Webs with Rotation and Reflection Properties and their Relations with Certain Loops

By B. IM, H. KARZEL, and H.-J. KO

Abstract. In a web one can define in a natural way reflections in generators and a kind of rotations in points. The structure of the webs and the corresponding loops in which some of these maps are automorphisms will be studied in a synthetic way.

1 Introduction and Notations

Let $\mathcal{W} := (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3)$ be a web, i.e. a nonempty set \mathcal{P} and three subsets \mathcal{G}_i of the power set $\mathfrak{P}(\mathcal{P})$ of \mathcal{P} such that

W1 $\forall x \in \mathcal{P}, \forall i \in \{1, 2, 3\}, \exists_1 [x]_i \in \mathcal{G}_i : x \in [x]_i,$ W2 $\forall i, j \in \{1, 2, 3\}, i \neq j, \forall A \in \mathcal{G}_i, \forall B \in \mathcal{G}_j : |A \cap B| = 1,$

and let $\mathcal{G} := \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3$. In this paper we let $\begin{pmatrix} 1 & 2 & 3 \\ i & j & k \end{pmatrix} \in S_3$, i.e. $\{1, 2, 3\} = \{i, j, k\}$, unless specified otherwise, and for $x, y \in \mathcal{P}$ let

$$x \square_{ij} y := [x]_i \cap [y]_j$$
 and $x \square y := x \square_{12} y$.

Each automorphism $\alpha \in \operatorname{Aut}(\mathcal{W}) := \operatorname{Aut}(\mathcal{P}, \mathcal{G})$, respectively $\beta \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_i \cup \mathcal{G}_j)$ induces a permutation $\alpha' \in S_3$, respectively $\beta' \in S_2$ defined by $\alpha([x]_l) = [\alpha(x)]_{\alpha'(l)}, l \in \{1, 2, 3\}$, respectively $\beta([x]_l) = [\beta(x)]_{\beta'(l)}, l \in \{i, j\}$. We set

$$\operatorname{Aut}(\mathcal{P}, \mathfrak{g}_i \cup \mathfrak{g}_j)^+ := \{\beta \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}_i \cup \mathfrak{g}_j) \mid \beta' = \operatorname{id}\},\\\operatorname{Aut}(\mathcal{P}, \mathfrak{g}_i \cup \mathfrak{g}_j)^- := \{\beta \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}_i \cup \mathfrak{g}_j) \mid \beta' = (i, j)\}$$

and

$$\operatorname{Aut}(\mathcal{W})^+ := \{ \alpha \in \operatorname{Aut}(\mathcal{W}) \mid \alpha' = \operatorname{id} \}.$$

By W1 and W2 each automorphism $\alpha \in Aut(W)$ is completely determined by its action on two generators $A \in \mathcal{G}_i$, $B \in \mathcal{G}_j$ or on one generator and the corresponding permutation $\alpha' \in S_3$.

A subset $C \subset \mathcal{P}$ is called an *i-chain* if for each $Y \in \mathcal{G}_j \cup \mathcal{G}_k$ the intersection $Y \cap C$ consists of a single point. Let $\mathcal{C}_i := \{C \in \mathfrak{P}(\mathcal{P}) \mid \forall X \in \mathcal{G} \setminus \mathcal{G}_i : |C \cap X| = 1\}$

²⁰⁰⁰ Mathematics Subject Classification. 20N05, 53A60.

Key words and phrases. web, loop, rotation, reflection.

This work was supported by Korea Research Foundation Grant(KRF-1999-015-DP0009).

[©] Mathematisches Seminar der Universität Hamburg, 2002

be the set of all *i*-chains, then $\mathfrak{g}_i \subset \mathfrak{C}_i$. To each chain $C \in \mathfrak{C}_i$, in particular to each generator there corresponds a reflection

$$\widetilde{C}: \mathcal{P} \to \mathcal{P}; x \mapsto \left[[x]_j \cap C \right]_k \cap \left[[x]_k \cap C \right]_j,$$

i.e. an involution of the set \mathcal{P} fixing exactly the points of C and interchanging the generators of \mathfrak{g}_i and \mathfrak{g}_k , i.e. $\widetilde{C} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}_i \cup \mathfrak{g}_k)$. \widetilde{C} will be called a *chain* reflection (of type i). Then by [5, (2.3, 2.4, 2.5)] we have:

1.1 $\forall C, D \in \mathfrak{C}_i, \forall 0 \in \mathcal{P}$:

- (1) $\widetilde{C} \circ \widetilde{C} = \text{id}$, Fix $\widetilde{C} = C$, $\widetilde{C}(D) \in \mathcal{C}_i$, and $\widetilde{\widetilde{C}(D)} = \widetilde{C} \circ \widetilde{D} \circ \widetilde{C}$, (2) $\forall X \in \mathcal{G}_j : \widetilde{C}(X) \in \mathcal{G}_k$, $\forall Y \in \mathcal{G}_k : \widetilde{C}(Y) \in \mathcal{G}_j$, hence $\widetilde{C} \in \text{Aut}(\mathcal{P}, \mathcal{G}_j \cup \mathcal{G}_k)^-$,
- (3) $[\widetilde{0}]_i([0]_i) = [0]_k$,
- (4) $\forall \alpha \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}_i \cup \mathfrak{g}_k)^-$ with $\alpha^2 = \operatorname{id} : \operatorname{Fix} \alpha \in \mathbb{C}$ and $\operatorname{Fix} \alpha = \alpha$.

Two chains $A, B \in \mathcal{C}_i$ are called *orthogonal* and denoted by $A \perp B$ if $A \neq B$ and $\widetilde{A}(B) = B$. We set $A^{\perp} := \{X \in \mathcal{C}_i \mid X \perp A\}$. By (1.1.3), $[\widetilde{0}]_j \circ [\widetilde{0}]_i \circ$ $[\widetilde{0}]_k([0]_i) = [0]_i$. If $[\widetilde{0}]_i \circ [\widetilde{0}]_i \circ [\widetilde{0}]_k|_{[0]_i} = id_{[0]_i}$, then W is called hexagonal with respect to 0.

Besides the reflections in chains or generators one can define in a web W in a natural way a kind of local maps called *rotations*: If γ is one of the cyclic permutations (132) or (123) $\in A_3$ and if $0 \in \mathcal{P}$ is a point of the web W, let γ_0 be the permutation of the set $[0] := [0]_1 \cup [0]_2 \cup [0]_3$ defined by

 $\gamma_0(x) = [0]_{\gamma(i)} \cap [x]_{\gamma^{-1}(i)}$ for $x \in [0]_i, i \in \{1, 2, 3\}$.

1.2 Let $\gamma := (132)$ or $(123) \in A_3$. Then for each $0 \in \mathcal{P}$, the group $\langle \gamma_0 \rangle$ generated by the rotation γ_0 is a subgroup of the permutation group Sym([0]) and we have:

(1) Fix(
$$\gamma_0$$
) = {0} and (γ_0)²(x) = $[0]_{\gamma(i)}(x)$ for $x \in [0]_i$, $i \in \{1, 2, 3\}$,

$$\left((132)_0 \right)^2(x) = \begin{cases} \widetilde{[0]}_3(x) = \widetilde{[0]}_3 \circ \widetilde{[0]}_1(x) = \widetilde{[0]}_2 \circ \widetilde{[0]}_3(x) & \text{if } x \in [0]_1 \\ \widetilde{[0]}_1(x) = \widetilde{[0]}_1 \circ \widetilde{[0]}_2(x) = \widetilde{[0]}_3 \circ \widetilde{[0]}_1(x) & \text{if } x \in [0]_2 , \\ \widetilde{[0]}_2(x) = \widetilde{[0]}_2 \circ \widetilde{[0]}_3(x) = \widetilde{[0]}_1 \circ \widetilde{[0]}_2(x) & \text{if } x \in [0]_3 \end{cases}$$

 \sim

(2)
$$(\gamma_0)^6 = \mathrm{id} \Leftrightarrow W$$
 is hexagonal with respect to 0,
(3) $(\gamma_0)^6 = \mathrm{id} \Leftrightarrow (\gamma_0)^2 = \begin{cases} [\widetilde{0]}_1 \circ [\widetilde{0]}_2|_{[0]} & \text{if } \gamma = (132) \\ [\widetilde{0]}_2 \circ [\widetilde{0]}_1|_{[0]} & \text{if } \gamma = (123) \end{cases}$

Note that $(\gamma_0)^{-1} = (\gamma^{-1})_0$ and that γ_0 induces on the set $\{[0]_1, [0]_2, [0]_3\}$ the permutation γ , while $(\gamma_0)^2$ induces γ^{-1} , and $(\gamma_0)^3$ and $(\gamma_0)^6$ the identity. If there is an automorphism ω of the web W such that the restriction $\omega|_{101}$ coincides with one of the maps $(\gamma_0)^6$, $(\gamma_0)^3$, $(\gamma_0)^2$ or γ_0 , then ω is unique by (2.8) and is called the *au*tomorphic extension and we say that the point 0 is *n*-extendable for $n \in \{1, 2, 3, 6\}$ if $\omega|_{[0]} = (\gamma_0)^{\frac{6}{n}}$. Clearly if $\omega|_{[0]} = \gamma_0$, then $\omega^2|_{[0]} = (\gamma_0)^2$ and $\omega^3|_{[0]} = (\gamma_0)^3$, i.e. if $0 \in \mathcal{P}$ is 6-extendable, then also 1-, 2- and 3-extendable, and if 0 is 2- and 3-extendable, then also 6-extendable. If for $n \in \{1, 2, 3, 6\}$ a point $0 \in \mathcal{P}$ is nextendable and if moreover $(\gamma_0)^6 = id$, i.e. the web W is hexagonal with respect to 0 by the above (1.2), then 0 is called *n*-rotational. Moreover if each point of a web W is *n*-extendable, respectively *n*-rotational, then W is called a *n*-extendable, respectively *n*-rotational web.

From the definition it follows that γ_0 and $(\gamma_0)^2$ are distinct from the identity on [0], but for $(\gamma_0)^3$ this is not provable. We call 0 a *characteristic 2 point* if $(\gamma_0)^3 = id$. Clearly if 0 is a characteristic 2 point, then W is hexagonal with respect to 0 and 0 is trivially 2-rotational and if moreover 0 is 3-rotational, then also 6-rotational.

Remarks. 1. We have $(\gamma_0)^{-1} = (\gamma_0)^2 \Leftrightarrow (\gamma_0)^3 = \text{id} \Leftrightarrow \gamma_0$ has the order 3 $\Rightarrow W$ is hexagonal with respect to 0 in the following way: Let $(a, b, c, d) \in \mathcal{P}^4$. If $[a]_i = [b]_i, [b]_j = [c]_j, [c]_i = [d]_i$ and $[d]_j = [a]_j$, then (a, b, c, d) is called a *parallelogram*, if moreover $[a]_k = [c]_k$, respectively $[a]_k = [c]_k$ and $[b]_k = [d]_k$, then (a, b, c, d) is called a parallelogram with a diagonal, respectively a Fanoparallelogram. Hexagonal with respect to 0 means: Each parallelogram (a, b, c, d)with $0 \in \{a, b, c, d\}$ and with a diagonal is a Fano-parallelogram.

2. If W is hexagonal with respect to 0, then γ_0 has either the order 6 or 3. If γ_0 has order 6, then $(\gamma_0)^3$ is involutory and we call $(\gamma_0)^3$ a *quasi-reflection* with respect to 0.

The map γ_0 belongs to the group $\Sigma_0 := \{\sigma \in Sym[0] \mid \exists \sigma' \in S_3 : \forall i \in \{1, 2, 3\} : \sigma([0]_i) = [0]_{\sigma'(i)}\}$. For all $\sigma \in \Sigma_0$ and $i, j \in \{1, 2, 3\}$ we associate in a natural way permutations $\sigma_{i,j}$ and σ_i of the whole point set \mathcal{P} (cf. (2.6)).

Remark. In [1, Chap.V] BELOUSOV considers the maps $(\gamma_0)_1$ and $((\gamma_0)^3)_1$, and calls $(\gamma_0)_1$ rotation if $(\gamma_0)_1 \in Aut(W)$ and $((\gamma_0)^3)_1$ central symmetry if $((\gamma_0)^3)_1 \in Aut(W)$.

We recall, fixing a point $0 \in \mathcal{P}$, the set $E := [0]_k$ can be turned via a *loop-derivation* L(W; 0; i, j) into a loop (E, +), where 0 is the neutral element of (E, +). The binary operation "+" of L(W; 0; i, j) is given by (cf. [5])

$$+: \begin{cases} E \times E \to E\\ (x, y) \to x + y := \left[\left[[0]_i \cap [x]_j \right]_k \cap [y]_i \right]_j \cap E \end{cases}$$

A bijection $\Box_{ij} : E \times E \to E; (x, y) \to x \Box_{ij} y$ is a coordinatization of W.

For a loop (E, +) we define: $\forall a \in E$, let $a^+ : E \to E$; $x \mapsto a + x$, $-a := (a^+)^{-1}(0)$, and $\sim a$ the solution of x + a = 0, i.e. -a is the right inverse of a and $\sim a$ the left inverse. Instead of a + (-b) we write a - b. Also $\forall a, b \in E$, let

$$\delta_{a,b} := \left((a+b)^+ \right)^{-1} \circ a^+ \circ b^+ \text{ and } \nu : E \to E; x \mapsto -x.$$

A loop (E, +) is called a *Bol-loop* if for all $a, b \in E$, $a^+ \circ b^+ \circ a^+ = (a + (b + a))^+$. And a Bol-loop is called a *Bruck-loop* if $v \in Aut(E, +)$ and *Moufang-loop* if v is an antiautomorphism (cf. [8] p. 4, 5). Between a web W and a loop derivation (E, +) := L(W; 0; i, j) we have by (2.5) the connection: $[\widetilde{0}]_j \in Aut(W) \Leftrightarrow v$ is an antiautomorphism of (E, +).

We will need the following configurational statements: By the *local Thomsen* condition (T, 0; i, j) we understand:

 $(\mathbf{T}, \mathbf{0}; \mathbf{i}, \mathbf{j}) \qquad \forall x \in [0]_i, \forall y \in [0]_j : [0]_k \cap [[x]_k \cap [y]_i]_j \cap [[y]_k \cap [x]_j]_i \neq \phi,$ and by the *local Reidemeister condition* (R, 0, i)

 $(\mathbf{R}, \mathbf{0}, \mathbf{i}) \text{ Let } p, q \in [0]_i, \ p_k := [0]_k \cap [p]_j, \ q_j := [0]_j \cap [q]_k, \ p' := [p_k]_i \cap [q]_j \text{ and } q' := [q_j]_i \cap [p]_k, \text{ then } [[p']_k \cap [0]_j]_i = [[q']_j \cap [0]_k]_i, \text{ where } \{i, j, k\} = \{1, 2, 3\}.$

(T, 0; i, j), respectively (R, 0, i) is the specialization of the Thomsen-**TH**, respectively Reidemeister-**RE** condition (cf. [7, p. 80, 81], [11], [12]).

We will show in Theorem (3.2) that a point 0 of W is 3-extendable if there is an $i \in \{1, 2, 3\}$ such that (R, 0, i) is satisfied. Hence by (1.2) we obtain that 0 is 3-rotational if W is hexagonal with respect to 0 and (R, 0, i) is satisfied. For the loop derivation (E, +) := L(W; 0; i, j) this is equivalent to: $\forall a, b \in E : -(a+b)+a = -b$ (cf. (3.3)). Then we make the assumption that the web W contains 2-extendable, respectively 2-rotational points. By (2.7), (3.6), the remarks on (3.6) and the results of [5, section 6] we have:

1.3 Theorem. For a point 0 of a web W the following properties (1), (2), (3) and (4), respectively (5) and (6), respectively (7) and (8) are equivalent:

- (1) 0 is a 2-extendable point,
- (2) For (E, +) = L(W; 0; i, j), $i, j \in \{1, 2, 3\}$, $i \neq j$ the map v is an automorphism of (E, +) (cf. (3.6)),
- (3) The bend-configuration BE(0; id) closes, i.e. $\forall p \in \mathcal{P}$:

$$\left[\left[\left[\left[p \right]_1 \cap [0]_3 \right]_2 \cap [0]_1 \right]_3 \cap [0]_2 \right]_1 \cap \left[\left[\left[\left[p \right]_2 \cap [0]_1 \right]_3 \cap [0]_2 \right]_1 \cap [0]_3 \right]_2 \cap \left[\left[\left[\left[p \right]_3 \cap [0]_2 \right]_1 \cap [0]_3 \right]_2 \cap [0]_1 \right]_3 \neq \phi \right] \right]_{1}$$

(cf. [5, (6.3)]),

(4) If W is coordinatized by (E, +) = L(W; 0; i, j), then the map

 $x \Box_{ii} y \mapsto (-x) \Box_{ii} (-y) \in Aut(\mathcal{W}).$

- (5) 0 is a 2-rotational point,
- (6) For (E, +) = L(W; 0; i, j), v is an involutory automorphism of (E, +),
- (7) 0 is a characteristic 2 point,
- (8) For (E, +) := L(W; 0; i, j), v is the identity.

By Theorem (3.8) a point 0 is then 6-extendable if the local Thomsen condition (T, 0; i, j) is valid and on the algebraic side that means: $\forall a, b \in (E, +) : b + (a - b) = a$, i.e. (E, +) is a crossed-inverse loop by the terminology of Bruck [2]. The similar result of (3.8) is in [1, Theorem 5.4]. Moreover we also obtain Theorem (3.9) which states the property of the orbit $[p]^i := \{\widetilde{X}(p) \mid X \in \mathcal{G}_i\}$ of a point $p \in \mathcal{P}, i \in \{1, 2, 3\}$, related to a 2-rotational point, if there is an $E \in \mathcal{G}_i$ with $\widetilde{E} \in \operatorname{Aut}(W)$.

2 Local Symmetries

In our web $\mathcal{W} = (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3)$, we consider two generators $A, B \in \mathcal{G}_i$ of the same type. Then by (1.1) $\widetilde{A} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_j \cup \mathcal{G}_k)$ if $\{j, k\} = \{1, 2, 3\} \setminus \{i\}$ and $\widetilde{A}(B) \in \mathcal{C}_i$, but in general $\widetilde{A}(B)$ is not contained in \mathcal{G}_i . Therefore

2.1 Let $A \in \mathcal{G}_i$, then

- (1) $\widetilde{A} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G}) \Leftrightarrow \widetilde{A} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G}_i),$
- (2) If $\widetilde{A} \in Aut(\mathcal{P}, \mathfrak{P}_i)$, then W is hexagonal with respect to each point $x \in A$.

For the following let $0 \in \mathcal{P}$ be fixed, let $(E, +) := L(\mathcal{W}; 0; 1, 2)$ be the corresponding loop, and note that $\Box := \Box_{12}$. Then we have:

2.2 W is hexagonal with respect to 0 if and only if $\forall a \in E : -a + a = 0$.

Now we consider the map \widetilde{E} . Since $x = b \Box c$, we obtain $\widetilde{E}(x) = c \Box b$, $\widetilde{E}(0\Box a) = a\Box 0$ and we have: $\widetilde{E} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}_3) \Leftrightarrow c\Box b \in [a\Box 0]_3 \Leftrightarrow b = \sim a + c = \sim a + (a + b)$.

For b = -a we obtain -a = -a and so:

2.3
$$E \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_3) \Leftrightarrow \forall a, b \in E : b = -a + (a + b), i.e. \forall a \in E : \delta_{-a,a} = \operatorname{id}.$$

Next we consider the map $\phi := [\widetilde{0}]_1$. By $x = [0 \square c]_2 \cap [0 \square a]_3$, $b = [0 \square b]_2 \cap [0]_3$ we have: $\phi(x) = [0 \square c]_3 \cap [0 \square a]_2 = [0 \square c]_3 \cap [a]_2$ and $\phi(b) = [0 \square b]_3 \cap [0]_2 = (-b) \square 0$. Since $[b]_1 = [x]_1$, we have: $\phi \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}_1) \Leftrightarrow \phi(x) = [0 \square c]_3 \cap [a]_2 \in [-b \square 0]_1 = [-b]_1 \Leftrightarrow a = c + (-b) = (a + b) - b$. This gives us the result:

2.4 $[\widetilde{0}]_1 \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_1) \Leftrightarrow \forall a, b \in E : (a+b) - b = a.$

Finally we study the map $\psi := [\widetilde{0}]_2$. Here we have $x = [-a\Box 0]_3 \cap [b\Box 0]_1$, hence $\psi(x) = [-a\Box 0]_1 \cap [b\Box 0]_3 = [-a]_1 \cap [0\Box \sim b]_3$ and $c = [0]_3 \cap [c\Box 0]_1$, hence $\psi(c) = [0]_1 \cap [c\Box 0]_3 = [0]_1 \cap [0\Box \sim c]_3$. This implies $[\sim b + (-a)]_2 = [\psi(x)]_2$ and $[\sim c]_2 = [\sim (a+b)]_2 = [\psi(c)]_2 = [\psi(a+b)]_2$. Since $[x]_2 = [a+b]_2$, we have: $\psi \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}_2) \Leftrightarrow [\sim b + (-a)]_2 = [\sim (a+b)]_2 \Leftrightarrow \sim b + (-a) = \sim (a+b)$. For b = 0 we obtain $-a = \sim a$ and so:

2.5 $[\widetilde{0}]_2 \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_2) \Leftrightarrow \forall a, b \in E : -(a+b) = -b + (-a), i.e. v is an antiautomorphism.$

Now we study the following question: Let σ be one of the permutations of the set $\{(\gamma_0)^i, [0]_i|_{[0]} \mid i \in \{1, 2, 3\}\}$ of Sym[0], where γ_0 was introduced in Section 1 (cf. (1.2)). When is σ extendable to an automorphism $\overline{\sigma}$ of $(\mathcal{P}, \mathfrak{G})$? These maps belong to the class Σ_0 of permutations of the set $[0] = [0]_1 \cup [0]_2 \cup [0]_3$ defined by $\Sigma_0 := \{\sigma \in Sym[0] \mid \forall i \in \{1, 2, 3\} : \sigma([0]_i) \in \{[0]_1, [0]_2, [0]_3\}\}$. To each $\sigma \in \Sigma_0$ there correspond the following permutations σ_{ij} and σ_i of the set \mathcal{P} : Let $\sigma' \in S_3$ be defined by $\sigma([0]_i) = [0]_{\sigma'(i)}$ and let $i' := \sigma'(i)$ for $i \in \{1, 2, 3\}$, then

$$\sigma_{i,j}: \begin{cases} \mathcal{P} = [0]_i \Box_{ji} [0]_j \to \mathcal{P} = [0]_{i'} \Box_{j'i'} [0]_{j'} \\ x \Box_{ji} y \to \sigma(x) \Box_{j'i'} \sigma(y) \end{cases}$$

and

$$\sigma_i : \begin{cases} \mathcal{P} = [0]_i \Box_{jk} [0]_i \to \mathcal{P} = [0]_{i'} \Box_{j'k'} [0]_{i'} \\ x \Box_{jk} y \to \sigma(x) \Box_{j'k'} \sigma(y) \end{cases}$$

Note that σ_3 is equal to the extension $\overline{\sigma}$ considered in the Extension Theorem (2.8) of [5]. Then σ_{ij} , respectively σ_i is an extension of $\sigma|_{[0]_i \cup [0]_j}$, respectively $\sigma|_{[0]_i}$ onto \mathcal{P} . And the generators $X \in \mathcal{G}_i$, $Y \in \mathcal{G}_i$, $Z \in \mathcal{G}_k$ have the images: If $x_i := X \cap$

 $[0]_j, x_k := X \cap [0]_k, y_i := Y \cap [0]_i, y_k := Y \cap [0]_k, z_i := Z \cap [0]_i, z_j := Z \cap [0]_j,$ then

$$X = [x_j]_i = [0]_i \Box_{ji} x_j,$$

$$Y = [y_i]_j = y_i \Box_{ji} [0]_j = [0]_j \Box_{ij} y_i = y_i \Box_{jk} [0]_i,$$

$$Z = [z_i]_k = z_i \Box_{kj} [0]_i, = [0]_i \Box_{jk} z_i,$$

and so

$$\begin{aligned} \sigma_{ij}(X) &= [0]_{i'} \Box_{j'i'} \sigma(x_j) = [\sigma(x_j)]_{i'} \in \mathcal{G}_{i'}, \\ \sigma_{ij}(Y) &= \sigma(y_i) \Box_{j'i'} [0]_{j'} = [\sigma(y_i)]_{j'} \in \mathcal{G}_{j'}, \\ \sigma_i(Y) &= \sigma_i(y_i \Box_{jk} [0]_i) = \sigma(y_i) \Box_{j'k'} [0]_{i'} = [\sigma(y_i)]_{j'} \in \mathcal{G}_{j'}, \\ \sigma_i(Z) &= [0]_{i'} \Box_{j'k'} \sigma(z_i) = [\sigma(z_i)]_{k'} \in \mathcal{G}_{k'}. \end{aligned}$$

So we have proved:

2.6 For all $\sigma \in \Sigma_0$, the maps σ_{ij} and σ_k are isomorphisms from $(\mathcal{P}, \mathfrak{G}_i, \mathfrak{G}_j)$ onto $(\mathcal{P}, \mathfrak{G}_{i'}, \mathfrak{G}_{j'})$ with $\sigma_{ij}|_{[0]_i \cup [0]_j} = \sigma|_{[0]_i \cup [0]_j}, \sigma_{ij} = \sigma_{ji}$ and $\sigma_k|_{[0]_k} = \sigma|_{[0]_k}$.

Next we discuss when for $\sigma \in \Sigma_0$ the maps σ_{ij} and σ_k are automorphisms of $(\mathcal{P}, \mathcal{G})$.

Definition. Let $\sigma \in \Sigma_0$ and let $(x, y) \in [0]_i \times [0]_j$. Then σ is called (i,j)-faithful if $x \Box_{ji} y \in [0]_k \Rightarrow \sigma(x) \Box_{j'i'} \sigma(y) \in [0]_{k'}$, and k-faithful if $[x]_k = [y]_k \Rightarrow [\sigma(x)]_{k'} = [\sigma(y)]_{k'}$.

2.7 For $\sigma \in \Sigma_0$ we have

- (1) $\sigma_{ij}([0]_k) \in \mathcal{G} \Leftrightarrow \sigma \text{ is } (i,j)\text{-faithful},$
- (2) $\sigma_{ij}|_{g_i} = \sigma_{ik}|_{g_i} \Leftrightarrow \sigma \text{ is } i\text{-faithful},$
- (3) $\sigma_{ij}|_{[0]} = \sigma \Leftrightarrow \sigma \text{ is } (i,j)\text{- and } i\text{-faithful} \Leftrightarrow \sigma \text{ is } i\text{- and } j\text{-faithful} \Leftrightarrow \sigma_{ij}|_{g_i} = \sigma_{ik}|_{g_i} \land \sigma_{ji}|_{g_j} = \sigma_{jk}|_{g_j},$
- (4) $\sigma_{ij} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}) \Rightarrow \sigma$ is (i,j)-faithful and k-faithful,
- (5) $\sigma_{ij} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G}) \Leftrightarrow \forall a, b \in [0]_i \times [0]_j \text{ and } c \in [0]_i \text{ with } [c]_k = [a \Box_{ji} b]_k :$ $\sigma(a) \Box_{j'i'} \sigma(b) \in [\sigma(c)]_{k'},$
- (6) $\sigma_{ij} = \sigma_{ik} \Leftrightarrow \sigma_{ij} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}) \land \sigma \text{ is } i \text{-faithful},$
- (7) $\sigma_k|_{[0]_i} = \sigma|_{[0]_i} \Leftrightarrow \sigma \text{ is } j\text{-faithful} \Leftrightarrow \sigma_k|_{[0]_k \cup [0]_i} = \sigma_i|_{[0]_k \cup [0]_i} = \sigma|_{[0]_k \cup [0]_i}$
- (8) $\sigma_k|_{[0]} = \sigma \Leftrightarrow \sigma \text{ is } i\text{- and } j\text{-faithful} \Leftrightarrow \sigma_{ij} = \sigma_k$,
- (9) $\sigma_k \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G}) \Leftrightarrow For \ a, b \in [0]_k, c \in [0]_i \text{ with } [c]_k = [a \Box_{ij} b]_k :$ $[\sigma(c)]_{k'} = [\sigma(a) \Box_{i'j'} \sigma(b)]_{k'},$
- (10) $\sigma_k = \sigma_i \Leftrightarrow \sigma_k \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}) \land \sigma \text{ is } i \text{-faithful},$
- (11) $\sigma_{ij} = \sigma_j \Leftrightarrow For a, b, c \in [0]_j \text{ with } [c]_k \cap [0]_i \in [[a]_k \cap [b]_i]_j : \sigma([c]_k \cap [0]_i) \in [[\sigma(a)]_{k'} \cap [\sigma(b)]_{i'}]_{i'}.$

Proof. (2) Let $X \in \mathcal{G}_i$ and $x_j := X \cap [0]_j$, $x_k := X \cap [0]_k$, hence $X = [x_j]_i = [x_k]_i$. Then by (2.6), $\sigma_{ij}(X) = [\sigma(x_j)]_{i'}$, and $\sigma_{ik}(X) = [\sigma(x_k)]_{i'}$. Hence $\sigma_{ij}(X) = \sigma_{ik}(X) \Leftrightarrow [\sigma(x_i)]_{i'} = [\sigma(x_k)]_{i'} \Leftrightarrow \sigma$ is *i*-faithful.

(3) By (2.6), $\sigma_{ij}|_{[0]} = \sigma \Leftrightarrow \sigma_{ij}|_{[0]_k} = \sigma|_{[0]_k}$, which implies $\sigma_{ij}([0]_k) = [0]_{k'}$, hence by (1), σ is (i, j)-faithful. Now we assume that σ is (i, j)-faithful. Let

 $x \in [0]_k, x_i := [x]_i \cap [0]_i$ hence $x = [0]_k \cap [x_i]_i$ and $[x]_i = [x_i]_i$. Then $\sigma_{ii}(x) = \sigma_{ii}([0]_k) \cap [\sigma(x_i)]_{i'} = [0]_{k'} \cap [\sigma(x_i)]_{i'} = \sigma(x) \Leftrightarrow [\sigma(x_i)]_{i'} = [\sigma(x)]_{i'},$ hence σ is *i*-faithful, and clearly if σ is (i, j)-faithful and *i*-faithful, then also *j*faithful. Finally let σ be *i*- and *j*-faithful and let $x_i \in [0]_i, x_j \in [0]_j$ such that $x := x_i \square_{ii} x_i \in [0]_k$. Then $[x]_i = [x_i]_i$ and $[x]_i = [x_i]_i$, and by the *i*- and *j*-faithful assumption, $[\sigma(x)]_{i'} = [\sigma(x_i)]_{i'}$ and $[\sigma(x)]_{i'} = [\sigma(x_i)]_{i'}$. Therefore $[0]_{k'} \ni \sigma(x) = [\sigma(x)]_{i'} \cap [\sigma(x)]_{i'} = [\sigma(x_i)]_{i'} \cap [\sigma(x_i)]_{i'} = \sigma(x_i) \Box_{i'i'} \sigma(x_i), \text{ i.e.}$ σ is (i, j)-faithful. And the last equivalence is immediate from the above (2). (6) Let $\sigma_{ii} = \sigma_{ik}$, then by (2.6), $\sigma_{ii} \in \text{Aut}(\mathcal{P}, \mathfrak{g})$ and by (2.7.2), σ is *i*-faithful. Now let $\sigma_{ii} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g})$ and σ is *i*-faithful, and let $p \in \mathcal{P}, p_i := [p]_i \cap$ $[0]_i, p_i := [p]_i \cap [0]_i$ and $q_k := [p]_i \cap [0]_k, q_i := [p]_k \cap [0]_i$, hence p = $[p_i]_i \cap [p_i]_i = [q_i]_k \cap [q_k]_i$ and $[p_i]_i = [q_k]_i$. Since σ is *i*-faithful, $[\sigma(p_i)]_{i'} =$ $[\sigma(q_k)]_{i'}$ and since $\sigma_{ij} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}), \sigma_{ij}(p) = [\sigma(p_i)]_{i'} \cap [\sigma(p_j)]_{i'} \in [\sigma(q_i)]_{k'}$ thus $\sigma_{ii}(p) = [\sigma(q_i)]_{k'} \cap [\sigma(p_i)]_{i'} = [\sigma(q_i)]_{k'} \cap [\sigma(q_k)]_{i'} = \sigma_{ik}(p).$ (10) Let $\sigma_k = \sigma_i$, then $\sigma_k|_{[0]_i} = \sigma_i|_{[0]_i} \stackrel{(2.6)}{=} \sigma|_{[0]_i}$, i.e. σ is *i*-faithful by (2.7.7), and $\sigma_k \in \operatorname{Aut}(\mathcal{P}, \mathcal{G})$ by (2.6). Now let $\sigma_k \in \operatorname{Aut}(\mathcal{P}, \mathcal{G})$ and σ *i*-faithful and let $p \in \mathcal{P}, a_k := [p]_i \cap [0]_k, a_j := [p]_i \cap [0]_j, b_k := [p]_j \cap [0]_k \text{ and } c_j := [p]_k \cap [0]_j.$

Then $p = [a_k]_i \cap [b_k]_j = [a_j]_i \cap [c_j]_k$ and $[a_k]_i = [a_j]_i$. Since σ is *i*-faithful, $[\sigma(a_k)]_{i'} = [\sigma(a_j)]_{i'}$, and since $\sigma_k \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}), \sigma_k(p) = [\sigma_k(c_j)]_{k'} \cap [\sigma(a_j)]_{i'}$. Therefore $\sigma_j(p) = [\sigma(a_j)]_{i'} \cap [\sigma(c_j)]_{k'} = \sigma_k(p)$ if $\sigma(c_j) = \sigma_k(c_j)$, i.e. if $\sigma|_{[0]_j} = \sigma_k|_{[0]_j}$, i.e. by (2.7.7) if σ is *i*-faithful. \Box

2.8 For each $\gamma \in A_3 \setminus \{id\}$ and each $0 \in \mathcal{P}$ the map $\gamma_0 (\in \Sigma_0)$ is 1-, 2- and 3-faithful by definition and so are the maps $(\gamma_0)^2$ and $(\gamma_0)^3$. Therefore by (2.7.8) for $\phi = (\gamma_0)^i \in \Sigma_0$ we have $\phi = \phi_k|_{[0]}$ with $\phi_{ij} = \phi_k$ and moreover by (2.7.10) if $\phi_k \in Aut(\mathcal{W})$, then $\phi_i = \phi_{ij}$ for all $i, j \in \{1, 2, 3\}, i \neq j$, hence the automorphic extension $\phi_k (= \phi_i = \phi_{ij})$ of ϕ is unique.

3 Extensions of Local Symmetries and Some Orbits

Firstly we discuss when the maps γ_0 , $(\gamma_0)^2$ and $(\gamma_0)^3$ are extendable. For the convenience, we set the maps $0_6 := \gamma_0$, $0_3 := (\gamma_0)^2$ and $\tilde{0} := (\gamma_0)^3$, where γ is taken as $(132) \in A_3$. We consider the maps $[0]_i|_{[0]}$ and 0_3 in the following:

3.1 Let $\gamma = (132) \in S_3$, $i \in \{1, 2, 3\}$ and $j := \gamma(i)$, $k := \gamma(j)$. Then:

- (1) $([\widetilde{0}]_i|_{[0]})_i = [\widetilde{0}]_i$,
- (2) $0_3|_{[0]_i} = [\widetilde{0]_j} \circ [\widetilde{0]_k}|_{[0]_i}$ and $(0_3)_i = ([\widetilde{0]_j} \circ [\widetilde{0]_k}|_{[0]})_i$,
- (3) $(0_3)_i = [\widetilde{0}]_i \circ [\widetilde{0}]_k \Leftrightarrow [\widetilde{0}]_k \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_k) \Rightarrow (0_3)^3 = \operatorname{id}_{[0]},$
- (4) Let $[\widetilde{0}]_k \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G}_k)$, hence $(0_3)_i = [\widetilde{0}]_j \circ [\widetilde{0}]_k$ by (3). Then $(0_3)_i$ is an isomorphism from $(\mathcal{P}, \mathfrak{G}_j \cup \mathfrak{G}_k)$ onto $(\mathcal{P}, \mathfrak{G}_j \cup \mathfrak{G}_k)$, and $(0_3)_i \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G}) \Leftrightarrow [\widetilde{0}]_j \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G}_j)$,
- (5) If $[\widetilde{0}]_i$, $[\widetilde{0}]_j \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G})$, then $[\widetilde{0}]_k \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G}_k)$ and $(0_3)_i = (0_3)_j = (0_3)_k \in \operatorname{Aut}(\mathcal{P}, \mathfrak{G})$, i.e. W is 3-rotational with respect to 0.

Proof. (1) To $[\widetilde{0]}_i|_{[0]}$ there corresponds the transposition (j, k). Therefore, if $p \in \mathcal{P}, p_j := [p]_j \cap [0]_i$ and $p_k := [p]_k \cap [0]_i$, (hence $p = p_j \Box_{jk} p_k = [p_j]_j \cap [p_k]_k$), then $([\widetilde{0]}_i|_{[0]})_i(p) = [p_j]_k \cap [p_k]_j = [\widetilde{0]}_i(p)$.

(2) and (3) By (1.2.1), $0_3([0]_i) = 0_6^2([0]_i) = [\widetilde{0}]_j \circ [\widetilde{0}]_k([0]_i)$ and to 0_3 and to $\phi := [\widetilde{0}]_j \circ [\widetilde{0}]_k|_{[0]}$ there corresponds the same permutation σ . Thus $(0_3)_i = ([\widetilde{0}]_j \circ [\widetilde{0}]_k|_{[0]})_i = (\phi)_i$ and (2) is completely proved. Now $(\phi)_i(p) = [\phi(p_j)]_k \cap [\phi(p_k)]_i = [[\widetilde{0}]_k(p_j)]_k \cap [[\widetilde{0}]_k(p_k)]_i$ and $[\widetilde{0}]_j \circ [\widetilde{0}]_k(p) = [[\widetilde{0}]_k(p_j)]_k \cap [q]_i$, where $q := [0]_j \cap [[\widetilde{0}]_k(p)]_k$. We have

$$(\phi)_i(p) = [\widetilde{0]}_j \circ [\widetilde{0]}_k(p) \Leftrightarrow q = [\widetilde{0]}_k(p_k) \Leftrightarrow [\widetilde{0]}_k(p) \in [[\widetilde{0]}_k(p_k)]_k$$

Since $p \in \mathcal{P}$ is arbitrary and $[p]_k = [p_k]_k$, we obtain the equivalence of (3). If $[0]_k \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_k)$, then \mathcal{W} is hexagonal with respect to 0 by (2.1) and we obtain $(0_3)^3 = \operatorname{id}_{[0]}$ by (1.2.2).

(4) Since $[\widetilde{0]}_{i}(\mathfrak{G}_{j}) = \mathfrak{G}_{k}$ and $[\widetilde{0]}_{i}(\mathfrak{G}_{k}) = \mathfrak{G}_{j}$, we obtain $(0_{3})_{i}(\mathfrak{G}_{j}) = \mathfrak{G}_{k}$ and by assumption $(0_{3})_{i}(\mathfrak{G}_{k}) = [\widetilde{0]}_{j} \circ [\widetilde{0]}_{k}(\mathfrak{G}_{k}) = [\widetilde{0]}_{j}(\mathfrak{G}_{k}) = \mathfrak{G}_{i}$. Therefore, $(0_{3})_{i} \in$ Aut $(\mathcal{P}, \mathfrak{G}) \Leftrightarrow (0_{3})_{i}(\mathfrak{G}_{i}) = [\widetilde{0]}_{j} \circ [\widetilde{0]}_{k}(\mathfrak{G}_{i}) = [\widetilde{0]}_{j}(\mathfrak{G}_{j}) = \mathfrak{G}_{j} \Leftrightarrow [\widetilde{0]}_{j} \in$ Aut $(\mathcal{P}, \mathfrak{G}_{j})$. (5) $[\widetilde{0]}_{k} \stackrel{(1.1)}{=} [\widetilde{0]}_{i}([0]_{j}) \stackrel{(1.1)}{=} [\widetilde{0]}_{i} \circ [\widetilde{0]}_{j} \circ [\widetilde{0]}_{i} \in$ Aut $(\mathcal{P}, \mathfrak{G})$.

3.2 Theorem. The following statements are equivalent:

- (1) $(\mathbf{R}, 0, 1)$ is satisfied,
- (2) $(0_3)_1 \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}),$
- (3) $\forall a, b \in E : \sim (a+b) + a = \sim b$,
- (4) $\forall i \in \{1, 2, 3\}$: (R, 0, i) is satisfied,
- (5) $\forall i \in \{1, 2, 3\} : (0_3)_i \in Aut(\mathcal{P}, \mathcal{G}),$
- (6) 0 is a 3-extendable point.

Proof. Let $X \in \mathcal{G}_1$ and $q' \in X$ be given. We set $E := [0]_3$ and construct:

$$p := [q']_3 \cap [0]_1, \qquad a := p_3 := [p]_2 \cap E, \qquad b := X \cap E,$$

$$q_2 := X \cap [0]_2, \qquad q := [q_2]_3 \cap [0]_1.$$

Then $[q']_2 \cap [0]_3 = a + b, q = 0 \square (\sim b), p' := [p_3]_1 \cap [q]_2 = a \square (\sim b)$ and $r := [p']_3 \cap [0]_2 = [a \square (\sim b)]_3 \cap [0]_2$ and we have: $[a + b]_1 = [[q']_2 \cap [0]_3]_1 = [r]_1 \Leftrightarrow r = (a + b) \square 0 \Leftrightarrow \sim (a + b) + a = \sim b$. Moreover, let $s := [q']_2 \cap [0]_1$. Then $q' = [p]_3 \cap [s]_2$, $(0_3)(p) = a \square 0, 0_3(s) = (a + b) \square 0$, hence $(0_3)_1(q') = [a \square 0]_1 \cap [(a + b) \square 0]_3 = [a]_1 \cap [(a + b) \square 0]_3$ and $q_2 := [q]_3 \cap [0]_2$, $(0_3)(q) = \sim b \square 0, 0_3(0) = 0$, hence $(0_3)_1(q_2) = [\sim b \square 0]_1 \cap [0]_3 = \sim b$. Therefore $(0_3)_1(X) \in g_2 \Leftrightarrow (0_3)_1(X) = [\sim b]_2 \Leftrightarrow p' = [a]_1 \cap [(a + b) \square 0]_3$, so $(R, 0, 1) \Leftrightarrow \sim (a + b) + a = \sim b$. Since $(R, 0, i) \Leftrightarrow (R, 0, j)$, we have the equivalence of statements (1), (2), (3), (4) and (5). Since 0_3 is 1-, 2- and 3-faithful, we have $(0_3)_i|_{[0]} = 0_3$, and so if (2) is assumed, then 0 is a 3-extendable point. \square

If W is 3-extendable and hexagonal with respect to 0, then it is 3-rotational with respect to 0. So by (2.2) and (3.2) we obtain:

3.3 The following statements are equivalent:

- (1) W is 3-rotational with respect to 0,
- (2) For $(E, +) := L(W; 0; i, j) : \forall a, b \in E : -(a+b) + a = -b$.
- 3.4 Under the assumption

(0) $\forall a, b \in E : \sim (a+b) + a = \sim b$,

the following three assertions are equivalent:

(1) $\forall a, b \in E : (a+b) - b = a$,

- (2) $\forall a, b \in E : -(a+b) = -b + (-a),$
- (3) $\forall a, b \in E : -a + (a + b) = b$.

Proof. (1) \Rightarrow (2) If we set $a := \sim b$, then we obtain $-b = \sim b$ from (1), and (0) resumes the form -(a + b) + a = -b. We substitute in (1) a to -b, b to -a and obtain (-b - a) + a = -b. Together with (0) this implies -(a + b) = -b + (-a). Similarly applying $-b = \sim b$, we see that (2) \Rightarrow (3) and (3) \Rightarrow (1).

From (2.3), (2.4), (2.5), (3.2) and (3.4) it follows

3.5 Let W be 3-extendable with respect to 0, then

- (1) The three assertions $[0]_i \in Aut(\mathcal{P}, \mathfrak{G}_i)$ for $i \in \{1, 2, 3\}$ are equivalent,
- (2) If there is an $i \in \{1, 2, 3\}$ such that $[0]_i \in Aut(\mathcal{P}, \mathcal{G})$, then W is 3-rotational with respect to 0 (cf. (1) and (3.1)).

Next we study the turn $\tilde{0} = (0_6)^3$.

3.6 The following statements are equivalent:

- (1) $\exists i \in \{1, 2, 3\}$: $(\tilde{0})_i \in Aut(\mathcal{P}, \mathcal{G}),$
- (2) $\forall i \in \{1, 2, 3\} : (\widetilde{0})_i \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}),$
- (3) $\forall x \in \mathcal{P} : [\widetilde{0}]_2 \circ [\widetilde{0}]_1 \circ [\widetilde{0}]_3([x]_1) \cap [\widetilde{0}]_3 \circ [\widetilde{0}]_2 \circ [\widetilde{0}]_1([x]_2) \cap [\widetilde{0}]_1 \circ [\widetilde{0}]_3 \circ [\widetilde{0}]_2([x]_3) \neq \phi,$
- (4) For $(E, +) := L(W; 0; i, j), v \in Aut(E, +).$

Proof. The permutation corresponding to $\tilde{0}$ in *S*₃ is the identity. Therefore $(\tilde{0})_1 \in$ Aut($\mathcal{P}, \mathfrak{G}$) $\Leftrightarrow (\tilde{0})_1 \in$ Aut($\mathcal{P}, \mathfrak{G}_1$) $\Leftrightarrow \forall x \in \mathcal{P}$ if $x_2 := [x]_2 \cap [0]_1, x_3 := [x]_3 \cap [0]_1, y := [x]_1 \cap [0]_3, y_2 := [y]_2 \cap [0]_1$, then $[\tilde{0}(x_2)]_2 \cap [\tilde{0}(x_3)]_3 := x' \in [[\tilde{0}(y_2)]_2 \cap [0]_3]_1$. This last statement is equivalent to (3). Consequently (1), (2) and (3) are equivalent. (3) \Leftrightarrow (4) Let $x \in \mathcal{P}, a := [[x]_3 \cap [0]_1]_2 \cap [0]_3, b := [x]_1 \cap [0]_3$ and $c := [x]_2 \cap [0]_3$. Then $c = a + b, -a = [[x]_3 \cap [0]_2]_1 \cap [0]_3, -b = [[[b]_2 \cap [0]_1]_3 \cap [0]_2]_1 \cap [0]_3, -c = [[[x]_2 \cap [0]_1]_3 \cap [0]_2]_1 \cap [0]_3, and -c = -a + (-b) \Leftrightarrow [-c]_2 \cap [-b]_1 \cap [[-a]_2 \cap [0]_1]_3 \neq \phi$. But $[\tilde{0}]_2 \circ [\tilde{0}]_1 \circ [\tilde{0}]_3 ([x]_1) = [\tilde{0}]_2 \circ [\tilde{0}]_1 ([b]_2) = [-b]_1, [\tilde{0}]_3 \circ [\tilde{0}]_2 ([x]_3) = [\tilde{0}]_1 \circ [\tilde{0}]_3 ([-a]_1) = [\tilde{0}]_1 ([-a]_2) \cap [0]_1]_3$. This shows the equivalence of (3) and (4). □

Remarks. 1. The statement (3) of (3.6) expresses that the bend-configuration BE(0; id) of [5, Section 6] closes.

2. From (2.8) and (3.6) it follows that the point 0 is 2-extendable if and only if for (E, +) := L(W; 0; 1, 2) the map v is an automorphism of (E, +). If 0 is even

2-rotational then by (2.2), $v^2 = id$, and 0 is a characteristic 2 point if and only if v = id.

3. If a point $p \in \mathcal{P}$ is 2-rotational then by (2.8), $(\gamma_p)^3$ is uniquely extendable to an automorphism of \mathcal{W} which we denote by \tilde{p} and which we call *reflection in the point p*; we have then $\tilde{p}' = id(\in S_3)$, $p \in Fix(\tilde{p})$, $\tilde{p}^2 = id$, and $\tilde{p} = id \Leftrightarrow p$ is a characteristic 2 point.

4. There are webs W with 2-rotational points p such that $\tilde{p} \neq id$ and $|Fix(\tilde{p})| \geq 2$.

Now we consider the map $0_6 = (132)_0 \in \Sigma_0$ and ask when $(0_6)_3 \in Aut(\mathcal{P}, \mathcal{G})$, i.e. $(0_6)_3(\mathcal{G}_3) = \mathcal{G}_2$ is true. For the answer we need the following (3.7):

3.7 If (T, 0; i,j) is valid, then so is (T, 0; k, i).

Proof. Let $x \in [0]_k$, $y \in [0]_i$ and $q := [0]_j \cap [[x]_j \cap [y]_k]_i$. Then $[y]_k \cap [q]_i = [x]_j \cap [y]_k$ shows $[0]_k \cap [[y]_k \cap [q]_i]_j = [0]_k \cap [[x]_j \cap [y]_k]_j = [0]_k \cap [x]_j = \{x\}$. By $(T, 0; i, j), y \in [0]_i$ and $q \in [0]_j$ imply $\phi \neq [0]_k \cap [[y]_k \cap [q]_i]_j \cap [[q]_k \cap [y]_j]_i = \{x\} \cap [[q]_k \cap [y]_j]_i$, i.e. $x \in [[q]_k \cap [y]_j]_i$ and so $q \in [[x]_i \cap [y]_j]_k$. Hence the statement (T, 0; k, i) is valid.

3.8 Theorem. The following statements are equivalent:

(1) $\exists i \in \{1, 2, 3\}$: $(0_6)_i \in Aut(\mathcal{P}, \mathcal{G}),$

- (2) $\forall i \in \{1, 2, 3\} : (0_6)_i \in Aut(\mathcal{P}, \mathcal{G}),$
- (3) (T, 0; 1, 2) is satisfied,
- (4) $\forall a, b \in E : \sim b + (a + b) = a$, *i.e.*, b + (a b) = a, *i.e.* (E, +) is a crossed-inverse loop ([1, Theorem 5.4]).

Proof. Let $X \in \mathcal{G}_3 \setminus \{E\}$, $x := X \cap [0]_1$, $x_2 := X \cap [0]_2$. Then $0_6(x_2) = x$ and so if $(0_6)_3(\mathcal{G}_3) = \mathcal{G}_2$, then $(0_6)_3(X) = [x]_2$. Now let $p \in X$, $y := [p]_1 \cap [0]_2$, $p_1 := [p]_1 \cap [0]_3$, $p_2 := [p]_2 \cap [0]_3$, $q := [x]_2 \cap [y]_3$. Then firstly $x \in [0]_1$, $y \in [0]_2$, $p = [x]_3 \cap [y]_1$, $q = [y]_3 \cap [x]_2$ and $[0]_3 \cap [p]_2 \cap [q]_1 \neq \phi$ if (T, 0; 1, 2) holds. Secondly $0_6(p_1) = y$, $0_6(p_2) = [p_2]_1 \cap [0]_2$, hence $(0_6)_3(p) = [0_6(p_1)]_3 \cap [0_6(p_2)]_1 = [y]_3 \cap [p_2]_1$. Consequently, $(0_6)_3(X) = [x]_2 \Leftrightarrow [x]_2 \cap [y]_3 \cap [p_2]_1 = \{q\} \cap [p_2]_1 \neq \phi$ $\phi \Leftrightarrow [0]_3 \cap [p]_2 \cap [q]_1 \neq \phi$. Hence $(0_6)_3(\mathcal{G}_3) = \mathcal{G}_2 \Leftrightarrow (T, 0; 1, 2)$. Now we set $a := [x]_2 \cap [0]_3$, $b := p_1$. Then $a + b = p_2$, $y = b \Box 0$, $[b \Box 0]_3 = [0 \Box (\sim b)]_3$ and so $\sim b + (a + b) = a \Leftrightarrow [x]_2 \cap [y]_3 \cap [p_2]_1 \neq \phi$. With (3.7) all the statements are equivalent. \Box

Finally in our web we consider the orbits $[p]^i := \{\widetilde{X}(p) \mid X \in \mathcal{G}_i\}$ of a point $p \in \mathcal{P}$ with respect to the generators of \mathcal{G}_i , $i \in \{1, 2, 3\}$ and see by the definition that each orbit $[p]^i$ is an *i*-chain, hence $[p]^i \in \mathcal{C}_i$ and obtain the following theorem which is the case when i=3:

3.9 Theorem. Let $W = (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3)$ be a web and let $E \in \mathcal{G}_3$ such that $\widetilde{E} \in Aut(W)$. Then

(1) If there is a chain $D \in \mathbb{C}_3$ such that $\forall X \in \mathfrak{G}_3 : \widetilde{D}(X) = X$ (i.e. $\mathfrak{G}_3 \subset D^{\perp} \cup \{D\}$), then $\widetilde{D} \in \operatorname{Aut}(W)$, $\widetilde{E} \circ \widetilde{D} = \widetilde{D} \circ \widetilde{E} \in \operatorname{Aut}(W)^+$, each point $p \in E \cap D$ is 2-rotational and $\widetilde{p} = \widetilde{E} \circ \widetilde{D}$ is the reflection in p and for each $d \in D$, $D = [d]^3$, (2) If $p \in E$ is a 2-rotational point and \widetilde{p} the reflection in p, then $\widetilde{p} \circ \widetilde{E} = \widetilde{E} \circ \widetilde{p} \in \operatorname{Aut}(W)$, $D := \operatorname{Fix}(\widetilde{p} \circ \widetilde{E}) \in \mathbb{C}_3$, $\widetilde{D} = \widetilde{p} \circ \widetilde{E}$, $\mathfrak{G}_3 \subset D^{\perp} \cup \{D\}$ and $D = [p]^3$.

Proof. (1) By (1.1.2), $\widetilde{D} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}_1 \cup \mathfrak{g}_2)^-$ and by $\widetilde{D}(X) = X$ for $X \in \mathfrak{g}_3$, hence $\widetilde{D} \in \operatorname{Aut}(W)$ and by (1.1.1) $\widetilde{X} = \widetilde{D}(\widetilde{X}) = \widetilde{D} \circ \widetilde{X} \circ \widetilde{D}$. Since \widetilde{X} and \widetilde{D} are involutions, $\widetilde{X} \circ \widetilde{D} = \widetilde{D} \circ \widetilde{X}$, in particular $\widetilde{E} \circ \widetilde{D} = \widetilde{D} \circ \widetilde{E}$. Since $\widetilde{E}, \widetilde{D} \in$ Aut(\mathcal{W}) \cap Aut($\mathcal{P}, \mathfrak{g}_1 \cup \mathfrak{g}_2$)⁻, we obtain $\widetilde{E} \circ \widetilde{D} = \widetilde{D} \circ \widetilde{E} \in$ Aut(\mathcal{W})⁺. Now let $p \in E \cap D, x \in E \setminus \{p\}, \gamma = (132), x' := (\gamma_p)^3(x), q := (\gamma_p)(x) = [x]_1 \cap [p]_2,$ $q' := (\gamma_p)^2(x) = [p]_1 \cap [q]_3 = [p]_1 \cap [x']_2$. Then by $p \in D$, $\widetilde{D}([p]_2) = [p]_1$ and $\widetilde{D}([q]_3) = [q]_3$ since $[q]_3 \in \mathfrak{G}_3$. Consequently $\widetilde{D}(q) = \widetilde{D}([p]_2 \cap [q]_3) =$ $\widetilde{D}([p]_2) \cap \widetilde{D}([q]_3) = [p]_1 \cap [q]_3 = q' \text{ and so } \widetilde{D}(x) = \widetilde{D}([p]_3 \cap [q]_1) = [p]_3 \cap$ $\widetilde{D}([q]_1) = [p]_3 \cap [\widetilde{D}(q)]_2 = [p]_3 \cap [q']_2 = x'$. Hence $\widetilde{E} \circ \widetilde{D}|_E = \widetilde{E} \circ \widetilde{D}|_{[p]_3} = (\gamma_p)^3|_E$ and so by the unique extendability, $\widetilde{E} \circ \widetilde{D} = \widetilde{p}$. Now for $d \in D$ and $X \in \mathcal{G}_3$, let $\widetilde{X}(d) \in [d]^3$, then $\widetilde{D} \circ \widetilde{X}(d) = \widetilde{X} \circ \widetilde{D}(d) = \widetilde{X}(d)$, hence $\widetilde{X}(d) \in \operatorname{Fix}(\widetilde{D}) = D$ by (1.1.1), i.e. $[d]^3 \subset D$. So we have $D = [d]^3$, since D and $[d]^3$ are both in C_3 . (2) By hypothesis, \tilde{p} and \tilde{E} are involutory automorphisms of W and $p \in E$, hence $\widetilde{E} \circ \widetilde{p} \circ \widetilde{E} = \widetilde{E(p)} = \widetilde{p}$ and so $\widetilde{E} \circ \widetilde{p} = \widetilde{p} \circ \widetilde{E} \in Aut(W)$ with $(\widetilde{E} \circ \widetilde{p})' = (1, 2)$, i.e. $\widetilde{E} \circ \widetilde{p} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g}_1 \cup \mathfrak{g}_2)^-$. By (1.1.4), $D := \operatorname{Fix}(\widetilde{E} \circ \widetilde{p}) \in \mathfrak{C}_3$ and $\widetilde{D} = \widetilde{E} \circ \widetilde{p}$. Finally let $X \in \mathcal{G}_3$. If X = E, then by $p \in E$, $\widetilde{D}(E) = \widetilde{E} \circ \widetilde{p}(E) = \widetilde{E}(E) = E$. Therefore let $X \neq E$ and let $q := [p]_2 \cap X$, $q' = [p]_1 \cap X$. Then $q' = \gamma_p(q)$, $\widetilde{p}(q) = (\gamma_p)^3(q)$ and $\widetilde{E}(q') = \widetilde{p}(q)$. Thus $\widetilde{E} \circ \widetilde{p}(X) = \widetilde{E} \circ \widetilde{p}([q]_3) = [\widetilde{E} \circ \widetilde{p}(q)]_3 = [q']_3 = X$, i.e. $g_3 \subset D^{\perp} \cup \{D\}$ and by (1), $D = [p]^3$.

Together with the results (4.2.3) and (6.4) of [5] we can state:

3.10 For a web $W = (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3)$ let \mathcal{P}_2 be the set of all 2-extendable points. Then for W the following statements are equivalent:

- (1) $\mathcal{P}_2 \neq \phi$ and $\exists i \in \{1, 2, 3\}$: $\widetilde{g}_i \subset \operatorname{Aut}(W)$ (In this case, if $0 \in \mathcal{P}_2$ and $j, k \in \{1, 2, 3\} \setminus \{i\}$ with $j \neq k$, then $D := [0]^i \in C_i$ with $D \subset \mathcal{P}_2$ and $g_i \subset D^{\perp} \cup \{D\}$ and (E, +) := L(W; 0; j, k) is a Bruck-loop),
- (2) $\exists 0 \in \mathcal{P} \text{ and } j, k \in \{1, 2, 3\}, j \neq k \text{ such that } (E, +) = L(W; 0; j, k) \text{ is a Bruck-loop (In this case } 0 \in \mathcal{P}_2 \text{ and } \widetilde{\mathcal{G}}_i \subset Aut(\mathcal{W})),$
- (3) $\exists i \in \{1, 2, 3\} : \widetilde{\mathfrak{g}}_i \subset \operatorname{Aut}(\mathcal{W}) \text{ and } \exists D \in \mathfrak{C}_i \text{ with } \mathfrak{g}_i \subset D^{\perp} \cup \{D\}.$

Remark. If for a web $\mathcal{W} = (\mathcal{P}, \mathfrak{G}_1, \mathfrak{G}_2, \mathfrak{G}_3)$ and an $i \in \{1, 2, 3\}, \ \widetilde{\mathfrak{G}}_i \subset \operatorname{Aut}(\mathcal{W})$, then $\forall p, q \in \mathcal{P}_2, [p]^i \subset \mathcal{P}_2$ and either $[p]^i \cap [q]^i = \phi$ or $[p]^j = [q]^j$.

Acknowledgement. The authors are grateful for the referee who informed us that a few similar investigations have been done in [1].

References

- [1] V.D. BELOUSOV, Algebraic Nets and Quasigroups. Acad. Sciences of M.S.S.R. (1971).
- [2] R.H. BRUCK, A Survey of Binary Systems. Springer-Verlag, 1958.
- [3] W. BLASCHKE and G. BOL, Geometrie der Gewebe. Springer-Verlag, 1938.
- [4] M. FUNK and P. T. NAGY, On collineation groups generated by Bol reflections J. Geometry 48 (1993), 63–78.
- [5] E. GABRIELI, B. IM, and H. KARZEL, Webs related to K-loops and reflection structures. Abh. Math. Sem. Uni. Hamb. 69 (1999), 89–102.

- [6] H. KARZEL and H. J. KROLL, Perspectivities in circle geometries. Geometry von Staudt's point of view. Ed. by P. PLAUMANN and K. STRAMBACH. Dordrecht-Boston-London, 1981, p. 51–99.
- [7] _____, Geschichte der Geometrie seit Hilbert. Wiss. Buchgesellschaft, 1988.
- [8] H. KIECHLE, Theory of K-loops. Habilitationsschrift, Univ. Hamburg, 1998.
- [9] G. KIST, Theorie der verallgemeinerten kinematischen Räume. Beiträge zur Geometrie und Algebra 14, TUM-M 8611 (1986), 1–142.
- [10] A. KREUZER, Inner mappings of Bruck loops. *Math. Proc. Camb.Phil.Soc.* **123** (1998), 53–57.
- [11] K. REIDEMEISTER, Topolgische Fragen der Differentialgeometric. V. Gewebe und Gruppen. Math. Z. 29 (1929), 427–435.
- [12] G. THOMSEN, Topologische Fragen der Differentialgeometric. XII. Schnittpunktsätze in ebenen Geweben Abh. Math. Sem. Univ. Hamburg 7 (1930), 99–106.

Received: 19 December 2000

Communicated by: A. Kreuzer

Authors' addresses: Bokhee Im, Department of Mathematics, Chonnam National University, Kwangju 500-757, Republic of Korea

E-mail: bim@chonnam.ac.kr.

Helmut Karzel, Mathematisches Institut, Technische Universität München, D-80290 München, Germany

E-mail: karzel@mathematik.tu-muenchen.de.

Hayi-Joo Ko, Department of Mathematics, Chonnam National University, Kwangju 500-757, Republic of Korea

E-mail: hjko@chonnam.ac.kr.