Webs with Rotation and Reflection Properties and their Relations with Certain Loops

By B. Im, H. Karzel, and H.-J. Ko

Abstract

In a web one can define in a natural way reflections in generators and a kind of rotations in points. The structure of the webs and the corresponding loops in which some of these maps are automorphisms will be studied in a synthetic way.

1 Introduction and Notations

Let $\mathcal{W}:=\left(\mathcal{P}, \mathscr{q}_{1}, \mathscr{q}_{2}, \mathscr{q}_{3}\right)$ be a web, i.e. a nonempty set \mathcal{P} and three subsets g_{i} of the power set $\mathfrak{P}(\mathcal{P})$ of \mathscr{P} such that
W1 $\quad \forall x \in \mathscr{P}, \forall i \in\{1,2,3\}, \exists_{1}[x]_{i} \in \mathcal{g}_{i}: x \in[x]_{i}$,
W2 $\quad \forall i, j \in\{1,2,3\}, i \neq j, \forall A \in g_{i}, \forall B \in g_{j}:|A \cap B|=1$,
and let $\mathcal{g}:=\mathscr{g}_{1} \cup \mathscr{g}_{2} \cup \mathcal{g}_{3}$. In this paper we let $\left(\begin{array}{ll}1 & 2 \\ i & j \\ i\end{array}\right) \in S_{3}$, i.e. $\{1,2,3\}=\{i, j, k\}$, unless specified otherwise, and for $x, y \in \mathscr{P}$ let

$$
x \square_{i j} y:=[x]_{i} \cap[y]_{j} \quad \text { and } \quad x \square y:=x \square_{12} y .
$$

Each automorphism $\alpha \in \operatorname{Aut}(\mathcal{W}):=\operatorname{Aut}(\mathcal{P}, \mathcal{\beta})$, respectively $\beta \in \operatorname{Aut}\left(\mathcal{P}, g_{i} \cup\right.$ $\left.g_{j}\right)$ induces a permutation $\alpha^{\prime} \in S_{3}$, respectively $\beta^{\prime} \in S_{2}$ defined by $\alpha\left([x]_{l}\right)=$ $[\alpha(x)]_{\alpha^{\prime}(l)}, l \in\{1,2,3\}$, respectively $\beta\left([x]_{l}\right)=[\beta(x)]_{\beta^{\prime}(l)}, l \in\{i, j\}$. We set

$$
\begin{aligned}
& \operatorname{Aut}\left(\mathscr{P}, \mathscr{g}_{i} \cup \mathscr{g}_{j}\right)^{+}:=\left\{\beta \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{g}_{i} \cup \mathscr{g}_{j}\right) \mid \beta^{\prime}=\mathrm{id}\right\} \\
& \operatorname{Aut}\left(\mathcal{P}, \mathscr{g}_{i} \cup \mathscr{g}_{j}\right)^{-}:=\left\{\beta \in \operatorname{Aut}\left(\mathscr{P}, \mathscr{g}_{i} \cup \mathscr{g}_{j}\right) \mid \beta^{\prime}=(i, j)\right\}
\end{aligned}
$$

and

$$
\operatorname{Aut}(\mathcal{W})^{+}:=\left\{\alpha \in \operatorname{Aut}(\mathcal{W}) \mid \alpha^{\prime}=\mathrm{id}\right\}
$$

By W1 and W2 each automorphism $\alpha \in \operatorname{Aut}(\mathcal{W})$ is completely determined by its action on two generators $A \in \mathcal{G}_{i}, B \in \mathcal{G}_{j}$ or on one generator and the corresponding permutation $\boldsymbol{\alpha}^{\prime} \in S_{3}$.

A subset $C \subset \mathcal{P}$ is called an i-chain if for each $Y \in \mathcal{g}_{j} \cup \mathscr{g}_{k}$ the intersection $Y \cap C$ consists of a single point. Let $\mathcal{C}_{i}:=\left\{C \in \mathfrak{P}(\mathscr{P})\left|\forall X \in \mathcal{G} \backslash g_{i}:|C \cap X|=1\right\}\right.$

2000 Mathematics Subject Classification. 20N05, 53A60.
Key words and phrases. web, loop, rotation, reflection.
This work was supported by Korea Research Foundation Grant(KRF-1999-015-DP0009).
be the set of all i-chains, then $g_{i} \subset \mathcal{C}_{i}$. To each chain $C \in \mathcal{C}_{i}$, in particular to each generator there corresponds a reflection

$$
\widetilde{C}: \mathscr{P} \rightarrow \mathcal{P} ; x \mapsto\left[[x]_{j} \cap C\right]_{k} \cap\left[[x]_{k} \cap C\right]_{j}
$$

i.e. an involution of the set \mathscr{P} fixing exactly the points of C and interchanging the generators of $\mathscr{\xi}_{j}$ and \mathscr{q}_{k}, i.e. $\widetilde{C} \in \operatorname{Aut}\left(\mathscr{P}, \mathscr{q}_{j} \cup \mathscr{q}_{k}\right)$. \widetilde{C} will be called a chain reflection (of type i). Then by $[5,(2.3,2.4,2.5)]$ we have:
1.1 $\forall C, D \in \mathcal{C}_{i}, \forall 0 \in \mathcal{P}$:
(1) $\widetilde{C} \circ \widetilde{C}=\mathrm{id}$, Fix $\widetilde{C}=C, \widetilde{C}(D) \in \mathcal{C}_{i}$, and $\widetilde{C}(D)=\widetilde{C} \circ \widetilde{D} \circ \widetilde{C}$,
(2) $\forall X \in g_{j}: \widetilde{C}(X) \in \mathcal{g}_{k}, \forall Y \in g_{k}: \widetilde{C}(Y) \in g_{j}$, hence $\widetilde{C} \in \operatorname{Aut}\left(\mathcal{P}, g_{j} \cup \mathcal{g}_{k}\right)^{-}$,
(3) $\widetilde{00]}_{i}\left([0]_{j}\right)=[0]_{k}$,
(4) $\forall \alpha \in \operatorname{Aut}\left(\mathcal{P}, g_{j} \cup g_{k}\right)^{-}$with $\alpha^{2}=\mathrm{id}: \operatorname{Fix} \alpha \in \mathcal{C}$ and $\widetilde{\operatorname{Fix} \alpha}=\alpha$.

Two chains $A, B \in \mathcal{C}_{i}$ are called orthogonal and denoted by $A \perp B$ if $A \neq B$ and $\widetilde{A}(B)=B$. We set $A^{\perp}:=\left\{X \in \mathcal{C}_{i} \mid X \perp A\right\}$. By (1.1.3), $\left.\widetilde{[0]}\right]_{j} \circ \widetilde{[0]_{i}} \circ$ $\left[\widetilde{0]_{k}}\left([0]_{i}\right)=[0]_{i}\right.$. If $\left[\left.\widetilde{0]_{j}} \circ \widetilde{[0]_{i}} \circ \widetilde{[0]_{k}}\right|_{[0]_{i}}=\left.\mathrm{id}\right|_{[0]_{i}}\right.$, then \mathcal{W} is called hexagonal with respect to 0 .

Besides the reflections in chains or generators one can define in a web w in a natural way a kind of local maps called rotations: If γ is one of the cyclic permutations (132) or (123) $\in A_{3}$ and if $0 \in \mathcal{P}$ is a point of the web \mathcal{W}, let γ_{0} be the permutation of the set $[0]:=[0]_{1} \cup[0]_{2} \cup[0]_{3}$ defined by

$$
\gamma_{0}(x)=[0]_{\gamma(i)} \cap[x]_{\gamma^{-1}(i)} \text { for } x \in[0]_{i}, i \in\{1,2,3\} .
$$

1.2 Let $\gamma:=(132)$ or $(123) \in A_{3}$. Then for each $0 \in \mathcal{P}$, the group $<\gamma_{0}>$ generated by the rotation γ_{0} is a subgroup of the permutation group $\operatorname{Sym}([0])$ and we have:
(1) $\operatorname{Fix}\left(\gamma_{0}\right)=\{0\}$ and $\left(\gamma_{0}\right)^{2}(x)=\left[\widetilde{0]_{\gamma(i)}}(x)\right.$ for $x \in[0]_{i}, i \in\{1,2,3\}$,

$$
\left((132)_{0}\right)^{2}(x)= \begin{cases}\widetilde{[0]_{3}}(x)=\widetilde{[0]_{3}} \circ\left[\widetilde{00}_{1}(x)=\widetilde{[0]_{2}} \circ \widetilde{[0]_{3}}(x)\right. & \text { if } x \in[0]_{1} \\ \widetilde{[0]_{1}}(x)=\left[\widetilde { [0] _ { 1 } } \circ \left[\widetilde{0]_{2}}(x)=\widetilde{0]_{3}} \circ\left[\widetilde{0]_{1}}(x)\right.\right.\right. & \text { if } x \in[0]_{2} \\ \widetilde{[0]_{2}}(x)=\left[\widetilde { 0] _ { 2 } } \circ \left[\widetilde{0]_{3}}(x)=\widetilde{[0]_{1}} \circ \widetilde{[0]_{2}}(x)\right.\right. & \text { if } x \in[0]_{3}\end{cases}
$$

(2) $\left(\gamma_{0}\right)^{6}=\mathrm{id} \Leftrightarrow W$ is hexagonal with respect to 0 ,

$$
\left(\gamma_{0}\right)^{6}=\text { id } \Leftrightarrow\left(\gamma_{0}\right)^{2}= \begin{cases}\left.\widetilde{[0]_{1}} \circ \widetilde{[0]}_{2}\right|_{[0]} & \text { if } \gamma=(132) \tag{3}\\ {\left[\left.\widetilde{0]_{2}} \circ[\widetilde{0}]_{1}\right|_{[0]}\right.} & \text { if } \gamma=(123)\end{cases}
$$

Note that $\left(\gamma_{0}\right)^{-1}=\left(\gamma^{-1}\right)_{0}$ and that γ_{0} induces on the set $\left\{[0]_{1},[0]_{2},[0]_{3}\right\}$ the permutation γ, while $\left(\gamma_{0}\right)^{2}$ induces γ^{-1}, and $\left(\gamma_{0}\right)^{3}$ and $\left(\gamma_{0}\right)^{6}$ the identity. If there is an automorphism ω of the web \mathcal{W} such that the restriction $\left.\omega\right|_{[0]}$ coincides with one of the maps $\left(\gamma_{0}\right)^{6},\left(\gamma_{0}\right)^{3},\left(\gamma_{0}\right)^{2}$ or γ_{0}, then ω is unique by (2.8) and is called the $a u$ tomorphic extension and we say that the point 0 is n-extendable for $n \in\{1,2,3,6\}$ if $\left.\omega\right|_{[0]}=\left(\gamma_{0}\right)^{\frac{6}{n}}$. Clearly if $\left.\omega\right|_{[0]}=\gamma_{0}$, then $\left.\omega^{2}\right|_{[0]}=\left(\gamma_{0}\right)^{2}$ and $\left.\omega^{3}\right|_{[0]}=\left(\gamma_{0}\right)^{3}$, i.e. if $0 \in \mathscr{P}$ is 6 -extendable, then also $1-, 2$ - and 3 -extendable, and if 0 is 2 - and 3 -extendable, then also 6 -extendable. If for $n \in\{1,2,3,6\}$ a point $0 \in \mathscr{P}$ is n extendable and if moreover $\left(\gamma_{0}\right)^{6}=$ id, i.e. the web \mathcal{W} is hexagonal with respect
to 0 by the above (1.2), then 0 is called n-rotational. Moreover if each point of a web \mathcal{W} is n-extendable, respectively n-rotational, then \mathcal{W} is called a n-extendable, respectively n-rotational web.

From the definition it follows that γ_{0} and $\left(\gamma_{0}\right)^{2}$ are distinct from the identity on [0], but for $\left(\gamma_{0}\right)^{3}$ this is not provable. We call 0 a characteristic 2 point if $\left(\gamma_{0}\right)^{3}=\mathrm{id}$. Clearly if 0 is a characteristic 2 point, then W is hexagonal with respect to 0 and 0 is trivially 2 -rotational and if moreover 0 is 3 -rotational, then also 6 -rotational.

Remarks. 1. We have $\left(\gamma_{0}\right)^{-1}=\left(\gamma_{0}\right)^{2} \Leftrightarrow\left(\gamma_{0}\right)^{3}=$ id $\Leftrightarrow \gamma_{0}$ has the order 3 $\Rightarrow \boldsymbol{W}$ is hexagonal with respect to 0 in the following way: Let $(a, b, c, d) \in \mathscr{P}^{4}$. If $[a]_{i}=[b]_{i},[b]_{j}=[c]_{j},[c]_{i}=[d]_{i}$ and $[d]_{j}=[a]_{j}$, then (a, b, c, d) is called a parallelogram, if moreover $[a]_{k}=[c]_{k}$, respectively $[a]_{k}=[c]_{k}$ and $[b]_{k}=$ $[d]_{k}$, then (a, b, c, d) is called a parallelogram with a diagonal, respectively a Fanoparallelogram. Hexagonal with respect to 0 means: Each parallelogram (a, b, c, d) with $0 \in\{a, b, c, d\}$ and with a diagonal is a Fano-parallelogram.
2. If \boldsymbol{w} is hexagonal with respect to 0 , then γ_{0} has either the order 6 or 3 . If γ_{0} has order 6 , then $\left(\gamma_{0}\right)^{3}$ is involutory and we call $\left(\gamma_{0}\right)^{3}$ a quasi-reflection with respect to 0 .

The map γ_{0} belongs to the group $\Sigma_{0}:=\left\{\sigma \in \operatorname{Sym}[0] \mid \exists \sigma^{\prime} \in S_{3}: \forall i \in\right.$ $\left.\{1,2,3\}: \sigma\left([0]_{i}\right)=[0]_{\sigma^{\prime}(i)}\right\}$. For all $\sigma \in \Sigma_{0}$ and $i, j \in\{1,2,3\}$ we associate in a natural way permutations $\sigma_{i, j}$ and σ_{i} of the whole point set \mathcal{P} (cf. (2.6)).

Remark. In [1, Chap.V] Belousov considers the maps $\left(\gamma_{0}\right)_{1}$ and $\left(\left(\gamma_{0}\right)^{3}\right)_{1}$, and calls $\left(\gamma_{0}\right)_{1}$ rotation if $\left(\gamma_{0}\right)_{1} \in \operatorname{Aut}(\mathcal{W})$ and $\left(\left(\gamma_{0}\right)^{3}\right)_{1}$ central symmetry if $\left(\left(\gamma_{0}\right)^{3}\right)_{1} \in$ $\operatorname{Aut}(\mathcal{W})$.

We recall, fixing a point $0 \in \mathcal{P}$, the set $E:=[0]_{k}$ can be turned via a loopderivation $L(\mathcal{W} ; 0 ; i, j)$ into a loop $(E,+)$, where 0 is the neutral element of $(E,+)$. The binary operation " + " of $L(\mathcal{W} ; 0 ; i, j)$ is given by (cf. [5])

$$
+:\left\{\begin{array}{l}
E \times E \rightarrow E \\
(x, y) \rightarrow x+y:=\left[\left[[0]_{i} \cap[x]_{j}\right]_{k} \cap[y]_{i}\right]_{j} \cap E .
\end{array}\right.
$$

A bijection $\square_{i j}: E \times E \rightarrow E ;(x, y) \rightarrow x \square_{i j} y$ is a coordinatization of \mathbf{W}.
For a loop $\left(E,+\right.$) we define: $\forall a \in E$, let $a^{+}: E \rightarrow E ; x \mapsto a+x,-a:=$ $\left(a^{+}\right)^{-1}(0)$, and $\sim a$ the solution of $x+a=0$, i.e. $-a$ is the right inverse of a and $\sim a$ the left inverse. Instead of $a+(-b)$ we write $a-b$. Also $\forall a, b \in E$, let

$$
\delta_{a, b}:=\left((a+b)^{+}\right)^{-1} \circ a^{+} \circ b^{+} \quad \text { and } \quad v: E \rightarrow E ; x \mapsto-x .
$$

A loop $(E,+)$ is called a Bol-loop if for all $a, b \in E, a^{+} \circ b^{+} \circ a^{+}=(a+(b+$ $a))^{+}$. And a Bol-loop is called a Bruck-loop if $v \in \operatorname{Aut}(E,+)$ and Moufang-loop if ν is an antiautomorphism (cf. [8] p.4,5). Between a web \mathcal{W} and a loop derivation $(E,+):=L(\mathbb{W} ; 0 ; i, j)$ we have by (2.5) the connection: $\widetilde{[0]} j \in \operatorname{Aut}(\mathcal{W}) \Leftrightarrow v$ is an antiautomorphism of $(E,+)$.

We will need the following configurational statements: By the local Thomsen condition ($T, 0 ; i, j$) we understand:
$(\mathbf{T}, \mathbf{0} ; \mathbf{i}, \mathbf{j}) \quad \forall x \in[0]_{i}, \forall y \in[0]_{j}:[0]_{k} \cap\left[[x]_{k} \cap[y]_{i}\right]_{j} \cap\left[[y]_{k} \cap[x]_{j}\right]_{i} \neq \phi$, and by the local Reidemeister condition ($R, 0, i$)
$(\mathbf{R}, \mathbf{0}, \mathbf{i})$ Let $p, q \in[0]_{i}, p_{k}:=[0]_{k} \cap[p]_{j}, q_{j}:=[0]_{j} \cap[q]_{k}, p^{\prime}:=\left[p_{k}\right]_{i} \cap[q]_{j}$ and $q^{\prime}:=\left[q_{j}\right]_{i} \cap[p]_{k}$, then $\left[\left[p^{\prime}\right]_{k} \cap[0]_{j}\right]_{i}=\left[\left[q^{\prime}\right]_{j} \cap[0]_{k}\right]_{i}$, where $\{i, j, k\}=\{1,2,3]$.
($T, 0 ; i, j$), respectively ($R, 0, i$) is the specialization of the Thomsen-TH, respectively Reidemeister-RE condition (cf. [7, p. 80, 81], [11], [12]).

We will show in Theorem (3.2) that a point 0 of \mathcal{W} is 3 -extendable if there is an $i \in\{1,2,3\}$ such that $(R, 0, i)$ is satisfied. Hence by (1.2) we obtain that 0 is 3 rotational if \mathcal{W} is hexagonal with respect to 0 and $(R, 0, i)$ is satisfied. For the loop derivation $(E,+):=L(\mathcal{W} ; 0 ; i, j)$ this is equivalent to: $\forall a, b \in E:-(a+b)+a=$ $-b$ (cf. (3.3)). Then we make the assumption that the web W contains 2 -extendable, respectively 2 -rotational points. By (2.7), (3.6), the remarks on (3.6) and the results of [5 , section 6] we have:
1.3 Theorem. For a point 0 of a web w the following properties (1), (2), (3) and (4), respectively (5) and (6), respectively (7) and (8) are equivalent:
(1) 0 is a 2 -extendable point,
(2) $\operatorname{For}(E,+)=L(W ; 0 ; i, j), i, j \in\{1,2,3\}, i \neq j$ the map v is an automorphism of $(E,+)(c f .(3.6))$,
(3) The bend-configuration $B E(0$; id) closes, i.e. $\forall p \in \mathcal{P}$:
$\left[\left[\left[[p]_{1} \cap[0]_{3}\right]_{2} \cap[0]_{1}\right]_{3} \cap[0]_{2}\right]_{1} \cap\left[\left[\left[[p]_{2} \cap[0]_{1}\right]_{3} \cap[0]_{2}\right]_{1} \cap[0]_{3}\right]_{2} \cap$

$$
\left[\left[\left[[p]_{3} \cap[0]_{2}\right]_{1} \cap[0]_{3}\right]_{2} \cap[0]_{1}\right]_{3} \neq \phi
$$

(cf. [5, (6.3)]),
(4) If \mathcal{W} is coordinatized by $(E,+)=L(\mathcal{W} ; 0 ; i, j)$, then the map

$$
x \square_{i j} y \mapsto(-x) \square_{i j}(-y) \in \operatorname{Aut}(\mathcal{W}) .
$$

(5) 0 is a 2-rotational point,
(6) $\operatorname{For}(E,+)=L(\mathcal{W} ; 0 ; i, j)$, v is an involutory automorphism of $(E,+)$,
(7) 0 is a characteristic 2 point,
(8) $\operatorname{For}(E,+):=L(\mathcal{W} ; 0 ; i, j), v$ is the identity.

By Theorem (3.8) a point 0 is then 6 -extendable if the local Thomsen condition $(T, 0 ; i, j)$ is valid and on the algebraic side that means: $\forall a, b \in(E,+): b+(a-$ $b)=a$, i.e. $(E,+)$ is a crossed-inverse loop by the terminology of Bruck [2]. The similar result of (3.8) is in [1, Theorem 5.4]. Moreover we also obtain Theorem (3.9) which states the property of the orbit $[p]^{i}:=\left\{\widetilde{X}(p) \mid X \in g_{i}\right\}$ of a point $\underset{\sim}{p} \in \mathcal{P}, i \in\{1,2,3\}$, related to a 2 -rotational point, if there is an $E \in \mathcal{G}_{i}$ with $\widetilde{E} \in \operatorname{Aut}(\mathcal{W})$.

2 Local Symmetries

In our web $\boldsymbol{W}=\left(\mathcal{P}, g_{1}, g_{2}, \mathscr{g}_{3}\right)$, we consider two generators $A, B \in \mathscr{g}_{i}$ of the same type. Then by (1.1) $\widetilde{A} \in \operatorname{Aut}\left(\mathcal{P}, g_{j} \cup \mathscr{g}_{k}\right)$ if $\{j, k\}=\{1,2,3\} \backslash\{i\}$ and $\widetilde{A}(B) \in$ \mathfrak{C}_{i}, but in general $\widetilde{A}(B)$ is not contained in g_{i}. Therefore
2.1 Let $A \in g_{i}$, then
(1) $\widetilde{A} \in \operatorname{Aut}(\mathcal{P}, \mathcal{g}) \Leftrightarrow \widetilde{A} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{q}_{i}\right)$,
(2) If $\widetilde{A} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{g}_{i}\right)$, then W is hexagonal with respect to each point $x \in A$.

For the following let $0 \in \mathcal{P}$ be fixed, let $(E,+):=L(\mathcal{W} ; 0 ; 1,2)$ be the corresponding loop, and note that $\square:=\square_{12}$. Then we have:
2.2 W is hexagonal with respect to 0 if and only if $\forall a \in E:-a+a=0$.

Now we consider the map \widetilde{E}. Since $x=b \square c$, we obtain $\widetilde{E}(x)=c \square b$, $\widetilde{E}(0 \square a)=a \square 0$ and we have: $\widetilde{E} \in \operatorname{Aut}\left(\mathcal{P}, \mathcal{g}_{3}\right) \Leftrightarrow c \square b \in[a \square 0]_{3} \Leftrightarrow b=$ $\sim a+c=\sim a+(a+b)$.

For $b=-a$ we obtain $-a=\sim a$ and so:
2.3 $\widetilde{E} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{q}_{3}\right) \Leftrightarrow \forall a, b \in E: b=-a+(a+b)$, i.e. $\forall a \in E: \delta_{-a, a}=\mathrm{id}$.

Next we consider the map $\phi:=\widetilde{[0]_{1}}$. By $x=[0 \square c]_{2} \cap[0 \square a]_{3}, b=[0 \square b]_{2} \cap[0]_{3}$ we have: $\phi(x)=[0 \square c]_{3} \cap[0 \square a]_{2}=[0 \square c]_{3} \cap[a]_{2}$ and $\phi(b)=[0 \square b]_{3} \cap[0]_{2}=$ $(-b) \square 0$. Since $[b]_{1}=[x]_{1}$, we have: $\phi \in \operatorname{Aut}\left(\mathcal{P}, g_{1}\right) \Leftrightarrow \phi(x)=[0 \square c]_{3} \cap[a]_{2} \in$ $[-b \square 0]_{1}=[-b]_{1} \Leftrightarrow a=c+(-b)=(a+b)-b$. This gives us the result:
$2.4\left[\widetilde{0]_{1}} \in \operatorname{Aut}\left(\mathscr{P}, g_{1}\right) \Leftrightarrow \forall a, b \in E:(a+b)-b=a\right.$.
Finally we study the map $\psi:=[\widetilde{0}]_{2}$. Here we have $x=[-a \square 0]_{3} \cap[b \square 0]_{1}$, hence $\psi(x)=[-a \square 0]_{1} \cap[b \square 0]_{3}=[-a]_{1} \cap[0 \square \sim b]_{3}$ and $c=[0]_{3} \cap[c \square 0]_{1}$, hence $\psi(c)=[0]_{1} \cap[c \square 0]_{3}=[0]_{1} \cap[0 \square \sim c]_{3}$. This implies $[\sim b+(-a)]_{2}=[\psi(x)]_{2}$ and $[\sim c]_{2}=[\sim(a+b)]_{2}=[\psi(c)]_{2}=[\psi(a+b)]_{2}$. Since $[x]_{2}=[a+b]_{2}$, we have: $\psi \in \operatorname{Aut}\left(\mathcal{P}, g_{2}\right) \Leftrightarrow[\sim b+(-a)]_{2}=[\sim(a+b)]_{2} \Leftrightarrow \sim b+(-a)=\sim(a+b)$. For $b=0$ we obtain $-a=\sim a$ and so:
$2.5 \widetilde{[0]_{2}} \in \operatorname{Aut}\left(\mathcal{P}, \varnothing_{2}\right) \Leftrightarrow \forall a, b \in E:-(a+b)=-b+(-a)$, i.e. v is $a n$ antiautomorphism.

Now we study the following question: Let σ be one of the permutations of the set $\left.\left.\left\{\left(\gamma_{0}\right)^{i}, \widetilde{[0]}\right]_{i}\right|_{[0]} \mid i \in\{1,2,3\}\right\}$ of $\operatorname{Sym}[0]$, where γ_{0} was introduced in Section 1 (cf. (1.2)). When is σ extendable to an automorphism $\bar{\sigma}$ of $(\mathcal{P}, \mathcal{\rho})$? These maps belong to the class Σ_{0} of permutations of the set $[0]=[0]_{1} \cup[0]_{2} \cup[0]_{3}$ defined by $\Sigma_{0}:=\left\{\sigma \in \operatorname{Sym}[0] \mid \forall i \in\{1,2,3\}: \sigma\left([0]_{i}\right) \in\left\{[0]_{1},[0]_{2},[0]_{3}\right\}\right\}$. To each $\sigma \in \Sigma_{0}$ there correspond the following permutations $\sigma_{i j}$ and σ_{i} of the set \mathcal{P} : Let $\sigma^{\prime} \in S_{3}$ be defined by $\sigma\left([0]_{i}\right)=[0]_{\sigma^{\prime}(i)}$ and let $i^{\prime}:=\sigma^{\prime}(i)$ for $i \in\{1,2,3\}$, then

$$
\sigma_{i, j}:\left\{\begin{array}{l}
\mathscr{P}=[0]_{i} \square_{j i}[0]_{j} \rightarrow \mathcal{P}=[0]_{i^{\prime}} \square_{j^{\prime} i^{\prime}}[0]_{j^{\prime}} \\
x \square_{j i} y \rightarrow \sigma(x) \square_{j^{\prime} i^{\prime}} \sigma(y)
\end{array}\right.
$$

and

$$
\sigma_{i}:\left\{\begin{array}{l}
\mathcal{P}=[0]_{i} \square_{j k}[0]_{i} \rightarrow \mathcal{P}=[0]_{i^{\prime}} \square_{j^{\prime} k^{\prime}}[0]_{i^{\prime}} \\
x \square_{j k} y \rightarrow \sigma(x) \square_{j^{\prime} k^{\prime}} \sigma(y)
\end{array}\right.
$$

Note that σ_{3} is equal to the extension $\bar{\sigma}$ considered in the Extension Theorem (2.8) of [5]. Then $\sigma_{i j}$, respectively σ_{i} is an extension of $\left.\sigma\right|_{[0]_{i} \cup[0]_{j}}$, respectively $\left.\sigma\right|_{[0]_{i}}$ onto \mathcal{P}. And the generators $X \in \mathcal{g}_{i}, Y \in \mathcal{g}_{j}, Z \in \mathcal{g}_{k}$ have the images: If $x_{j}:=X \cap$
$[0]_{j}, x_{k}:=X \cap[0]_{k}, y_{i}:=Y \cap[0]_{i}, y_{k}:=Y \cap[0]_{k}, z_{i}:=Z \cap[0]_{i}, z_{j}:=Z \cap[0]_{j}$, then

$$
\begin{aligned}
X & =\left[x_{j}\right]_{i}=[0]_{i} \square_{j i} x_{j}, \\
Y & =\left[y_{i}\right]_{j}=y_{i} \square_{j i}[0]_{j}=[0]_{j} \square_{i j} y_{i}=y_{i} \square_{j k}[0]_{i}, \\
Z & =\left[z_{i}\right]_{k}=z_{i} \square_{k j}[0]_{i},=[0]_{i} \square_{j k} z_{i},
\end{aligned}
$$

and so

$$
\begin{aligned}
\sigma_{i j}(X) & =[0]_{i} \square_{j^{\prime} i^{\prime}} \sigma\left(x_{j}\right)=\left[\sigma\left(x_{j}\right)\right]_{i^{\prime}} \in \mathscr{G}_{i^{\prime}}, \\
\sigma_{i j}(Y) & =\sigma\left(y_{i}\right) \square_{j^{\prime} i^{\prime}}[0]_{j^{\prime}}=\left[\sigma\left(y_{i}\right)\right]_{j^{\prime}} \in \mathscr{g}_{j^{\prime}}, \\
\sigma_{i}(Y) & =\sigma_{i}\left(y_{i} \square_{j k}[0]_{i}\right)=\sigma\left(y_{i}\right) \square_{j^{\prime} k^{\prime}}[0]_{i^{\prime}}=\left[\sigma\left(y_{i}\right)\right]_{j^{\prime}} \in g_{j^{\prime}}, \\
\sigma_{i}(Z) & =[0]_{i^{\prime}} \square_{j^{\prime} k^{\prime}} \sigma\left(z_{i}\right)=\left[\sigma\left(z_{i}\right)\right]_{k^{\prime}} \in g_{k^{\prime}} .
\end{aligned}
$$

So we have proved:
2.6 For all $\sigma \in \Sigma_{0}$, the maps $\sigma_{i j}$ and σ_{k} are isomorphisms from $\left(\mathcal{P}, g_{i}, g_{j}\right)$ onto $\left(\mathscr{P}, \mathscr{g}_{i^{\prime}}, \mathscr{C}_{j^{\prime}}\right)$ with $\left.\sigma_{i j}\right|_{[0]_{i} \cup[0]_{j}}=\left.\sigma\right|_{[0]_{i} \cup[0]_{j}}, \sigma_{i j}=\sigma_{j i}$ and $\left.\sigma_{k}\right|_{[0]_{k}}=\left.\sigma\right|_{[0]_{k}}$.

Next we discuss when for $\sigma \in \Sigma_{0}$ the maps $\sigma_{i j}$ and σ_{k} are automorphisms of ($\left.\mathcal{P}, q_{\text {g }}\right)$.

Definition. Let $\sigma \in \Sigma_{0}$ and let $(x, y) \in[0]_{i} \times[0]_{j}$. Then σ is called ($\left.i, j\right)$-faithful if $x \square_{j i} y \in[0]_{k} \Rightarrow \sigma(x) \square_{j^{\prime} i^{\prime}} \sigma(y) \in[0]_{k^{\prime}}$, and k-faithful if $[x]_{k}=[y]_{k} \Rightarrow$ $[\sigma(x)]_{k^{\prime}}=[\sigma(y)]_{k^{\prime}}$.

2.7 For $\sigma \in \Sigma_{0}$ we have

(1) $\sigma_{i j}\left([0]_{k}\right) \in \mathcal{G} \Leftrightarrow \sigma$ is (i, j)-faithful,
(2) $\left.\sigma_{i j}\right|_{g_{i}}=\sigma_{i k} \mid g_{i} \Leftrightarrow \sigma$ is i-faithful,
(3) $\sigma_{i j} \mid[0]=\sigma \Leftrightarrow \sigma$ is (i,j)- and i-faithful $\Leftrightarrow \sigma$ is i - and j-faithful $\Leftrightarrow \sigma_{i j} \mid q_{i}=$ $\sigma_{i k}\left|g_{i} \wedge \sigma_{j i}\right| g_{j}=\sigma_{j k} \mid q_{j}$,
(4) $\sigma_{i j} \in \operatorname{Aut}(\mathcal{P}, \mathcal{q}) \Rightarrow \sigma$ is (i,j)-faithful and k-faithful,
(5) $\sigma_{i j} \in \operatorname{Aut}(\mathcal{P}, \mathcal{g}) \Leftrightarrow \forall a, b \in[0]_{i} \times[0]_{j}$ and $c \in[0]_{i}$ with $[c]_{k}=\left[a \square_{j i} b\right]_{k}$: $\sigma(a) \square_{j^{\prime} i^{\prime}} \sigma(b) \in[\sigma(c)]_{k^{\prime}}$,
(6) $\sigma_{i j}=\sigma_{i k} \Leftrightarrow \sigma_{i j} \in \operatorname{Aut}(\mathcal{P}, \mathcal{q}) \wedge \sigma$ is i-faithful,
(7) $\left.\sigma_{k}\right|_{[0]_{i}}=\left.\sigma\right|_{[0]_{i}} \Leftrightarrow \sigma$ is j-faithful $\Leftrightarrow \sigma_{k}\left|[0]_{k} \cup[0]_{i}=\sigma_{i}\right|[0]_{k} \cup[0]_{i}=\left.\sigma\right|_{[0]_{k} \cup[0]}$,
(8) $\sigma_{k}\left[[0]=\sigma \Leftrightarrow \sigma\right.$ is i - and j-faithful $\Leftrightarrow \sigma_{i j}=\sigma_{k}$,
(9) $\sigma_{k} \in \operatorname{Aut}(\mathcal{P}, \mathcal{g}) \Leftrightarrow$ For $a, b \in[0]_{k}, c \in[0]_{i}$ with $[c]_{k}=\left[a \square_{i j} b\right]_{k}:$ $[\sigma(c)]_{k^{\prime}}=\left[\sigma(a) \square_{i^{\prime} j^{\prime}} \sigma(b)\right]_{k^{\prime}}$,
(10) $\sigma_{k}=\sigma_{j} \Leftrightarrow \sigma_{k} \in \operatorname{Aut}(\mathcal{P}, q) \wedge \sigma$ is i-faithful,
(11) $\sigma_{i j}=\sigma_{j} \Leftrightarrow$ For $a, b, c \in[0]_{j}$ with $[c]_{k} \cap[0]_{i} \in\left[[a]_{k} \cap[b]_{i}\right]_{j}: \sigma\left([c]_{k} \cap[0]_{i}\right) \in$ $\left[[\sigma(a)]_{k^{\prime}} \cap[\sigma(b)]_{i^{\prime}}\right]_{j^{\prime}}$.
Proof. (2) Let $X \in g_{i}$ and $x_{j}:=X \cap[0]_{j}, x_{k}:=X \cap[0]_{k}$, hence $X=\left[x_{j}\right]_{i}=$ $\left[x_{k}\right]_{i}$. Then by (2.6), $\sigma_{i j}(X)=\left[\sigma\left(x_{j}\right)\right]_{i^{\prime}}$, and $\sigma_{i k}(X)=\left[\sigma\left(x_{k}\right)\right]_{i^{\prime}}$. Hence $\sigma_{i j}(X)=$ $\sigma_{i k}(X) \Leftrightarrow\left[\sigma\left(x_{j}\right)\right]_{i^{\prime}}=\left[\sigma\left(x_{k}\right)\right]_{i^{\prime}} \Leftrightarrow \sigma$ is i-faithful.
(3) By (2.6), $\left.\sigma_{i j}\right|_{[0]}=\sigma \Leftrightarrow \sigma_{i j}\left|[0]_{k}=\sigma\right|_{[0]_{k}}$, which implies $\sigma_{i j}\left([0]_{k}\right)=[0]_{k^{\prime}}$, hence by (1), σ is ($(, j)$-faithful. Now we assume that σ is (i, j)-faithful. Let
$x \in[0]_{k}, x_{j}:=[x]_{i} \cap[0]_{j}$ hence $x=[0]_{k} \cap\left[x_{j}\right]_{i}$ and $[x]_{i}=\left[x_{j}\right]_{i}$. Then $\sigma_{i j}(x)=\sigma_{i j}\left([0]_{k}\right) \cap\left[\sigma\left(x_{j}\right)\right]_{i^{\prime}}=[0]_{k^{\prime}} \cap\left[\sigma\left(x_{j}\right)\right]_{i^{\prime}}=\sigma(x) \Leftrightarrow\left[\sigma\left(x_{j}\right)\right]_{i^{\prime}}=[\sigma(x)]_{i^{\prime}}$, hence σ is i-faithful, and clearly if σ is (i, j)-faithful and i-faithful, then also j faithful. Finally let σ be i - and j-faithful and let $x_{i} \in[0]_{i}, x_{j} \in[0]_{j}$ such that $x:=x_{j} \square_{i j} x_{i} \in[0]_{k}$. Then $[x]_{i}=\left[x_{j}\right]_{i}$ and $[x]_{j}=\left[x_{i}\right]_{j}$, and by the i - and j-faithful assumption, $[\sigma(x)]_{i^{\prime}}=\left[\sigma\left(x_{j}\right)\right]_{i^{\prime}}$ and $[\sigma(x)]_{j^{\prime}}=\left[\sigma\left(x_{i}\right)\right]_{j^{\prime}}$. Therefore $[0]_{k^{\prime}} \ni \sigma(x)=[\sigma(x)]_{i^{\prime}} \cap[\sigma(x)]_{j^{\prime}}=\left[\sigma\left(x_{j}\right)\right]_{i^{\prime}} \cap\left[\sigma\left(x_{i}\right)\right]_{j^{\prime}}=\sigma\left(x_{j}\right) \square_{i^{\prime} j^{\prime}} \sigma\left(x_{i}\right)$, i.e. σ is (i, j)-faithful. And the last equivalence is immediate from the above (2).
(6) Let $\sigma_{i j}=\sigma_{i k}$, then by (2.6), $\sigma_{i j} \in \operatorname{Aut}(\mathscr{P}, \mathscr{Q})$ and by (2.7.2), σ is i-faithful. Now let $\sigma_{i j} \in \operatorname{Aut}(\mathcal{P}, \mathcal{g})$ and σ is i-faithful, and let $p \in \mathcal{P}, p_{j}:=[p]_{i} \cap$ $[0]_{j}, p_{i}:=[p]_{j} \cap[0]_{i}$ and $q_{k}:=[p]_{i} \cap[0]_{k}, q_{i}:=[p]_{k} \cap[0]_{i}$, hence $p=$ $\left[p_{i}\right]_{j} \cap\left[p_{j}\right]_{i}=\left[q_{i}\right]_{k} \cap\left[q_{k}\right]_{i}$ and $\left[p_{j}\right]_{i}=\left[q_{k}\right]_{i}$. Since σ is i-faithful, $\left[\sigma\left(p_{j}\right)\right]_{i^{\prime}}=$ $\left[\sigma\left(q_{k}\right)\right]_{i^{\prime}}$ and since $\sigma_{i j} \in \operatorname{Aut}(\mathcal{P}, \mathcal{g}), \sigma_{i j}(p)=\left[\sigma\left(p_{i}\right)\right]_{j^{\prime}} \cap\left[\sigma\left(p_{j}\right)\right]_{i^{\prime}} \in\left[\sigma\left(q_{i}\right)\right]_{k^{\prime}}$, thus $\sigma_{i j}(p)=\left[\sigma\left(q_{i}\right)\right]_{k^{\prime}} \cap\left[\sigma\left(p_{j}\right)\right]_{i^{\prime}}=\left[\sigma\left(q_{i}\right)\right]_{k^{\prime}} \cap\left[\sigma\left(q_{k}\right)\right]_{i^{\prime}}=\sigma_{i k}(p)$.
(10) Let $\sigma_{k}=\sigma_{j}$, then $\left.\sigma_{k}\right|_{[0]_{j}}=\left.\left.\sigma_{j}\right|_{[0]]_{j}} \stackrel{(2.6)}{=} \sigma\right|_{[0]]_{j}}$, i.e. σ is i-faithful by (2.7.7), and $\sigma_{k} \in \operatorname{Aut}(\mathscr{P}, \mathcal{g})$ by (2.6). Now let $\sigma_{k} \in \operatorname{Aut}(\mathscr{P}, \mathcal{g})$ and σi-faithful and let $p \in \mathcal{P}, a_{k}:=[p]_{i} \cap[0]_{k}, a_{j}:=[p]_{i} \cap[0]_{j}, b_{k}:=[p]_{j} \cap[0]_{k}$ and $c_{j}:=[p]_{k} \cap[0]_{j}$. Then $p=\left[a_{k}\right]_{i} \cap\left[b_{k}\right]_{j}=\left[a_{j}\right]_{i} \cap\left[c_{j}\right]_{k}$ and $\left[a_{k}\right]_{i}=\left[a_{j}\right]_{i}$. Since σ is i-faithful, $\left[\sigma\left(a_{k}\right)\right]_{i^{\prime}}=\left[\sigma\left(a_{j}\right)\right]_{i^{\prime}}$, and since $\sigma_{k} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{q}^{2}\right), \sigma_{k}(p)=\left[\sigma_{k}\left(c_{j}\right)\right]_{k^{\prime}} \cap\left[\sigma\left(a_{j}\right)\right]_{i^{\prime}}$. Therefore $\sigma_{j}(p)=\left[\sigma\left(a_{j}\right)\right]_{i^{\prime}} \cap\left[\sigma\left(c_{j}\right)\right]_{k^{\prime}}=\sigma_{k}(p)$ if $\sigma\left(c_{j}\right)=\sigma_{k}\left(c_{j}\right)$, i.e. if $\left.\sigma\right|_{[0]_{j}}=$ $\left.\sigma_{k}\right|_{[0]_{j}}$, i.e. by (2.7.7) if σ is i-faithful.
2.8 For each $\gamma \in A_{3} \backslash\{\mathrm{id}\}$ and each $0 \in \mathcal{P}$ the map $\gamma_{0}\left(\in \Sigma_{0}\right)$ is 1-, 2- and 3faithful by definition and so are the maps $\left(\gamma_{0}\right)^{2}$ and $\left(\gamma_{0}\right)^{3}$. Therefore by (2.7.8) for $\phi=\left(\gamma_{0}\right)^{i} \in \Sigma_{0}$ we have $\phi=\left.\phi_{k}\right|_{[0]}$ with $\phi_{i j}=\phi_{k}$ and moreover by (2.7.10) if $\phi_{k} \in \operatorname{Aut}(\mathcal{W})$, then $\phi_{i}=\phi_{i j}$ for all $i, j \in\{1,2,3\}, i \neq j$, hence the automorphic extension $\phi_{k}\left(=\phi_{i}=\phi_{i j}\right)$ of ϕ is unique.

3 Extensions of Local Symmetries and Some Orbits

Firstly we discuss when the maps $\gamma_{0},\left(\gamma_{0}\right)^{2}$ and $\left(\gamma_{0}\right)^{3}$ are extendable. For the convenience, we set the maps $0_{6}:=\gamma_{0}, 0_{3}:=\left(\gamma_{0}\right)^{2}$ and $\widetilde{0}:=\left(\gamma_{0}\right)^{3}$, where γ is taken as $(132) \in A_{3}$. We consider the maps $\left.\widetilde{[0]_{i}}\right|_{[0]}$ and 0_{3} in the following:
3.1 Let $\gamma=(132) \in S_{3}, i \in\{1,2,3\}$ and $j:=\gamma(i), k:=\gamma(j)$. Then:
(1) $\left(\left.\widetilde{[0]_{i}}\right|_{[0]}\right)_{i}=\widetilde{[0]_{i}}$,
(2) $\left.0_{3}\right|_{[0]_{i}}=\widetilde{[0]_{j}} \circ\left[\left.\widetilde{0]_{k}}\right|_{[0]_{i}}\right.$ and $\left(0_{3}\right)_{i}=\left(\left.\widetilde{[0]_{j}} \circ \widetilde{[0]_{k}}\right|_{[0]}\right)_{i}$,
(3) $\left(0_{3}\right)_{i}=\widetilde{0]_{j}} \circ[\widetilde{0}]_{k} \Leftrightarrow\left[\widetilde{0]_{k}} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{q}_{k}\right) \Rightarrow\left(0_{3}\right)^{3}=\mathrm{id}_{[0]}\right.$,
(4) Let $\widetilde{0]_{k}} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{g}_{k}\right)$, hence $\left.\left(0_{3}\right)_{i}=\widetilde{[0]}\right]_{j} \circ \widetilde{[0]_{k}}$ by (3). Then $\left(0_{3}\right)_{i}$ is an isomorphism from $\left(\mathcal{P}, \mathscr{q}_{j} \cup \mathscr{g}_{k}\right)$ onto $\left(\mathcal{P}, \mathscr{g}_{j} \cup \mathscr{g}_{k}\right)$, and $\left(0_{3}\right)_{i} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{q}) \Leftrightarrow\left[\widetilde{0]_{j}} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{q}_{j}\right)\right.$,
(5) If $\widetilde{[0]_{i}}, \widetilde{[0]_{j}} \in \operatorname{Aut}(\mathcal{P}, \mathcal{\beta})$, then $\widetilde{[0]_{k}} \in \operatorname{Aut}\left(\mathcal{P}, \mathscr{q}_{k}\right)$ and $\left(0_{3}\right)_{i}=\left(0_{3}\right)_{j}=\left(0_{3}\right)_{k} \in \operatorname{Aut}(\mathscr{P}, \mathscr{Q})$, i.e. W is 3 -rotational with respect to 0.

Proof. (1) To $\left.\widetilde{[0]_{i}}\right|_{[0]}$ there corresponds the transposition (j, k). Therefore, if $p \in$ $\mathcal{P}, p_{j}:=[p]_{j} \cap[0]_{i}$ and $p_{k}:=[p]_{k} \cap[0]_{i}$, (hence $p=p_{j} \square_{j k} p_{k}=\left[p_{j}\right]_{j} \cap\left[p_{k}\right]_{k}$), then $\left(\left.\widetilde{[0]_{i}}\right|_{[0]}\right)_{i}(p)=\left[p_{j}\right]_{k} \cap\left[p_{k}\right]_{j}=\widetilde{[0]_{i}}(p)$.
(2) and (3) By (1.2.1), $0_{3}\left([0]_{i}\right)=0_{6}{ }^{2}\left([0]_{i}\right)=\widetilde{[0]_{j}} \circ \widetilde{[0]_{k}}\left([0]_{i}\right)$ and to 0_{3} and to $\phi:=\left.[\widetilde{0}]_{j} \circ[\widetilde{0}]_{k}\right|_{[0]}$ there corresponds the same permutation σ. Thus $\left(0_{3}\right)_{i}=$ $\left(\left.\widetilde{[0]_{j}} \circ[\widetilde{0}]_{k}\right|_{[01}\right)_{i}=(\phi)_{i}$ and (2) is completely proved. Now $(\phi)_{i}(p)=\left[\phi\left(p_{j}\right)\right]_{k} \cap$ $\left[\phi\left(p_{k}\right)\right]_{i}=\left[\left[\widetilde{[0]_{k}}\left(p_{j}\right)\right]_{k} \cap\left[\widetilde{[0]}_{k}\left(p_{k}\right)\right]_{i}\right.$ and $\widetilde{[0]_{j}} \circ\left[\widetilde{0]_{k}}(p)=\left[\widetilde{[0]_{k}}\left(p_{j}\right)\right]_{k} \cap[q]_{i}\right.$, where $q:=[0]_{j} \cap\left[\widetilde{0]_{k}}(p)\right]_{k}$. We have

$$
(\phi)_{i}(p)=\left[\widetilde { 0] _ { j } } \circ \left[\widetilde{0]_{k}}(p) \Leftrightarrow q=\widetilde{[0]_{k}}\left(p_{k}\right) \Leftrightarrow \widetilde{[0]_{k}}(p) \in\left[\widetilde{[0]_{k}}\left(p_{k}\right)\right]_{k}\right.\right.
$$

Since $p \in \mathcal{P}$ is arbitrary and $[p]_{k}=\left[p_{k}\right]_{k}$, we obtain the equivalence of (3). If $[\widetilde{0}]_{k} \in \operatorname{Aut}\left(\mathcal{P}, \mathcal{g}_{k}\right)$, then \mathcal{W} is hexagonal with respect to 0 by (2.1) and we obtain $\left(0_{3}\right)^{3}=\operatorname{id}_{[0]}$ by $(1.2 .2)$.
(4) Since $[0]_{i}\left(g_{j}\right)=g_{k}$ and $\widetilde{[0]_{i}}\left(g_{k}\right)=g_{j}$, we obtain $\left(0_{3}\right)_{i}\left(g_{j}\right)=g_{k}$ and by assumption $\left(0_{3}\right)_{i}\left(g_{k}\right)=\left[\widetilde{0]_{j}} \circ\left[\widetilde{0]_{k}}\left(g_{k}\right)=[\widetilde{0}]_{j}\left(g_{k}\right)=g_{i}\right.\right.$. Therefore, $\left(0_{3}\right)_{i} \in$ $\operatorname{Aut}\left(\mathcal{P}, \mathcal{g}^{\prime}\right) \Leftrightarrow\left(0_{3}\right)_{i}\left(g_{i}\right)=\left[\widetilde{0]_{j}} \circ \widetilde{[0]_{k}}\left(g_{i}\right)=\widetilde{[0]_{j}}\left(g_{j}\right)=g_{j} \Leftrightarrow \widetilde{[0]_{j}} \in \operatorname{Aut}\left(\mathcal{P}, g_{j}\right)\right.$.
(5) $\left[\widetilde{0]_{k}} \stackrel{(1.1)}{=} \widetilde{[0]_{i}\left([0]_{j}\right)} \stackrel{(1.1)}{=}{\widetilde{00]_{i}}}_{i} \circ\left[\widetilde{00}_{j} \circ{\widetilde{00]_{i}}} \in \operatorname{Aut}(\mathscr{P}, \mathcal{Q})\right.\right.$.
3.2 Theorem. The following statements are equivalent:
(1) $(R, 0,1)$ is satisfied,
(2) $\left(0_{3}\right)_{1} \in \operatorname{Aut}(\mathcal{P}, \boldsymbol{q})$,
(3) $\forall a, b \in E: \sim(a+b)+a=\sim b$,
(4) $\forall i \in\{1,2,3\}:(R, 0, i)$ is satisfied,
(5) $\forall i \in\{1,2,3\}:\left(0_{3}\right)_{i} \in \operatorname{Aut}(\mathcal{P}, \mathcal{g})$,
(6) 0 is a 3-extendable point.

Proof. Let $X \in \mathcal{G}_{1}$ and $q^{\prime} \in X$ be given. We set $E:=[0]_{3}$ and construct:

$$
\begin{aligned}
p:=\left[q^{\prime}\right]_{3} \cap[0]_{1}, & & a:=p_{3}:=[p]_{2} \cap E, & b:=X \cap E, \\
q_{2} & :=X \cap[0]_{2}, & & q:=\left[q_{2}\right]_{3} \cap[0]_{1} .
\end{aligned}
$$

Then $\left[q^{\prime}\right]_{2} \cap[0]_{3}=a+b, q=0 \square(\sim b), p^{\prime}:=\left[p_{3}\right]_{1} \cap[q]_{2}=a \square(\sim b)$ and $r:=\left[p^{\prime}\right]_{3} \cap[0]_{2}=[a \square(\sim b)]_{3} \cap[0]_{2}$ and we have: $[a+b]_{1}=\left[\left[q^{\prime}\right]_{2} \cap\right.$ $\left.[0]_{3}\right]_{1}=[r]_{1} \Leftrightarrow r=(a+b) \square 0 \Leftrightarrow \sim(a+b)+a=\sim b$. Moreover, let $s:=\left[q^{\prime}\right]_{2} \cap[0]_{1}$. Then $q^{\prime}=[p]_{3} \cap[s]_{2},\left(0_{3}\right)(p)=a \square 0,0_{3}(s)=(a+b) \square 0$, hence $\left(0_{3}\right)_{1}\left(q^{\prime}\right)=[a \square 0]_{1} \cap[(a+b) \square 0]_{3}=[a]_{1} \cap[(a+b) \square 0]_{3}$ and $q_{2}:=[q]_{3} \cap$ $[0]_{2},\left(0_{3}\right)(q)=\sim b \square 0,0_{3}(0)=0$, hence $\left(0_{3}\right)_{1}\left(q_{2}\right)=[\sim b \square 0]_{1} \cap[0]_{3}=\sim b$. Therefore $\left(0_{3}\right)_{1}(X) \in g_{2} \Leftrightarrow\left(0_{3}\right)_{1}(X)=[\sim b]_{2} \Leftrightarrow p^{\prime}=[a]_{1} \cap[(a+b) \square 0]_{3}$, so $(R, 0,1) \Leftrightarrow \sim(a+b)+a=\sim b$. Since $(R, 0, i) \Leftrightarrow(R, 0, j)$, we have the equivalence of statements (1), (2), (3), (4) and (5). Since 0_{3} is 1 -, 2- and 3-faithful, we have $\left.\left(0_{3}\right)_{i}\right|_{[0]}=0_{3}$, and so if (2) is assumed, then 0 is a 3-extendable point.

If w is 3 -extendable and hexagonal with respect to 0 , then it is 3 -rotational with respect to 0 . So by (2.2) and (3.2) we obtain:

3.3 The following statements are equivalent:

(1) W is 3-rotational with respect to 0 ,
(2) $\operatorname{For}(E,+):=L(\mathcal{W} ; 0 ; i, j): \forall a, b \in E:-(a+b)+a=-b$.

3.4 Under the assumption

(0) $\forall a, b \in E: \sim(a+b)+a=\sim b$,
the following three assertions are equivalent:
(1) $\forall a, b \in E:(a+b)-b=a$,
(2) $\forall a, b \in E:-(a+b)=-b+(-a)$,
(3) $\forall a, b \in E:-a+(a+b)=b$.

Proof. (1) \Rightarrow (2) If we set $a:=\sim b$, then we obtain $-b=\sim b$ from (1), and (0) resumes the form $-(a+b)+a=-b$. We substitute in (1) a to $-b, b$ to $-a$ and obtain $(-b-a)+a=-b$. Together with (0) this implies $-(a+b)=-b+(-a)$.

Similarly applying $-b=\sim b$, we see that (2) \Rightarrow (3) and (3) \Rightarrow (1).
From (2.3), (2.4), (2.5), (3.2) and (3.4) it follows
3.5 Let w be 3-extendable with respect to 0 , then
(1) The three assertions $\widetilde{[0]_{i}} \in \operatorname{Aut}\left(\mathcal{P}, g_{i}\right)$ for $i \in\{1,2,3\}$ are equivalent,
(2) If there is an $i \in\{1,2,3\}$ such that $[0]_{i} \in \operatorname{Aut}(\mathcal{P}, \mathcal{g})$, then \mathcal{W} is 3 -rotational with respect to 0 (cf. (1) and (3.1)).
Next we study the turn $\widetilde{0}=\left(0_{6}\right)^{3}$.
3.6 The following statements are equivalent:
(1) $\exists i \in\{1,2,3\}:(\widetilde{0})_{i} \in \operatorname{Aut}(\mathcal{P}, \mathfrak{g})$,
(2) $\forall i \in\{1,2,3\}:(\widetilde{0})_{i} \in \operatorname{Aut}(\mathcal{P}, \boldsymbol{\beta})$,
(3) $\forall x \in \mathcal{P}:\left[\widetilde{0]_{2}} \circ \widetilde{[0]_{1}} \circ[\widetilde{0}]_{3}\left([x]_{1}\right) \cap\left[\widetilde{0]_{3}} \circ \widetilde{[0]_{2}} \circ \widetilde{[0]_{1}}\left([x]_{2}\right) \cap \widetilde{[0]_{1}} \circ \widetilde{[0]_{3}} \circ\right.\right.$ $[\widetilde{0}]_{2}\left([x]_{3}\right) \neq \phi$,
(4) $\operatorname{For}(E,+):=L(w ; 0 ; i, j), v \in \operatorname{Aut}(E,+)$.

Proof. The permutation corresponding to $\widetilde{0}$ in S_{3} is the identity. Therefore ($\left.\widetilde{0}\right)_{1} \in$ $\operatorname{Aut}(\mathcal{P}, \mathscr{g}) \Leftrightarrow(\widetilde{0})_{1} \in \operatorname{Aut}\left(\mathscr{P}, \mathscr{F}_{1}\right) \Leftrightarrow \forall x \in \mathscr{P}$ if $x_{2}:=[x]_{2} \cap[0]_{1}, x_{3}:=[x]_{3} \cap[0]_{1}$, $y:=[x]_{1} \cap[0]_{3}, y_{2}:=[y]_{2} \cap[0]_{1}$, then $\left[\widetilde{0}\left(x_{2}\right)\right]_{2} \cap\left[\widetilde{0}\left(x_{3}\right)\right]_{3}=: x^{\prime} \in\left[\left[\widetilde{0}\left(y_{2}\right)\right]_{2} \cap[0]_{3}\right]_{1}$. This last statement is equivalent to (3). Consequently (1), (2) and (3) are equivalent. (3) \Leftrightarrow (4) Let $x \in \mathscr{P}, a:=\left[[x]_{3} \cap[0]_{1}\right]_{2} \cap[0]_{3}, b:=[x]_{1} \cap[0]_{3}$ and $c:=[x]_{2} \cap[0]_{3}$. Then $c=a+b,-a=\left[[x]_{3} \cap[0]_{2}\right]_{1} \cap[0]_{3},-b=\left[\left[[b]_{2} \cap[0]_{1}\right]_{3} \cap[0]_{2}\right]_{1} \cap[0]_{3}$, $-c=\left[\left[[x]_{2} \cap[0]_{1}\right]_{3} \cap[0]_{2}\right]_{1} \cap[0]_{3}$, and $-c=-a+(-b) \Leftrightarrow[-c]_{2} \cap[-b]_{1} \cap$ $\left[[-a]_{2} \cap[0]_{1}\right]_{3} \neq \phi$. But $\widetilde{[0]_{2}} \circ \widetilde{[0]_{1}} \circ \widetilde{[0]_{3}}\left([x]_{1}\right)=\widetilde{[0]_{2}} \circ \widetilde{[0]_{1}}\left([b]_{2}\right)=[-b]_{1}, \widetilde{[0]_{3}} \circ$ $\widetilde{[0]_{2}} \circ[\widetilde{0}]_{1}\left([x]_{2}\right)=\widetilde{00]_{3}}\left([-c]_{1}\right)=[-c]_{2}$ and $\widetilde{[0]_{1}} \circ\left[\widetilde{0]_{3}} \circ \widetilde{[0]_{2}}\left([x]_{3}\right)=\widetilde{[0]_{1}} \circ\right.$ $[\widetilde{0}]_{3}\left([-a]_{1}\right)=\widetilde{0]_{1}}\left([-a]_{2}\right)=\left[[-a]_{2} \cap[0]_{1}\right]_{3}$. This shows the equivalence of (3) and (4).

Remarks. 1. The statement (3) of (3.6) expresses that the bend-configuration $B E(0 ;$ id) of [5, Section 6] closes.
2. From (2.8) and (3.6) it follows that the point 0 is 2 -extendable if and only if for $(E,+):=L(\mathcal{W} ; 0 ; 1,2)$ the map v is an automorphism of $(E,+)$. If 0 is even

2 -rotational then by (2.2), $v^{2}=$ id, and 0 is a characteristic 2 point if and only if $\nu=\mathrm{id}$.
3. If a point $p \in \mathscr{P}$ is 2-rotational then by (2.8), $\left(\gamma_{p}\right)^{3}$ is uniquely extendable to an automorphism of w which we denote by \widetilde{p} and which we call reflection in the point p; we have then $\tilde{p}^{\prime}=\operatorname{id}\left(\in S_{3}\right), p \in \operatorname{Fix}(\tilde{p}), \widetilde{p}^{2}=\mathrm{id}$, and $\widetilde{p}=\mathrm{id} \Leftrightarrow \mathrm{p}$ is a characteristic 2 point.
4. There are webs w with 2-rotational points p such that $\tilde{p} \neq \mathrm{id}$ and $|\operatorname{Fix}(\tilde{p})| \geq 2$.

Now we consider the map $0_{6}=(132)_{0} \in \Sigma_{0}$ and ask when $\left(0_{6}\right)_{3} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G})$, i.e. $\left(0_{6}\right)_{3}\left(g_{3}\right)=g_{2}$ is true. For the answer we need the following (3.7):
3.7 If $(T, 0 ; i, j)$ is valid, then so is $(T, 0 ; k, i)$.

Proof. Let $x \in[0]_{k}, y \in[0]_{i}$ and $q:=[0]_{j} \cap\left[[x]_{j} \cap[y]_{k}\right]_{i}$. Then $[y]_{k} \cap[q]_{i}=$ $[x]_{j} \cap[y]_{k}$ shows $[0]_{k} \cap\left[[y]_{k} \cap[q]_{i}\right]_{j}=[0]_{k} \cap\left[[x]_{j} \cap[y]_{k}\right]_{j}=[0]_{k} \cap[x]_{j}=\{x\}$. By $(T, 0 ; i, j), y \in[0]_{i}$ and $q \in[0]_{j}$ imply $\phi \neq[0]_{k} \cap\left[[y]_{k} \cap[q]_{i}\right]_{j} \cap\left[[q]_{k} \cap[y]_{j}\right]_{i}=$ $\{x\} \cap\left[[q]_{k} \cap[y]_{j}\right]_{i}$, i.e. $x \in\left[[q]_{k} \cap[y]_{j}\right]_{i}$ and so $q \in\left[[x]_{i} \cap[y]_{j}\right]_{k}$. Hence the statement ($T, 0 ; k, i$) is valid.
3.8 Theorem. The following statements are equivalent:
(1) $\exists i \in\{1,2,3\}:\left(0_{6}\right)_{i} \in \operatorname{Aut}(\mathcal{P}, \mathcal{S})$,
(2) $\forall i \in\{1,2,3\}:\left(0_{6}\right)_{i} \in \operatorname{Aut}(\mathcal{P}, \underline{q})$,
(3) $(T, 0 ; 1,2)$ is satisfied,
(4) $\forall a, b \in E: \sim b+(a+b)=a$, i.e., $b+(a-b)=a$, i.e. $(E,+)$ is a crossed-inverse loop ([1, Theorem 5.4]).
Proof. Let $X \in \mathcal{G}_{3} \backslash\{E\}, x:=X \cap[0]_{1}, x_{2}:=X \cap[0]_{2}$. Then $0_{6}\left(x_{2}\right)=x$ and so if $\left(0_{6}\right)_{3}\left(g_{3}\right)=g_{2}$, then $\left(0_{6}\right)_{3}(X)=[x]_{2}$. Now let $p \in X, y:=[p]_{1} \cap[0]_{2}, p_{1}:=$ $[p]_{1} \cap[0]_{3}, p_{2}:=[p]_{2} \cap[0]_{3}, q:=[x]_{2} \cap[y]_{3}$. Then firstly $x \in[0]_{1}, y \in[0]_{2}, p=$ $[x]_{3} \cap[y]_{1}, q=[y]_{3} \cap[x]_{2}$ and $[0]_{3} \cap[p]_{2} \cap[q]_{1} \neq \phi$ if $(T, 0 ; 1,2)$ holds. Secondly $0_{6}\left(p_{1}\right)=y, 0_{6}\left(p_{2}\right)=\left[p_{2}\right]_{1} \cap[0]_{2}$, hence $\left(0_{6}\right)_{3}(p)=\left[0_{6}\left(p_{1}\right)\right]_{3} \cap\left[0_{6}\left(p_{2}\right)\right]_{1}=$ $[y]_{3} \cap\left[p_{2}\right]_{1}$. Consequently, $\left(0_{6}\right)_{3}(X)=[x]_{2} \Leftrightarrow[x]_{2} \cap[y]_{3} \cap\left[p_{2}\right]_{1}=\{q\} \cap\left[p_{2}\right]_{1} \neq$ $\phi \Leftrightarrow[0]_{3} \cap[p]_{2} \cap[q]_{1} \neq \phi$. Hence $\left(0_{6}\right)_{3}\left(g_{3}\right)=g_{2} \Leftrightarrow(T, 0 ; 1,2)$. Now we set $a:=[x]_{2} \cap[0]_{3}, b:=p_{1}$. Then $a+b=p_{2}, y=b \square 0,[b \square 0]_{3}=[0 \square(\sim b)]_{3}$ and so $\sim b+(a+b)=a \Leftrightarrow[x]_{2} \cap[y]_{3} \cap\left[p_{2}\right]_{1} \neq \phi$. With (3.7) all the statements are equivalent.

Finally in our web we consider the orbits $[p]^{i}:=\left\{\tilde{X}(p) \mid X \in \mathcal{g}_{i}\right\}$ of a point $p \in \mathcal{P}$ with respect to the generators of $g_{i}, i \in\{1,2,3\}$ and see by the definition that each orbit $[p]^{i}$ is an i - chain, hence $[p]^{i} \in \mathcal{C}_{i}$ and obtain the following theorem which is the case when $i=3$:
3.9 Theorem. Let $\mathcal{W}=\left(\mathcal{P}, \mathfrak{g}_{1}, \mathfrak{q}_{2}, \mathfrak{q}_{3}\right)$ be a web and let $E \in \mathfrak{g}_{3}$ such that $\widetilde{E} \in$ Aut(\mathbf{W}). Then
(1) If there is a chain $D \in \mathfrak{C}_{3}$ such that $\forall X \in \mathfrak{q}_{3}: \widetilde{D}(X)=X$ (i.e. $g_{3} \subset$ $D^{\perp} \cup\{D\}$), then $\widetilde{D} \in \operatorname{Aut}(\mathcal{W}), \widetilde{E} \circ \widetilde{D}=\widetilde{D} \circ \widetilde{E} \in \operatorname{Aut}(\mathcal{W})^{+}$, each point $p \in E \cap D$ is 2-rotational and $\widetilde{p}=\widetilde{E} \circ \widetilde{D}$ is the reflection in p and for each $d \in D_{\tilde{\sim}} D=[d]^{3}$, (2) If $p \in E$ is a 2-rotational point and \widetilde{p} the reflection in p, then $\tilde{p} \circ \widetilde{E}=\widetilde{E} \circ \tilde{p} \in$ $\operatorname{Aut}(\mathcal{W}), D:=\operatorname{Fix}(\tilde{p} \circ \widetilde{E}) \in \mathcal{C}_{3}, \widetilde{D}=\widetilde{p} \circ \widetilde{E}, \mathcal{G}_{3} \subset D^{\perp} \cup\{D\}$ and $D=[p]^{3}$.

Proof. (1) By (1.1.2), $\widetilde{D} \in \operatorname{Aut}\left(\mathcal{P}, \mathcal{g}_{1} \cup g_{2}\right)^{-}$and by $\widetilde{D}(X)=X$ for $X \in \mathcal{g}_{3}$, hence $\tilde{D} \in \operatorname{Aut}(\mathcal{W})$ and by $(1.1 .1) \widetilde{X}=\widetilde{D}(X)=\widetilde{D} \circ \widetilde{X} \circ \widetilde{D}$. Since \widetilde{X} and \widetilde{D} are involutions, $\widetilde{X} \circ \widetilde{D}=\widetilde{D} \circ \widetilde{X}$, in particular $\widetilde{E} \circ \widetilde{D}=\widetilde{D} \circ \widetilde{E}$. Since $\widetilde{E}, \widetilde{D} \in$ $\operatorname{Aut}(\mathcal{W}) \cap \operatorname{Aut}\left(\mathcal{P}, \mathscr{g}_{1} \cup g_{2}\right)^{-}$, we obtain $\widetilde{E} \circ \widetilde{D}=\widetilde{D} \circ \widetilde{E} \in \operatorname{Aut}(\mathcal{W})^{+}$. Now let $p \in E \cap D, x \in E \backslash\{p\}, \gamma=(132), x^{\prime}:=\left(\gamma_{p}\right)^{3}(x), q:=\left(\gamma_{p}\right)(x)=[x]_{1} \cap[p]_{2}$, $q^{\prime}:=\left(\gamma_{p}\right)^{2}(x)=[p]_{1} \cap[q]_{3}=[p]_{1} \cap\left[x^{\prime}\right]_{2}$. Then by $p \in D, \widetilde{D}\left([p]_{2}\right)=[p]_{1}$ and $\widetilde{D}\left([q]_{3}\right)=[q]_{3}$ since $[q]_{3} \in \mathcal{q}_{3}$. Consequently $\widetilde{D}(q)=\widetilde{D}\left([p]_{2} \cap[q]_{3}\right)=$ $\widetilde{D}\left([p]_{2}\right) \cap \widetilde{D}\left([q]_{3}\right) \equiv[p]_{1} \cap[q]_{3}=q^{\prime}$ and so $\widetilde{D}(x)=\widetilde{D}\left([p]_{3} \cap[q]_{1}\right)=[p]_{3} \cap$ $\widetilde{D}\left([q]_{1}\right)=[p]_{3} \cap[\widetilde{D}(q)]_{2}=[p]_{3} \cap\left[q^{\prime}\right]_{2}=x^{\prime}$. Hence $\left.\widetilde{E} \circ \widetilde{D}\right|_{E}=\left.\widetilde{E} \circ \widetilde{D}\right|_{[p]_{3}}=$ $\left.\left(\gamma_{p}\right)^{3}\right|_{E}$ and so by the unique extendability, $\widetilde{E} \circ \widetilde{D}=\widetilde{p}$. Now for $d \in D$ and $X \in g_{3}$, let $\widetilde{X}(d) \in[d]^{3}$, then $\widetilde{D} \circ \widetilde{X}(d)=\widetilde{X} \circ \widetilde{D}(d)=\widetilde{X}(d)$, hence $\widetilde{X}(d) \in \operatorname{Fix}(\widetilde{D})=D$ by (1.1.1), i.e. $[d]^{3} \subset D$. So we have $D=[d]^{3}$, since D and $[d]^{3}$ are both in C_{3}.
(2) By hypothesis, \widetilde{p} and \widetilde{E} are involutory automorphisms of \mathcal{W} and $p \in E$, hence $\widetilde{E} \circ \widetilde{p} \circ \widetilde{E}=\widetilde{E}(p)=\widetilde{p}$ and so $\widetilde{E} \circ \widetilde{p}=\widetilde{p} \circ \widetilde{E} \in \operatorname{Aut}(W)$ with $(\widetilde{E} \circ \widetilde{p})^{\prime}=(1,2)$, i.e. $\widetilde{E} \circ \widetilde{p} \in \operatorname{Aut}\left(\mathcal{P}, g_{1} \cup g_{2}\right)^{-} . \operatorname{By}(1.1 .4), D:=\operatorname{Fix}(\widetilde{E} \circ \widetilde{p}) \in \mathcal{C}_{3}$ and $\widetilde{D}=\widetilde{E} \circ \widetilde{p}$. Finally let $X \in g_{3}$. If $X=E$, then by $p \in E, \widetilde{D}(E)=\widetilde{E} \circ \widetilde{p}(E)=\widetilde{E}(E)=E$. Therefore let $X \neq E$ and let $q:=[p]_{2} \cap X, q^{\prime}=[p]_{1} \cap X$. Then $q^{\prime}=\gamma_{p}(q), \widetilde{p}(q)=\left(\gamma_{p}\right)^{3}(q)$ and $\widetilde{E}\left(q^{\prime}\right)=\widetilde{p}(q)$. Thus $\widetilde{E} \circ \widetilde{p}(X)=\widetilde{E} \circ \widetilde{p}\left([q]_{3}\right)=[\widetilde{E} \circ \widetilde{p}(q)]_{3}=\left[q^{\prime}\right]_{3}=X$, i.e. $g_{3} \subset D^{\perp} \cup\{D\}$ and by (1), $D=[p]^{3}$.

Together with the results (4.2.3) and (6.4) of [5] we can state:
3.10 For a web $w=\left(\mathcal{P}, g_{1}, \mathscr{g}_{2}, \mathscr{g}_{3}\right)$ let \mathcal{P}_{2} be the set of all 2 -extendable points. Then for \mathcal{W} the following statements are equivalent:
(1) $\mathcal{P}_{2} \neq \phi$ and $\exists i \in\{1,2,3\}: \widetilde{g}_{i} \subset \operatorname{Aut}(\mathcal{W})$ (In this case, if $0 \in \mathscr{P}_{2}$ and $j, k \in\{1,2,3\} \backslash\{i\}$ with $j \neq k$, then $D:=[0]^{i} \in \mathcal{C}_{i}$ with $D \subset \mathcal{P}_{2}$ and $g_{i} \subset D^{\perp} \cup\{D\}$ and $(E,+):=L(\boldsymbol{W} ; 0 ; j, k)$ is a Bruck-loop $)$,
(2) $\exists 0 \in \mathcal{P}$ and $j, k \in\{1,2,3\}, j \neq k$ such that $(E,+)=L(\mathcal{W} ; 0 ; j, k)$ is a Bruck-loop (In this case $0 \in \mathscr{P}_{2}$ and $\widetilde{g}_{i} \subset \operatorname{Aut}(\mathcal{W})$),
(3) $\exists i \in\{1,2,3\}: \widetilde{\mathscr{g}}_{i} \subset \operatorname{Aut}(\mathcal{W})$ and $\exists D \in \mathcal{C}_{i}$ with $\mathscr{g}_{i} \subset D^{\perp} \cup\{D\}$.

Remark. If for a web $\mathcal{W}=\left(\mathcal{P}, \mathcal{g}_{1}, \mathscr{g}_{2}, \mathcal{g}_{3}\right)$ and an $i \in\{1,2,3\}, \tilde{\mathcal{F}_{i}} \subset \operatorname{Aut}(\mathcal{W})$, then $\forall p, q \in \mathscr{P}_{2},[p]^{i} \subset \mathscr{P}_{2}$ and either $[p]^{i} \cap[q]^{i}=\phi$ or $[p]^{j}=[q]^{j}$.

Acknowledgement. The authors are grateful for the referee who informed us that a few similar investigations have been done in [1].

References

[1] V.D. Belousov, Algebraic Nets and Quasigroups. Acad. Sciences of M.S.S.R. (1971).
[2] R.H. Bruck, A Survey of Binary Systems. Springer-Verlag, 1958.
[3] W. Blaschke and G. Bol, Geometrie der Gewebe. Springer-Verlag, 1938.
[4] M. Funk and P. T. Nagy, On collineation groups generated by Bol reflections J. Geometry 48 (1993), 63-78.
[5] E. Gabrieli, B. Im, and H. Karzel, Webs related to K-loops and reflection structures. Abh. Math. Sem. Uni. Hamb. 69 (1999), 89-102.
[6] H. Karzel and H. J. Kroll, Perspectivities in circle geometries. Geometry von Staudt's point of view. Ed. by P. Plaumann and K. Strambach. Dordrecht-BostonLondon, 1981, p. 51-99.
[7] ,_ Geschichte der Geometrie seit Hilbert. Wiss. Buchgesellschaft, 1988.
[8] H. Kiechle, Theory of K-loops. Habilitationsschrift, Univ. Hamburg, 1998.
[9] G. KIST, Theorie der verallgemeinerten kinematischen Räume. Beiträge zur Geometrie und Algebra 14, TUM-M 8611 (1986), 1-142.
[10] A. Kreuzer, Inner mappings of Bruck loops. Math. Proc. Camb.Phil.Soc. 123 (1998), 53-57.
[11] K. Reidemeister, Topolgische Fragen der Differentialgeometric. V. Gewebe und Gruppen. Math. Z. 29 (1929), 427-435.
[12] G. Thomsen, Topologische Fragen der Differentialgeometric. XII. Schnittpunktsätze in ebenen Geweben Abh. Math. Sem. Univ. Hamburg 7 (1930), 99-106.

Received: 19 December 2000
Communicated by: A. Kreuzer
Authors' addresses: Bokhee Im, Department of Mathematics, Chonnam National University, Kwangju 500-757, Republic of Korea
E-mail: bim@chonnam.ac.kr.
Helmut Karzel, Mathematisches Institut, Technische Universität München, D-80290 München, Germany
E-mail: karzel@mathematik.tu-muenchen.de.
Hayi-Joo Ko, Department of Mathematics, Chonnam National University, Kwangju 500-757, Republic of Korea
E-mail: hjko@chonnam.ac.kr.

