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Webs with Rotation and Reflection Properties
and their Relations with Certain Loops

By B. IM, H. KARZEL, and H.-J. Ko

Abstract. In a web one can define in a natural way reflections in generators and a
kind of rotations in points. The structure of the webs and the corresponding loops
in which some of these maps are automorphisms will be studied in a synthetic
way.

1 Introduction and Notations

Let W := (£, $1, 2, §3) be a web, i.e. a nonempty set & and three subsets §; of
the power set P(£) of £ such that

W1 Vxe®, Viell,2,3), 31 [x)i€ 4i:xelx],

W2 Vi, jefl,2,3},i#j, YAe§;, VBe§;:|ANB|=1,
andlet § := §1U§2UGs. In this paper welet (; 77 ) € S3,ie. {1,2,3} = {i, j, k},
unless specified otherwise, and for x, y € P let

xOijy:=[xliN[yl; and xOy:=x0p2y.

Each automorphism o € Aut(W) := Aut(P, §), respectively 8 € Aut(P, §; U
;) induces a permutation &’ € S3, respectively 8/ € S, defined by a([x];) =
[a)]wqy, I € {1,2,3}, respectively B([x])) = [B(x)]g ), | € {i, j}. We set

Aut(P, §; UGt = (B e Au(P, §: U §;) | B’ =id},
Au(P, §i UG, = {B € Aut(P, $: U §,) | B = (i, )}
and
Aut(W)' = {@ € Aut('W) | & = id).

By W1 and W2 each automorphism o € Aut('W) is completely determined by its
action on two generators A € §,;, B € §,; or on one generator and the corresponding
permutation o’ € S3.

A subset C C & is called an i-chain if for each Y € §; U §; the intersection
Y NC consists of a single point. Let C; := {C € P(P) | VX € §\§; : |ICNX| =1}
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be the set of all i-chains, then §; C G;. To each chain C € G;, in particular to each
generator there corresponds a reflection

C: 2 — Pix e [x];nC] N[xkknC],

i.e. an involution of the set & fixing exactly the points of C and interchanging the
generators of §; and G, i.e. C € Aul(?, g UG C will be called a chain
reflection (of type ). Then by {5, (2.3, 2.4, 2.5)] we have:

1.1 VC,De G, V0e P
(1) CoC=id, FixC =C, C(D) € €, and C(D) =C o DoC,
2 VX €G;:C(X)e g, VY € G4 : C(Y) € §j, hence C € Aut(P, §;U%4)7,
3) [0 ([01;) = [0k,
4) Yoo € Aut(P, §; U Ge)” with a? = id : Fixa € € and Fixa = a.

Two chains A, B € C; are called orthogonal and denoted by A L Bif A # B
and A(B) = B. We set Al = {X e G | X L A}. By (1.1.3),[0]; o [0 o
[O]k([O] ) =[0];. If Of jo [07; o [0]k|[0], id|[g);, then ‘W is called hexagonal with
respect to 0.

Besides the reflections in chains or generators one can define in a web W in a
natural way a kind of local maps called rotations: If y is one of the cyclic permu-
tations (132) or (123) € A3 and if 0 € &P is a point of the web W, let yp be the
permutation of the set [0] := [0]; U [0]2 U [0]3 defined by

vo(x) = [0,y N [x],-1(; forx € [0];, i € {1,2,3}.

1.2 Let y := (132) or (123) € As. Then for each O € P, the group < yo >
generated by the rotation yy is a subgroup of the permutation group Sym([0]) and
we have:

(1) Fix(yo) = {0} and (y0)*(x) = [0, (x) for x € [0};, i € {1,2,3),

[013x) = (013 o [011(x) = [012 0 [O]3(x)  if x & [0}
((132)0)*(x) = 1 01100) = [0T1 0 (02(x) = (03 0 [OT1(x)  ifx € [0z .
[0]2(x) = [0]2 0 [0]3(x) = [0]1 o [0]2(x) ifx € [O]3
2 (yo)6 = id & W is hexagonal with respect to 0,

. [0]1 0 0Ll if ¥ = (132)
3 6 —id 21T .
G o =1d & (0 =1 &0 o 0T ify = (123)

Note that (y9)~' = (y~1)o and that yp induces on the set {[0]1, [0]2, [0]3} the
permutation y, while (v0)? induces y !, and (v0)? and (y0)® the identity. If there is
an automorphism w of the web ‘W such that the restriction w|[g) coincides with one
of the maps (y0)6, (yo)3, (yo)2 or Yo, then w is unique by (2.8) and is called the au-
tomorphic extension and we say that the point 0 is n-extendable for n € {1, 2, 3, 6)
if wlo) = (Vo)g Clearly if wljo) = yo, then w?ljo] = (70)? and &l = (o),
ie. if 0 € P is 6-extendable, then also 1-, 2- and 3-extendable, and if O is 2- and
3-extendable, then also 6-extendable. If forn € {1,2,3,6} a point 0 € P is n-
extendable and if moreover (y0)® = id, i.e. the web ‘W is hexagonal with respect
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to O by the above (1.2), then 0 is called n-rotational. Moreover if each point of a
web ‘W is n-extendable, respectively n-rotational, then ‘W is called a n-extendable,
respectively n-rotational web.

From the definition it follows that yg and (yp)? are distinct from the identity on
(0], but for (y)? this is not provable. We call 0 a characteristic 2 point if (y())3 = id.
Clearly if O is a characteristic 2 point, then ‘W is hexagonal with respect to 0 and 0
is trivially 2-rotational and if moreover 0 is 3-rotational, then also 6-rotational.

Remarks. 1. We have ()0) ™! = ()2 © (w)? = id & yp has the order 3
= W is hexagonal with respect to 0 in the following way: Let (a, b, ¢, d) € P*.
If [a]; = [b);, [B]; = [c];, [c]i = [d]; and [d]; = [a]}, then (a, b, c, d) is called
a parallelogram, if moreover [a]x = [clk, respectively [aly = [clx and [b]; =
[d]k, then (a, b, ¢, d) is called a parallelogram with a diagonal, respectively a Fano-
parallelogram. Hexagonal with respect to 0 means: Each parallelogram (a, b, ¢, d)
with 0 € {a, b, ¢, d} and with a diagonal is a Fano-parallelogram.

2. If ‘W is hexagonal with respect to 0, then yp has either the order 6 or 3. If g
has order 6, then (yp)? is involutory and we call ()3 a quasi-reflection with respect
to 0.

The map yp belongs to the group o := {0 € Sym[0] | I’ € §3 : Vi €
{1,2,3}: 6([0];) = [0ly/(i»}. Forallo € Xpandi, j € 1,2, 3} we associate in a
natural way permutations o3, ; and o; of the whole point set & (cf. (2.6)).

Remark. 1In [1, Chap.V] BELOUSOV considers the maps (yp); and ((yo)3)1, and
calls (yp)1 rotation if (y9);1 € Aut(W) and ((y0)3)1 central symmetry if ((y0)3)1 €
Aut('Ww).

We recall, fixing a point 0 € P, the set E := [0]; can be turned via a loop-
derivation L('W; 0;1, j) into a loop (E, +), where O is the neutral element of
(E, +). The binary operation "+" of L(W; 0; i, j) is given by (cf. [5])

ExE—E

+: (x,y) > x+y:= [[[0], N [x]j]k N [y]i:Ij NE.

Abijection 0;; : E x E — E; (x,y) — x0;; y is a coordinatization of ‘W.

For a loop (E, +) we define: Va € E,letat : E > E;x — a+x, —a :=
(@*t)~1(0), and ~ a the solution of x + a = 0, i.e. —a is the right inverse of a and
~ a the left inverse. Instead of a + (—b) we writea — b. AlsoVa,b € E, let

8ap = ((a—+-b)+)_1 oatobt and v:E— E; x> —x.

Aloop (E, +) is called a Bol-loopif foralla,b € E, at obtoat = (a+ (b +
a))™. And a Bol-loop is called a Bruck-loop if v € Aut(E, +) and Moufang-loop if
v is an antiautomorphism (cf. [8] p.4, 5). Between a web ‘W Aa}nd a loop derivation
(E,+) :== L(W;0; i, j) we have by (2.5) the connection: [0]; € Aut(W) & v is
an antiautomorphism of (E, +).

We will need the following configurational statements: By the local Thomsen
condition (T, 0; i, j) we understand:
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(T,0;i,j)  Vx €[0];,Vy €[0]; : (0] N [[xLk N [}’]i]j N[y NIxl;]; # ¢,
and by the local Reidemeister condition (R, 0, i)
(R,0,0) Let p, g € [0i, px := [0 N [p]j, g; := [0]; N [glk, p" := [px)i N [g];
and ¢’ := [¢;1; N [ple, then [[p'le N [0];], = [[g']; N[O,
where {i, j, k} = {1, 2, 3}.

(T,0;1i, j), respectively (R, 0, 1) is the specialization of the Thomsen-TH, re-
spectively Reidemeister-RE condition (cf. [7, p. 80, 811, [11], [12)).

We will show in Theorem (3.2) that a point 0 of W is 3-extendable if there is an
i € {1,2,3} such that (R, 0, ) is satisfied. Hence by (1.2) we obtain that 0 is 3-
rotational if ‘W is hexagonal with respect to 0 and (R, 0, i) is satisfied. For the loop
derivation (E, +) := L(W; 0; i, j) thisis equivalentto: Va,b € E : —(a+b)+a =
—b (cf. (3.3)). Then we make the assumption that the web ‘W contains 2-extendable,
respectively 2-rotational points. By (2.7), (3.6), the remarks on (3.6) and the results
of [5, section 6] we have:

1.3 Theorem. For a point 0 of a web ‘W the following properties (1), (2), (3) and
(4), respectively (5) and (6), respectively (7) and (8) are equivalent:
(1) Ois a 2-extendable point,
(2) For (E,+) = L(W;0;1, j),i,j €({1,2,3},i # j the map v is an automor-
phism of (E, +) (cf. (3.6)),
(3) The bend-configuration B E(0; id) closes, i.e. Vp € P :

[[LLp]i N [013]2 N[O)1]; N [O0)2], N [[[Lpl2 N [01i13 N[0]2], N[O]3],N
[[[Lpls N[O12]1 N[O13], N[OT1], # ¢

(cf. [5,(6.3)]),
4) If W is coordinatized by (E, +) = L(W; 0; i, ), then the map

x0ijy = (=)0 (—y) € Aut('W).
(5) 0is a 2-rotational point,
(6) For (E,+) = L(W,0;1i, j), vis an involutory automorphism of (E, +),

(7) Ois a characteristic 2 point,
(8) For (E,+) := L('W;0;1i, J), v is the identity.

By Theorem (3.8) a point 0 is then 6-extendable if the local Thomsen condition
(T, 0; i, j) is valid and on the algebraic side that means: Ya, b € (E,+) : b+ (a —
b) = a,ie. (E, +) is a crossed-inverse loop by the terminology of Bruck [2]. The
similar result of (3.8) is in [1, Theorem 5.4]. Moreover we also obtain Theorem
(3.9) which states the property of the orbit [p] := {X(p) | X € §:) of a point
p e P,i € {l,2, 3}, related to a 2-rotational point, if there is an E € §; with
E € Aut(W).

2 Local Symmetries

In our web W = (£, 9,1,~92, 93), we consider two generators A, B € 9,,'~0f the
same type. Then by (1.1) A € Aut(P, §,;UG) if (j, k} = {1,2,3}\{i}and A(B) €
C;, but in general A(B) is not contained in §;. Therefore
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2.1 Let A € §;, then
(1) A € Au(P, §) & A € Aut(P, §:),
(2) If A € Aut(P, $;), then ‘W is hexagonal with respect to each point x € A.

For the following let 0 € £ be fixed, let (E, +) := L('W; 0; 1, 2) be the corre-
sponding loop, and note that [J := ;2. Then we have:

2.2 ‘W is hexagonal with respect to Q if and only if Ya € E: —a +a = 0.

- Now we consider the map E.N Since x = bOc, we obtain E(x) = c0Ob,
E(0Ca) = afl0 and we have: E € Aut(P, $3) & cOb € [a[00]3; & b =
~a+c=~a+(a+b).

For b = —a we obtain —a = ~a and so:

23 EcAut(P,§3) o Va,becE:b=—a+(a+b),ieVacE 5 qq4=id

Next we consider the map ¢ := [0];. By x = [0Cc]oN[00a]3, b = [000b]2N[0]3
we have: ¢(x) = [00c]3 N [00a]r = [00c]3 N [alz and ¢ (b)) = [00b]3 N [0] =
(—b)OO. Since [b]1 = [x]1, we have: ¢ € Aut(P, §1) © ¢(x) =[00cl3N[alz €
[—60]y = [-b]; © a = ¢ + (—b) = (a + b) — b. This gives us the result:

2.4 [0]; € Aut(P, §)) @ Va,be E:(a+b)—b=a.

Finally we study the map ¢ := [f)\]/z. Here we have x = [—a00]3N[b0O0], hence
Y(x) = [—al0]; N [pO0)3 = [—a]; N[00 ~b]3 and ¢ = [0]3 N [¢O0]y, hence
¥(c) = [0]1 N [cO0]3 = [0]1 N[00 ~ cl3. This implies [~ b + (=a)]2 = [Y(x)]2
and [~c]y = [~(a + b)]2 = [¥(0)]2 = [¥(a + b)]o. Since [x] = [a + bz, we
have: ¢ € Aut(P, §2) & [~ b+(—a)]2 = [~(a+b)]2 & ~b+(—a) = ~(a+b).
For b = 0 we obtain —a = ~a and so:

2.5 [0, € Aut(P,§2) < Va,b € E : —(a+b) = —b + (—a), ie. visan
antiautomorphism.

Now we study the following question: Let o be one of the permutations of the
set {(yo)', [Olilioy | i € {1, 2, 3}} of Sym[0O], where yp was introduced in Section 1
(cf. (1.2)). When is o extendable to an automorphism & of (£, §)? These maps
belong to the class X of permutations of the set [0] = [0]; U [0], U [0]3 defined by
3o :={o € Sym[0] | Vi € {1, 2,3} :0([0];) € {[0]1, [0]2, [0]3}}. Toeach o € T4
there correspond the following permutations o;; and o; of the set P: Let o’ € S3 be
defined by o ([0];) = [0],7(;y and let i’ := ¢’ (i) fori € {1, 2, 3}, then

o {f = [0]; ¢ [0]; — & = [0]y Djry [0
xUOjiy > ox)0jo(y)
and
_ l:P = [0]; O« [0); —> & = [0]y O [0}y
xOjky = o(x) O o (y)

Note that o3 is equal to the extension & considered in the Extension Theorem (2.8)
of [5]. Then oy}, respectively g; is an extension of & |[o),uo] i respectively o }jp;; onto
P. And the generators X € §;, Y € §;, Z € § have the images: If x; := X N



14 B. Im, H. Karzel, and H.-J. Ko

[01;, xk := XNO[0L, yi := YN[O);, yx := Y N[Ok, z; := ZN[0];, z; :== ZN[0];,
then

X = [x;]; = [0];00;; x;,
Y = [yi]; = y:0;[0]; = [01;00;; y; = y:O;«[0];,
Z = [zi]x = z;0y;[0];, = [0];0 ¢ z;,
and so
0ij(X) = [01y0j0(xj) = [o(x))]y € §v,
0ij(Y) = o ()0 [0]; = [o(y)]j € ;.
0i(Y) = 0i(y:Ox[0];) = o (y)T i [0] = [0 (y:)]; € §j,
0i(Z2) = [0)y0;wo(zi) = [0(zi)lk € G-

So we have proved:

2.6 Forall o € Ty, the maps o;j and oy are isomorphisms from (P, §i, §;) onto
(P, $i, $) with aijliour01; = olioyur0);» oij = 0ji and okljoy, = ol[o),-

Next we discuss when for o € Xy the maps o;; and oy are automorphisms of

(£, $).

Definition. leto € Iy and let (x, y) € [0]; x [0];. Then o is called (i,j)-faithful
if xOj;y € [0k = o(x)jro(y) € [0lg, and k-faithful if [xlk = [yk =
[o )] = [Nk
2.7 Foro € Yo we have
(1) 0ij([0lk) € § < o is (i,j)Sfaithful,
(2) aijlg; = oilg, & o isi-faithful,
(3) aijlio) = 0 & o is (i,j)- and i-faithful < o is i- and j-faithful & oijlg, =
oiklg; N 0jilg; = 0jklg;
4) oij € Au(P, §) = o is (i,j)-faithful and k-faithful,
(5) gij € Au(P, §) © VYa,b € [0}; x [0]; and c € [0}; with [clx = [aD};b]k :
o(@)Qjo ) € [o(O)],
(6) 0ij = oix © 0ij € Aul(P, §) A o is i-faithful,
(D) oklioy, = olioy ¢ o is j-faithful & ok|foyuo); = oilfo%uro); = o lfoluol:»
(8) orlio) = 0 & o isi- and j-faithful & o;; = oy,
9D or € Au(P,4) & Fora,b € [0, c € [0); with [cly = [al;jblk :
[o(O = [o(a)Tyj (b,
(10) oy = 0j & oy € Au(P, §) A o is i-faithful,
(11) 6ij = 0; & Fora, b, c € [0]; with[c}kN[0]; € [[aliN[b]i]; : o ([c]kN[O]) €
[l @ N o )] ;-

Proof. (2) Let X € §; and x; := X N[0];, xx := X N[O, hence X = [x;]; =
[xk]i. Then by (2.6), 0i; (X) = [o(x;) ]y, and 03k (X) = [0 (xx)];. Hence 05 (X) =
0ik(X) & [o(xj)]y = lo(x)]y © o is i-faithful.

(3) By (2.6), 0ilj0) = o ¢ 0ijlo), = olioy, which implies o;; ([0]x) = [Oly,
hence by (1), o is (i, j)-faithful. Now we assume that o is (i, j)-faithful. Let
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x € [Ol, x; = [x]; N [0]; hence x = [O]x N [x;]; and [x]; = [x;];. Then
0ij (x) = 0i; ([01) N [o(xj)]i = [0} N[o(x))]ir = 0 (x) © [0 (xj)lir = [o(x)]y,
hence o is i-faithful, and clearly if o is (i, j)-faithful and i-faithful, then also j-
faithful. Finally let o be i- and j-faithful and let x; € [0];, x; € [O]; such that
x = x;0;; x; € [Olk. Then [x]; = [x;]; and [x]; = [x;];, and by the i- and
Jj-faithful assumption, [0 (x)]y = [o(x;)]i and [0 (x)]j» = [o(x;)]j. Therefore
Ol 2 0(x) =[c®)] Nlo(xX)]j = [o(x))]y Nlo(x)]j = U(x})El o (x;), 1.e.
o is (i, j)-faithful. And the last equivalence is immediate from the above (2).

(6) Let o;; = ok, then by (2.6), 0;; € Aut(P, §) and by (2.7.2), o is i-faithful.
Now let 0;; € Aut(#,§) and o is i-faithful, and let p € P, p; = [pl; N
(01, pi := [pl; N[0); and gx := [pli N[Ok, ¢; := [plk N [0];, hence p =
[pilj N pjli = [gile N [geli and [pjli = [gkli- Since o is i-faithful, [o(pj)]i =
[o(qx)]i and since 0j; € Aul(P, §), 0 (p) = [o(pdlj Nlo(p)l € [o(gdlk,
thus 0y (p) = [0 (g) e N o (Pl = [o(g) ]k N o (gi)]i = oik(p).

(10) Let ox = oj, then Ukl[O]j = Uj|[0]j (2:'6)cr|[()]j, ie. o is i-faithful by (2.7.7),
and o; € Aut(P, §) by (2.6). Now let ox € Aut(P, §) and o i-faithful and let
p € P, ar :=[pliN[0Olk, a; :=[pl:N[0];, by := [p]; N[Ok and c; := [plkN[0];.
Then p = [ax]; N [be]; = [a;)i N[c;lk and [ax]; = [a;];. Since o is i-faithful,
[o (@) = [0(a))]y, and since o € Aut(P. ), 0(p) = [on(c/)l N [0 (@))ly.
Therefore o;(p) = [0 (a;j)ly N[o(cj)l = ow(p) if o(cj) = ox(c)), i.e. if()'|[()]j =
oklfoy;» i-e. by (2.7.7) if o is i-faithful.

2.8 Foreach y € A3 \{id} and each 0 € & the map yp(€ Xo) is I-, 2- and 3-
faithful by definition and so are the maps (yo)2 and (yo)3. Therefore by (2.7.8) for
¢ = (y)' € To we have ¢ = ¢rlio] with ¢;; = ¢ and moreover by (2.7.10) if
dr € Aut('W), then ¢; = ¢;; foralli, j € {1,2,3},i # j, hence the automorphic
extension ¢ (= ¢; = ¢;;) of ¢ is unique.

3 Extensions of Local Symmetries and Some Orbits

Firstly we discuss when the maps yo, (0)? and (yo)3 are extendable. For the con-
venience, we set the maps O := yo, 03 := (v0)* and 0:= (y0)?, where y is taken
as (132) € A3. We consider the maps [O] l{0] and 053 in the following:

31 Lety =(132) € $3,i € {1,2,3}and j := y (i), k := y(j). Then:

(1) ([(OTilop)i = [0 li,
2) O3lp0y; = [0] o [O]kI[O], and (03); = ([0] ° [0]k|[0]),,
3) 03); = [O]j o[0Tk & [0k € Aut(®, G = (03) = idg),
(4) Let [0 1k € Aut(P, Gk), hence (03); = [O] ) [O]k by (3). Then
(03); isan lsomorphzsmfrom (P, 4; UG onto (P, ;U Gk) and
(03), € Aut(J g) & [0 € Aut(J 8
5) If[O],, [0], € Aut(P, 4), then [O]k € Aut(P, k) and
(03); = (03); = (03)r € Au(P, §), i.e. W is 3-rotational with respect to Q.
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Proof. (1) To @|[0] there corresponds the transposition (j, k). Therefore, if p €
P, pj = [pljN[0) and py := [plkN[0];, (hence p = p; Ok px = [p;1; Npklk)s
then ([0LiloDi (p) = [pjle N pelj = Oki(p).

(2) and (3)_By (1.2.1), 03([01;) = 06°([0);) = [0]; o [01x([0];) and to O3 and
to ¢ = [O] j © [0lkl[o] there corresponds the same permutation o. Thus (03); =
({07 jo [O]kl[O/]QL = (¢)i and (2) is completely proved. Now (¢);(p) = [¢(pj)lk N

o (pi))i = [OL(p )k m[[O]k(Pk)]z and [OL o [0k (p) = [[O]k(pj)]k N[ql;, where
g :=[01; N [[0]c(p)li. We have

(@)i(p) = [01; 0 [0](p) & g = [0l(pr) & [01k(p) € [[OTk(pi)lk-
Smce p € P is arbitrary and [plx = [pilk, we obtain the equivalence of (3). If
[O]k € Aut(P, 9¢), then W is hexagonal with respect to 0 by (2.1) and we obtain
(03)° = idgg) by (1.2.2).
(4) Since [0];(§;) = G« and [0], (Q,k) = 9,], we obtain (03);($;) = $« and by
assumption (03);(§x) = [0] )j o [O]k(g'k) [0] iGe) = Gi. Therefore 03); €
Aut(P, 3) & (03); (9 ) = [0]1 o [0]; k(i) = [011(9»1) =§4; & [0 € Aut(P, ;).
) 0% =’ {07:101,) "2 [0; o (0T, o (01 € Aut(s, §). u

3.2 Theorem. The following statements are equivalent:
(1) (R, 0, 1) is satisfied,
(2) (03)1 € Aut(P, §),
(3)Va,be E:~(a+b)+a=~b,
(4) Vi € {1,2,3}: (R, 0,1) is satisfied,
(5) Vi € {1,2,3}: (03); € Aut(P, §),
(6) Ois a 3-extendable point.

Proof. Let X € §1 and ¢’ € X be given. We set E := [0]3 and construct:
=[g']3 N [0y, a:=p3:=[phNE, b:=XNE,
g2 = X N[0], q := [q2]3 N [0];.

Then [¢', N [0]3 = a +b,q = 00(~b), p' = [p3li N[glr = al(~b)
and r := [p'ls N [0]2 = [aO(~b)]3 N [0]2 and we have: [a + b]; = [[g']> N
[0]3]1 =[r1 ©r = (@a+ b0 & ~(a+b)+a = ~b. Moreover, let

= [¢'l2N[0];. Then ¢" = [p]3 N [s]2, (03)(p) = a0, 03(s) = (a + )10,
hence (03)1(¢") = [a000]; N[(a 4 b)00)3 = [al; N [(a + b)00]3 and g3 := [g]3 N
[0l2, (03)(g) = ~b00, 03(0) = 0, hence (03)1(q2) = [~b00]; N [0]3 = ~b.
Therefore (03)1(X) € $2 ¢ (03)1(X) = [~b]2 & p' = [a]1 N [(a + b0,
s0 (R,0,1) & ~(a+b) +a = ~b. Since (R,0,i) & (R,0, j), we have the
equivalence of statements (1), (2), (3), (4) and (5). Since 03 is 1-, 2- and 3-faithful,
we have (03);|[0] = 03, and so if (2) is assumed, then O is a 3-extendable point. [

If W is 3-extendable and hexagonal with respect to 0, then it is 3-rotational with
respect to 0. So by (2.2) and (3.2) we obtain:

3.3 The following statements are equivalent:
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(1) ‘W is 3-rotational with respect to 0,
(2) For (E,+):=L(W;0;i,j):VYa,be E: ~(a+b)+a = —b.

3.4 Under the assumption
(0) Ya,be E: ~(a+b)+a=~b,

the following three assertions are equivalent:
(1) Va,be E: (a+b)—b=aq,
2)Va,be E: —(a+b)=—-b+ (—a),
(3)Va,be E: —a+(a+b)=0>.

Proof. (1) = (2) If we set a := ~ b, then we obtain —b = ~ b from (1), and (0)
resumes the form —(a + b) + a = —b. We substitute in (1) a to —b, b to —a and
obtain (—b — a) + a = —b. Together with (0) this implies —(a + b) = —b + (—a).

Similarly applying —b = ~ b, we see that (2) = (3) and (3) = (1). |

From (2.3), (2.4), (2.5), (3.2) and (3.4) it follows

3.5 Let 'W be 3-extendable with respect to 0, then
(1) The three assertions [(),I € Au(P, §;) fori € {1,2, 3} are equivalent,
(2) Ifthereisani € {1, 2, 3} such that [0]; € Aut(P, ), then W is 3-rotational
with respect to 0 (cf. (1) and (3.1)).

Next we study the turn 0= (06)3.

3.6 The following statements are equivalent:

(1) 3 €{1,2,3}: 0)i € Aut(2, §),

(2) Vie{l,2,3}: (O), € Au(?, §),

B)Vx e P : [012 o (013 o [013([x]1) N [03 o 01 o [OT ([x12) N [OT; o (073 o

[Ol2([x13) # &,

(4) For (E,+) := L(W;0;1, ), v e Aut(E, +).
Proof. The permutation corresponding to 0in S35 is the identity. Therefore (0)1 €
Aut(P, §) & (0)1 € Aut(P, §1) & VxePifxy = [x]zﬂ[O]l,m [x]3N[0]1,
y = [xhiN[0]3, y2 := [y12N[0]1, then [0(x2)]2N[0(x3)]3 =: x' € [[0(32)]2N[013]1.
This last statement is equivalent to (3). Consequently (1), (2) and (3) are equivalent.
B)e @) Letx € P,a:= [[x]3ﬂ[0]1]2ﬂ[0]3, b := [x]1N[0]3 and ¢ := [x],N[0]5.

Thenc =a+b, —a = [[x3N[0]2], N [0]3, b = [[[b]z N[O, N [0]2]1 N [0ls,
~¢ = [[txl2 N101]; N (01 ], N10]5, and — = —a + (=b) & [=cla 1 [~6]; N

[[;a]:z rjv[Oh] # ¢. But [0]20[0]1 0 [0T3([x]) = [0]20[0]1([b]2) = [-b]1, [0]30
[0I2 o [0]1([x]2) = [013(—c]1) = [~cl> and [0]1 o [0]3 o [012([x]3) = [OT; o
[013([—al1) = [0i([—al») = [[—al N [0]1]3. This shows the equivalence of (3)
and (4). O

Remarks. 1. The statement (3) of (3.6) expresses that the bend-configuration
BE(0; 1d) of [S, Section 6] closes.

2. From (2.8) and (3.6) it follows that the point 0 is 2-extendable if and only if
for (E, +) := L('W;0; 1, 2) the map v is an automorphism of (E, +). If 0 is even
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2-rotational then by (2.2), v2 = id, and 0 is a characteristic 2 point if and only if
v =id.

3. Ifapoint p € P is 2-rotational then by (2.8), (yp)3 is uniquely extendable to
an automorphism of ‘W which we denote by p and which we call reflection in the
point p; we have then p’ = id(€ S3), p € Fix(p), p2 =id,and p = id & pisa
characteristic 2 point.

4. There are webs ‘W with 2-rotational points p such that p # id and |Fix(p)| > 2.

Now we consider the map 0 = (132)¢ € Xg and ask when (0¢)3 € Aut(P, ),
i.e. (06)3(§3) = 42 is true. For the answer we need the following (3.7):

3.7 If(T, 0; i,j) is valid, then so is (T, 0; k, i).

Proof. Letx € [Olg, y € {0]; and g := [0]; N [[x]; N [yIk]i;. Then [ylx N [g]; =
[x1;NIylk shows [0 N[[ylkNIgli]; = [0l NEx];NyIe]; = [0k N[x]; = {x}. By
(T,0:4, j),y € [0]; and g € [0]; imply ¢ # [0l N[[ylk NIglil; Nlglk NIy}l =
{x}N gl N [yljli; ie. x € [[glk N[y];li and so g € [[x]; N [y];]«. Hence the
statement (7', 0; k, i) is valid. O

3.8 Theorem. The following statements are equivalent:
(1) 3 € {1,2,3}: (0p); € Aut(P, §),
(2) Vi €{1,2,3}: (0g); € Aut(P, 9),
(3) (T,0; 1,2) is satisfied,
@ Ya,b ¢ E: ~b+(a+b) =a,ie,b+(a—>b)=a,ie (E,+)isa
crossed-inverse loop ([1, Theorem 5.4]).

Proof. Let X € g3\ {E}, x := X N[0]1, x2 := X N[0]2. Then O¢(x2) = x and so
if (06)3(33) = G2, then (06)3(X) = [x]2. Now let p € X, y := [pli N [0z, p1 :=
[p1iN[0]3, p2 := [p2N[0]3, g := [x]2N[y]3. Then firstly x € [0]1, y € [0]2, p =
(x13N[yl1, ¢ = [yl3N[x]2 and [Ol3N[pl2Nlgh # ¢ if (T, 0; 1, 2) holds. Secondly
Os(p1) =y, 0s(p2) = [p2]1 N [0]2, hence (06)3(p) = [0s(p1)13 N [O6(p2)]1 =
[¥13N[p2]1. Consequently, (06)3(X) = [x]2 < [x12N[yl3N[p2li = {g}NIp2]1 #
¢ < [013 N [pla Nlgli # ¢. Hence (06)3(93) = G2 < (T,0; 1,2). Now we set

= [x]p N[0]3, b := p1. Thena + b = py, y = bJ0O, [b00]3 = [0O(~ b)]3 and
so~b+(a+b)=a<x [x2N[ylzN[p2]1 # ¢. With (3.7) all the statements are
equivalent. O

Finally in our web we consider the orbits [p] = {i(p) | X € ;) of a point
p € & with respect to the generators of §;, i € {1, 2,3} and see by the definition
that each orbit [ p]’ is an i- chain, hence [p ] € €; and obtain the following theorem
which is the case when i=3:

3.9 Theorem. Let W = (P, $1, $2, $3) be a web and let E € §3 such that E ¢
Aut('W). Then

(1) If there is a chain D € C3 such thar VX € §3 : 5(X) X (iie. §3 C
DY U(D}), then De Aut('W), EoD=DoE ¢ Aut(W)*, each point p € END
is 2-rotational and p = EoDisthe reﬂectton inp and foreachd € D, D = [d]3
(2) If p € E is a 2-rotational point. and p the reflection in p, then po E=Eo pE
Au(W), D :=Fix(Po E) € C3, D=pokE, §3C D-U{D})and D = [p)*.
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Proof. (1) By (1.1.2), D € Aut(, gl U 92) and by D(X) = XforX € gg,
hence D € Aut(W) and by (1.1.1) X = D(X) DoX o D. Since X and D
are involutions, X 0o D = D o X, in particular_ Eo D DoE. Since E,D €
Aut(W) N Aut(P, §1 U §2)~, we obtain E o D = D o E € Aut('W)*+. Now let
p € END,x € E\{p}y = (132),x" := (yp)*(x), ¢ := = (yp)(x) = [xl1 N [pla,
= p)*x) = [ph N lgls = [phi N [X’]z Then by p € D, D(Ipl) = [pli
and D([qls) [q]3 since [g]3 € §3. Consequently D(g) = D(phNlgl) =
D([P]z) N D(lg)s) = [pli N[gl3 = ¢’ and so D(X) D(pls nigly = [plzN
D([qh) = [plN[D(@ = [plsN[g'}a = x". Hence E o D|g = E o D, =
(yp) | £ and so by the umque extendablllty, EoD = p. Now ford € D andX € 9,3,
let X(d) € [d]?, then Do X(d) Xo D(d) X(d) hence X(d) € le(D)
by (1.1.1),i.e. [d]* C D. So we have D = [d]?, since D and [d]? are both in c3.
(2) By hypothesis p and E are involutory automorphisms of Wand p € E, hence
EopoE E(p) = pandsoEop BFoE € Aut('W) with (Eof)')’ =(1,2),1e.
Eop € Aut(P, §1U§2)". By (1.1.4), D := le(Eoi)) €Cs andD Eop Finally
let X € §3. If X = E, thenby p € E, D(E) Eop(E) E(E) E. Therefore
let X # Eandletq :=[p]2NX,q" = [plinX. Theng' = y,(¢), p(q) = (vp)(q)

and E(g) = p(q). Thus E o F(X) = Eop([qls)—[Eop(q)h—[q Is=X,ie.
g3 C DL U{D}andby (1), D = [p]*. O

Together with the results (4.2.3) and (6.4) of [5] we can state:

310 Foraweb W = (P, %1, %2, $3) let P be the set of all 2-extendable points.
Then for ‘W the following statements are equivalent:

(1) P # ¢pand i € {1,2,3} : 9, C Aut('W) (In this case, if 0 € P, and
jok € {1,2,3}\ {i} with j # k, then D := [0] € G; with D C P> and
8; C DY U{D}and (E,+) := L(W;0; j, k) is a Bruck-loop),

(2) 40 € P and j.k € {1,2,3}, j # k such that (E,+) = L(W:0; j,k)isa
Bruck-loop (In this case 0 € P and §; C Aut('W)),

3) diell,2,3}: g~, C Aut(W) and AD € G; with §; C D+ U {D).

Remark. 1f fora web W = (P, §1, 92, $3)and ani € {1,2,3}, 9: C Aut('W),
thenVp,q € P2, [p]' C Prandeither [p)' N[gl =gpor[p} = [ql/.
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