]l N [0]2, hence (06)3(p) = [06(pl)]3 N [06(P2)]1 = 
[y]3n[p2] l .  Consequently, (06)3(X) = [x12 ~ [x]2n[y]3N[p2]l = {q}N[p2]l 7 ~ 
4~ e~ [013 N [P]2 n [q]l # 4~. Hence (06)3(~3) = g2 r (T, 0; 1,2). Now we set 
a :=  Ix]2 n [013, b := Pl.  Then a + b = P2, Y = bV10, [b[]0]? = [0DI(~ b)]3 and 
so ~ b  + (a + b) = a ~ [x]2 n [Y]3 N [P211 ~= ~b. With (3.7) all the statements are 
equivalent. [] 

Finally in our web we consider the orbits [p]i :=  {~-(p) I X E ~i} of a point 
p E ~ with respect to the generators of gi,  i E { 1,2, 3} and see by the definition 
that each orbit [p]i is an i- chain, hence [p ]i E e i and obtain the following theorem 
which is the case when i=3: 

3.9 Theorem.  Let W = (~ ,  ~1, ~2, ~3) be a web and let E E ~3 such that ~; E 
Aut('W). Then 
(1) If  there is a chain D ~ C3 such that VX E ~3 : D(X)  = X (i.e. ~3 C 
D • U {D}), then if) e Aut(W), E o D = D o E E Aut(W) +, eachpoint p E E N D 
is 2-rotational and "~ = E o D is the reflection in p and for  each d E D, D = [d] 3, 
(2) I f  p E E is a 2-rotationalpointand ~ the reflection in p, then "rio E = E o "fi E 
A u t ( ' W ) , D : = F i x ( ~ o E ) E C 3 ,  D = ~ ' o / ~ , ~ 3  C D  •  
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Proof. (1) By (1.1.2), D e Aut('3 ), ~1 U,.,~2)- and by D(X) = X for X ~ g3, 

hence D ~ Aut('W) and by (1.1..;1) .g = D(X) Z ~ o X o D. Since X and 
are involutions, .g o D = D o X, in pa r t~u l a rE  o D ----D o E. Since E, D 
Aut(W) n Aut (~ ,  ~1 U ~2)- ,  we obtain E o D = D o E ~ Aut('W) +. Now let 
p ~ E n D , x  ~ E \ {p}, y = (132) ,x  t := (yp)3(x), q := (gp)(X) = [xh  n [p]2, 

qt := (yp)2(x) = [ph  n [q]3 = [Ph  n [xq2. Then by p ~ D, D([P]2) = [P]I 
and D([q]3)..= [q]3 since [q]3 c $3. Consequently D(~) = /~([P]2 n [q]3) = 
D([p]2) n D([q]3) = [P]I n [q]3 = q'  and so D(x) = D([p]3 n [q]A) =~ [p]3 n 
D( [qh )  = [P]3 n [D(q)]2 = [P]3 n [q']2 = x'.  Hence E o Die = E o Dl[p] 3 = 
(gp)2le and so by the unique extendability, k2o D = ~. Now for d 6 D and X E ~3, 
let X(d) ~ [d] 3, then D o X(d) = .g o D(d) = X(d),  hence .g(d) ~ Fix(D) = D 
by (1.I.1), i.e. [d] 3 C D. So we have D = [d] 3, since D and [d] 3 are both in C3. 
(2) By hypoth~esis, ,~ and E are involutory automorphisms of "W and p ~ E, hence 

F,o '~oE = E(p)  = ~'and so k : o ~  = ~'ob: c Aut('W) with (/~op~ t = (1, 2), i.e. 
~'o~" ~ Aut (~ ,  ~1U~2)- .  By (1.1.4), D := Fix(L'op~) e e3 and D = Eo~.  Finally 
let X ~ ~3. If X = E, then by p ~ E, D(E)  = F, o ~(E)  = F,(E) = E. Therefore 
let X 7~ E and let q := [pI2NX, q' = [ph  AX. Then q' = yp(q), ~'(q) = (yp)3(q) 

and/~(q ' )  = ~'(q). Thus/~ o ~'(X) = / ~  o P'([q]3) = [/~" o P'(q)]3 = [q']3 = X, i.e. 
~3 C D • U {D} and by (1), D = [p]3. [] 

Together with the results (4.2.3) and (6.4) of [5] we can state: 

3.10 For a web W = ( ~ ,  ~1, ~2, ~3) let ~2 be the set of all 2-extendable points. 
Then for 342 the following statements are equivalent: 

(1) ~2 # c k a n d 3 i  ~ {1,2,3} : ~/ C Aut('W) (In this case, ifO ~ ~ 2 a n d  
j , k  E {1,2,3} \ {i} with j 7~ k, then D := [0] i ~ e i with D C ~2 and 
~i C D • U {D} and (E, +)  := L(W; 0; j ,  k) is a Bruck-loop), 

(2) 30  c ~ and j , k  ~ {1,2, 3}, j ~ k such that (E, +)  = L(W; 0; j , k )  is a 
Bruck-loop (In this case 0 c ~2 and ~. C Aut('W)), 

(3) 3i  E {1, 2, 3} : ~i C Aut(W) and3D ~ Ci with ~i C D • U {D}. 

Remark. I f f o r a w e b W  = ( ~ , ~ l , ~ 2 , ~ 3 )  a n d a n i  6 {1,2,3}, ~/ C Aut('W), 
then Vp, q 6 ~2, [P ]i C ff~2 and either [p ]i n [q]i = q5 or [p ]J -=- [q]J. 
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