J. Geom. 86 (2006) 81 – 97 0047–2468/06/020081 – 17 © Birkhäuser Verlag, Basel, 2006 DOI 10.1007/s00022-006-1850-2

Journal of Geometry

Vectorspacelike representation of absolute planes

Dedicated to Walter Benz on the occasion of his 75th birthday, in friendship

Helmut Karzel and Mario Marchi*

Abstract. The pointset **E** of an absolute plane (**E**, $\mathcal{G}, \alpha, \equiv$) can be provided with a binary operation "+" such that (**E**, +) becomes a loop and for each $a \in \mathbf{E} \setminus \{o\}$ the line [*a*] through *o* and *a* is a commutative subgroup of (**E**, +). Two elements $a, b \in \mathbf{E} \setminus \{o\}$ are called *independent* if [*a*] \cap [*b*] = {*o*} and the absolute plane is called *vectorspacelike* if for any two independent elements we have $\mathbf{E} = [a] + [b] := \{x + y \mid x \in [a], y \in [b]\}$. If (**E**, $\mathcal{G}, \alpha, \equiv$) is singular then (**E**, +) is a commutative group and (**E**, $\mathcal{G}, \alpha, \equiv$) is vectorspacelike iff (**E**, $\mathcal{G}, \alpha, \equiv$) is a hyperbolic plane then (**E**, $\mathcal{G}, \alpha, \equiv$) is vectorspacelike and in the continous case if *a*, *b* are independent, each point *p* has a unique representation as a *quasilinear combination* $p = \alpha \cdot a + \mu \cdot b$ where $\alpha \cdot a \in [a]$ and $\beta \cdot b \in [b]$ are points, α, β real numbers such that $\lambda(o, \lambda \cdot a) = |\lambda| \cdot \lambda(o, a)$ and $\lambda(o, \mu \cdot b) = |\mu| \cdot \lambda(o, b)$ and λ is the distance function.

Mathematics Subject Classification (2000): 51F05, 20N05. Key words: Absolute plane, vectorspacelike K-loop.

1. Introduction

After fixing two points *o* and *e* the pointset **E** of an absolute plane (**E**, \mathcal{G} , α , \equiv) can be furnished with a binary operation "+" such that (**E**, +) becomes a K-loop with *o* as neutral element. If $\mathbf{E}^* := \mathbf{E} \setminus \{o\}$ then for each $a \in \mathbf{E}^*$ the line $[a] := \overline{o, a}$ through *o* and *a* is a commutative subgroup of the loop (**E**, +) and all these groups are isomorphic. Moreover the halfline $[a]_+ := oxa$ is a positive domain of the group ([a], +) and so by " $x < y :\iff -x + y \in [a]_+$ ", ([a], +, <) becomes an ordered group. Such an ordered group (W, +, <) with W := [e] will be choosen as "scalar domain" and an operation " $\oplus : W \times \mathbf{E}^* \to \mathbf{E}$; (w, p) $\mapsto w \oplus p$ " between scalars and elements of **E** introduced such that $[p] = W \oplus p$ holds.

If $(a, b) \in \mathbf{E}^* \times \mathbf{E}^*$ then the pair is called *independent* if $[a] \neq [b]$ and *direct* if $\mathbf{E} = [a] + [b] := \{x + y \mid x \in [a], y \in [b]\} = \{(u \oplus a) + (v \oplus b) \mid u, v \in W\}$. If $[a] \perp [b]$ then (a, b) is a direct pair (cf.(4.5)). We call $(\mathbf{E}, +)$ vectorspacelike if each independent pair is direct. We show:

^{*}This work was partially supported by the Research Project of MIUR (Italian Ministery of Education and University) "Geometria combinatoria e sue applicazioni" and by the research group GNSAGA of INDAM.

(E, +) is vectorspacelike \iff to a given segment (s_1, s_2) and an acute angle α there exists a rectangular triangle (p, q, r) with $\overline{p, q} \perp \overline{q, r}$, $(q, r) \equiv (s_1, s_2)$ and $\alpha \equiv \angle(r, p, q)$ (cf.(4.7),(4.8)).

For each $n \in \mathbf{N}$ the map $n': W \to W$; $x \mapsto n \cdot x = x + \cdots + x$ (*n* times) is a strictly isotone monomorphism of (W, +, <). The set $\mathbf{N}_W := \{n \in \mathbf{N} \mid n \text{ is surjective }\}$ contains 2 (cf.(5.1)) and the imbedding of the subring $\mathbf{Z}_W := \{\frac{m}{n} \mid m \in \mathbf{Z}, n \in \mathbf{N}_W\}$ of the field of rational numbers **Q** in (W, +, <) by $\frac{m}{n} \mapsto m^{\cdot} \circ (n^{\cdot})^{-1}(e)$ is a monomorphism from $(\mathbf{Z}_W, +)$ into (W, +). In this way \mathbf{Z}_W will be considered as a subset of W with the operation $\cdot: \mathbf{Z}_W \times W \to W; (\frac{m}{n}, x) \mapsto \frac{m}{n} \cdot x := m \circ (n)^{-1}(x)$. Then for $r \in \mathbf{Z}_W, r \neq 0$ the map $r': W \to W; w \mapsto r \cdot w$ is contained in the set $Bet(W, +, \xi)$ of all betweenness preserving monomorphisms of $(W, +, \xi)$; r is isotone resp. antitone if o < r resp. r < o. A subset $B \subseteq W$ together with an operation $\cdot : B \times W \to W$ will be called *b*-ring of (W, +, <) if $(B, +, \cdot)$ is a ring containing $(\mathbb{Z}_W, +, \cdot)$ as a subring and if for each $\beta \in B^* := B \setminus \{o\}$ the map $\beta_l : W \to W; w \mapsto \beta \cdot w$ is in $Bet(W, +, \xi)$. If B is a b-ring and $\beta \in B^*$ then by a so called *rotational extension* (cf.(5.7)) β_l becomes an injection β : $\mathbf{E} \to \mathbf{E}$; $x \mapsto$ $\beta \cdot x$ called *B-quasidilatation* (cf. Sec. 4). For $o < \beta < e$ the quasidilatation β is a contraction hence if $x \in \mathbf{E}^*$ then $\beta \cdot x$ is a point of the open segment]o, x[and if $e < \beta$ then β is an enlargement, i.e. $x \in]o, \beta \cdot x[$. For $a, b \in \mathbf{E}$ and $\lambda, \mu \in B$ the expression $\lambda \cdot a + \mu \cdot b$ is called *quasilinear B-combination*. If B is transitive, i.e. B = W, then $[a] + [b] = \{\lambda \cdot a + \mu \cdot b \mid \lambda, \mu \in B\}$ if $a, b \in \mathbf{E}_1$ or if $(W, +, \cdot) := (B, +, \cdot)$ is a field. In the case that (W, +, <) is continuous W can be established with a multiplication " \cdot " such that $(W, +, \cdot, <)$ becomes an ordered field (isomorphic to the reals **R**) (cf. (5.6)) and then $[a] + [b] = W \cdot a + W \cdot b = \{\lambda \cdot a + \mu \cdot b \mid \lambda, \mu \in W\}$ for all $a, b \in \mathbf{E}$.

The loop (**E**, +) is a group if the absolute plane is singular. In this case (**E**, +) is vectorspacelike iff (**E**, \mathcal{G} , α , \equiv) is an Euclidean plane (cf. (4.6)). In the ordinary case the loop of a hyperbolic plane is vectorspacelike (cf. (6.1)).

With the theorems (5.6) and (6.1) one obtains the result of A. Greil [1]:

If (**E**, $\mathcal{G}, \alpha, \equiv$) is a continuous hyperbolic plane (then **R** is a b-ring) and if $a, b \in \mathbf{E}^*$ with $[a] \neq [b]$ then each point $x \in \mathbf{E}$ can be uniquely represented as a quasilinear **R**-combination $x = \lambda \cdot a + \mu \cdot b$ with $\lambda(o, \lambda \cdot a) = |\lambda| \cdot \lambda(o, a)$ and $\lambda(o, \mu \cdot b) = |\mu| \cdot \lambda(o, b)$ where λ is the distance function (cf. Sec. 2).

2. Notations, assumptions and known results

In this paper let $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ be an absolute plane in the sense of [6] p. 96; \mathbf{E} and \mathcal{G} denotes the set of *points* and *lines* respectively, α the *order-function* and \equiv the *congruence*. Let \mathcal{A} be the motion group of $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$. For $a \in \mathbf{E}$, $A \in \mathcal{G}$ let \tilde{a} resp. \tilde{A} denote the point- resp. line-reflection in *a* resp. in *A* and let $\tilde{\mathbf{E}} := \{\tilde{a} \mid a \in \mathbf{E}\}$ resp. $\tilde{\mathcal{G}} := \{\tilde{A} \mid a \in \mathbf{E}\}$ $A \in \mathcal{G}$ be the set of all point- resp. line-reflections. If $a, b \in \mathbf{E}$ and $a \neq b$ let \widetilde{ab} resp. \widehat{ab} denote the (uniquely determined) point- resp. line-reflection interchanging a and b (cf. [6] (16.11), (16.12), (17.1), (17.2)) (i.e. \widetilde{ab} resp. \widehat{ab} is the reflection in the midpoint resp. midline of a and b (cf. [6](16.11) and p. 105)). Moreover let $\overline{a, b}$ denote the line joining a and b and let $a \not\in b := \{x \in \overline{a, b} \mid (a|b, x) = 1\}^1$ be the *halfline* and let $\mathcal{H} := \{a \not\in b \mid a, b \in \mathbf{E}, a \neq b\}$ be the set of all halflines.

By [6] (17.6),(17.9),(17.7) and $\tilde{\mathcal{G}} \subseteq \tilde{\mathcal{G}}^3$ follows:

(2.1) $\mathcal{A} = \tilde{\mathcal{G}}^2 \cup \tilde{\mathcal{G}}^3$, $\tilde{\mathbf{E}} \subseteq \tilde{\mathcal{G}}^2$ and $\tilde{\mathcal{G}}^2 \trianglelefteq \mathcal{A}$ is a normal subgroup of \mathcal{A} of index 2.

We call the elements of $\mathcal{A}_+ := \tilde{\mathcal{G}}^2$ proper motions. By [6] (17.8) and (18.3) we have:

(2.2) Let $\varphi \in A$, $a \in \mathbf{E}$ and $G \in \mathcal{G}$ then:

- (1) $\varphi \circ \tilde{G} \circ \varphi^{-1} = \varphi(\tilde{G})$ hence $\varphi \circ \tilde{\mathcal{G}} \circ \varphi^{-1} = \tilde{\mathcal{G}}$, *i.e.* $\tilde{\mathcal{G}}$ is an invariant subset consisting of involutory motions of \mathcal{A} and acting transitively on **E**.
- (2) $\varphi \circ \tilde{a} \circ \varphi^{-1} = \widetilde{\varphi(a)}$ hence $\varphi \circ \tilde{\mathbf{E}} \circ \varphi^{-1} = \tilde{\mathbf{E}}$, *i.e.* ($\mathbf{E}, \tilde{\mathbf{E}}$) is an invariant set of involutory motions acting regularly on \mathbf{E} .
- (3) $\forall a, b, c, d \in \mathbf{E}, a \neq b, c \neq d \exists_1 \sigma \in \mathcal{A}_+ : \sigma(a, b) = c, d, i.e. the group of proper motions acts regularly on the set <math>\mathcal{H}$ of all halflines (cf. [6] (17.15)).

From [6] (17.7.2) and (17.13.2) resp. (16.10.2) and p.105 follows:

(2.3) Let $D \in \mathcal{G}$, $a, b, c \in D$ and $p \in \mathbf{E} \setminus D$ then:

- (1) $\exists m \in D : \tilde{a} \circ \tilde{b} \circ \tilde{c} = \tilde{m}.$
- (2) $\tilde{p}(D) \cap D = \emptyset$.

The absolute planes split into two classes: the *singular planes* characterized by $\tilde{\mathbf{E}}^3 \subset \tilde{\mathbf{E}}$ and the *ordinary planes* characterized by $\tilde{\mathbf{E}}^3 \not\subset \tilde{\mathbf{E}}$

(2.4) If $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is singular then $\tilde{\mathbf{E}}^2$ is a commutative normal subgroup of \mathcal{A} acting regularly on \mathbf{E} . (cf. [6] (21.6))

Now let three non collinear points $o, e_1, e_2 \in \mathbf{E}$ with $(o, e_1) \equiv (o, e_2)$ and $\overline{o, e_1} \perp \overline{o, e_2}$ be fixed as a *frame of reference*, let $\mathbf{E}_1 := \{x \in \mathbf{E} \mid (o, x) \equiv (o, e_1)\}$ and $\mathbf{E}^* := \mathbf{E} \setminus \{o\}$. For any $a \in \mathbf{E}^*$ let:

 $[a] := \overline{o, a} \text{ the line joining } o \text{ and } a,$ $[a]_+ := \{x \in [a] \mid (o|a, x) = 1\} \text{ the halfline,}$ $a^+ := \widetilde{oa} \circ \widetilde{o} \text{ and } o^+ := id (\text{let } \mathbf{E}^+ := \{a^+ \mid a \in \mathbf{E}\}).$

For $a \in \mathbf{E}_1 \setminus \{e_1\}$ let $a^{\bullet} := \widehat{e_1 a} \circ \widetilde{o, e_1}$ and $e_1^{\bullet} := id$.

¹(*a*|*b*, *x*) := $\alpha(a, b, x)$ (cf. [6] (13.9))

Then by [4] p.405:

(2.5) (E, +) with $a + b := a^+(b)$ is a K-loop, i.e. a loop characterized by:

 $\forall a, b \in \mathbf{E} : a^+ \circ b^+ \circ a^+ = (a + (b + a))^+ \text{ and } \tilde{o} \circ a^+ = (\tilde{o}(a))^+ \circ \tilde{o}$

Moreover:

- (1) \mathbf{E}^+ is a set of fixed point free proper motions of $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ acting regularly on the point set \mathbf{E} (cf.(2.2.2)).
- (2) (**E**, +) is a group (and then even a commutative group) if and only if (**E**, \mathcal{G} , α , \equiv) is singular; in this case (**E**, +) and ($\tilde{\mathbf{E}}^2$, \circ) are isomorphic.
- (3) $\forall a \in \mathbf{E}^*, [a] \text{ is a commutative subgroup of the loop } (\mathbf{E}, +) \text{ and } [a]_+ a \text{ subsemigroup of } [a] \text{ with } [a] = [a]_+ \dot{\cup} \{o\} \dot{\cup} [-a]_+.$
- (4) $\mathcal{G} = \{a + [b] \mid a \in \mathbf{E}, b \in \mathbf{E}^*\}$ and the set \mathcal{H} of all halflines is represented by $\mathcal{H} = \{a + [b]_+ \mid a \in \mathbf{E}, b \in \mathbf{E}^*\}.$
- (5) If $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is ordinary then $\forall a \in \mathbf{E}^*, \forall \sigma \in Aut(\mathbf{E}, +) : [a] = \{x \in \mathbf{E} \mid a^+ \circ x^+ = x^+ \circ a^+\}, \sigma([a]) = [\sigma(a)] and Aut(\mathbf{E}, +) \le Aut(\mathbf{E}, \mathcal{G}).$

Proof. "(5)" $\forall x \in \mathbf{E} : \sigma \circ a^+ \circ \sigma^{-1}(x) = \sigma(a + \sigma^{-1}(x)) = \sigma(a) + x = (\sigma(a))^+(x)$ hence $\sigma \circ a^+ \circ \sigma^{-1} = (\sigma(a))^+$ and so $(\sigma(a))^+ \circ (\sigma(x))^+ = \sigma \circ a^+ \circ x^+ \circ \sigma^{-1} = (\sigma(x))^+ \circ (\sigma(a))^+ \iff a^+ \circ x^+ = x^+ \circ a^+.$

Consequently $\sigma([a]) = [\sigma(a)]$. Since $\sigma(a + [b]) = \sigma(a) + \sigma([b]) = \sigma(a) + [\sigma(b)]$ we have $\sigma \in Aut(\mathbf{E}, \mathcal{G})$.

From [6] (16.12) and (19.1) we obtain the first part of the following theorem:

(2.6) (\mathbf{E}_1, \bullet) with $a \bullet b := a^{\bullet}(b)$ is a commutative group with the neutral element e_1 , isomorphic to the rotation group in o and for $a \in \mathbf{E}_1$ and $b \in \mathbf{E}^*$ we have:

- (1) $a^{\bullet} \circ b^{+} = (a^{\bullet}(b))^{+} \circ a^{\bullet}$, *i.e.* $a^{\bullet} \in Aut(\mathbf{E}, +)$ hence $\mathbf{E}_{1}^{\bullet} := \{a^{\bullet} \mid a \in \mathbf{E}_{1}\} \leq Aut(\mathbf{E}, +)$.
- (2) $a^{\bullet}([b]) = [a^{\bullet}(b)], a^{\bullet}([b]_{+}) = [a^{\bullet}(b)]_{+}$, *i.e. the automorphism* a^{\bullet} *maps the commutative subgroup* [b] *of the loop* $(\mathbf{E}, +)$ *onto the subgroup* $[a^{\bullet}(b)]$, *in particular* $a^{\bullet}([e_{1}]) = [a]$.
- (3) $|[b]_+ \cap \mathbf{E}_1| = 1.$
- (4) $\forall b, c \in \mathbf{E}^* \exists_1 m \in \mathbf{E}_1 : [c]_+ = m^{\bullet}([b]_+) = [m^{\bullet}(b)]_+.$
- (5) For $a, b \in \mathbf{E}$ let $\delta_{a,b} := ((a+b)^+)^{-1} \circ a^+ \circ b^+$ and let $d_{a,b} := \delta_{a,b}(e_1)$ then $\delta_{a,b} = d^{\bullet}_{a,b}$ and $a^+ \circ b^+ = (a+b)^+ \circ d^{\bullet}_{a,b}$.
- (6) $\mathbf{E}^+ \triangleleft_Q \mathbf{E}_1^{\bullet} = \mathcal{A}_+$ is the quasidirect product of the loop $(\mathbf{E}, +)$ and the commutative group (\mathbf{E}_1, \bullet) : If $\sigma \in \mathcal{A}_+$, $a := \sigma(o)$ and $b := (a^+)^{-1} \circ \sigma(e_1)$ then $b \in \mathbf{E}_1$ and $\sigma = a^+ \circ b^{\bullet}$ and if $a, b \in \mathbf{E}$, $c, d \in \mathbf{E}_1$ then $(a^+ \circ c^{\bullet}) \circ (b^+ \circ d^{\bullet}) = (a + c^{\bullet}(b))^+ \circ ((d_{a,c^{\bullet}(b)}) \bullet c \bullet d)^{\bullet}$.

Proof. "(1)" Since $(o, e_1) \equiv (o, a)$ the midline of e_1 and a contains the point o (cf.[6] (16.12), (16.13)) hence $\widehat{e_1a}(o) = o$ and so $\underline{a^{\bullet}}(o) = o$. Therefore by (2.2.2), $\underline{a^{\bullet}} \circ \widetilde{o} \circ (\underline{a^{\bullet}})^{-1} = \overline{a^{\bullet}(o)} = \widetilde{o}$ and $\underline{a^{\bullet}} \circ \widetilde{ob} \circ (\underline{a^{\bullet}})^{-1} = (a^{\bullet}(\widetilde{o)a^{\bullet}}(b)) = o\widetilde{a^{\bullet}}(b)$ implying $\underline{a^{\bullet}} \circ b^{+} \circ (\underline{a^{\bullet}})^{-1} = (o\widetilde{a^{\bullet}}(b)) \circ \widetilde{o} = (\underline{a^{\bullet}}(b))^{+}$.

3. Measurement and polar coordinates

Let $W := [e_1], W_+ := [e_1]_+$ and $\mathbf{E}_+ := \{x \in \mathbf{E} \mid (W|e_2, x) = 1\}$. According to [6] (13.3) there is a total order relation "<" on W such that $o < e_1$ and for all $\{x, y, z\} \in {W \choose 3}$ holds: $(x|y, z) = -1 \iff y < x < z \text{ or } z < x < y.$

From the excelent paper of D. Gröger (cf. [2] §2) we obtain:

(3.1) Between the commutative group (W, +) (cf.(2.5.3)) and the ordered set (W, <) there are the following relations :

- (1) $\forall a \in W$, $\tilde{a}_{|W}$ is an antiton permutation of (W, <).
- (2) $\forall a \in W, a_{|W}^+$ is an isoton permutation, i.e. (W, +, <) is an ordered commutative group.
- (3) W_+ is a positive domain hence for $a, b \in W$: $a < b \iff -a + b \in W_+$. \Box

By (2.6.4) to any $x \in \mathbf{E}^*$ there exists exactly one $m \in \mathbf{E}_1$ with $m^{\bullet}([x]_+) = [e_1]_+ = W_+$. Therefore the map

$$| : \mathbf{E} \to W_+ \cup \{o\} ; x \mapsto \begin{cases} m^{\bullet}(x) & \text{if } x \neq o \\ o & \text{if } x = o, \end{cases}$$

called *absolute value*, is welldefined and we have:

$$(3.2) \forall x, y \in \mathbf{E} : |x| = |y| \iff (o, x) \equiv (o, y).$$

Using the loop operation of $(\mathbf{E}, +)$ we define:

$$\lambda : \mathbf{E} \times \mathbf{E} \to W_+ \cup \{o\}; (a, b) \mapsto \lambda(a, b) := |-a + b|$$

and call $\lambda(a, b)$ the *distance* of the points *a* and *b*. Since the maps a^+ are also motions we can summarize the results of ([2] (2.5), (2.6), (2.7)) and state:

(3.3) Let $a, b, c, d \in \mathbf{E}$ and $\varphi \in \mathcal{A}$ then :

- (1) $(a, b) \equiv (c, d) \iff \lambda(a, b) = \lambda(c, d)$
- (2) $\lambda(\varphi(a), \varphi(b)) = \lambda(a, b) = \lambda(b, a)$
- (3) $\lambda(a, b) = o \iff a = b$
- (4) If (a, b, c) is a rectangular triangle with $\overline{a, c} \perp \overline{b, c}$ then $\lambda(a, c) < \lambda(a, b)$.
- (5) (triangular inequality) $\lambda(a, b) \leq \lambda(a, c) + \lambda(b, c)$ and $\lambda(a, b) = \lambda(a, c) + \lambda(b, c) \iff c \in [a, b]$.

From (3.3.4) follows:

(3.4) For $A \in \mathcal{G}$ and $x \in \mathbf{E}$ let $x_A := (x \perp A) \cap A$ be the foot of x on A then for $a \in A, \lambda(x, x_A) \leq \lambda(x, a)$ and $\lambda(x, A) := \lambda(x, x_A)$ is called the distance from the point x to the line A.

If $p, q \in \mathbf{E}$, $A \in \mathcal{G}$ and $u \in W_+$ are given with $p \neq q$ and $q \notin A$, let

 $D(A,q) := \{x \in \mathbf{E} \mid \mathbf{\lambda} (x, A) = \mathbf{\lambda} (q, A) \land (A|q, x) = 1\} \text{ resp.}$

 $D(A; u) := \{ x \in \mathbf{E} \mid \mathbf{\lambda}(x, A) = u \}$

be the *equidistant* of A through q resp. the set of all points having the distance u from A. If $\lambda(q, A) = u$ then $D(A; u) = D(A, q) \cup D(A, \tilde{A}(q))$.

In the absolute plane (**E**, $\mathcal{G}, \alpha, \equiv$) we introduce an *orientation* $Or : \Delta \rightarrow \{1, -1\}$; $(a, b, c) \mapsto Or(a, b, c)$, i.e. a function defined on the set Δ of all triangles by:

Let $\sigma \in A_+$ be the proper motion uniquely determined by $\sigma(a,b) = W_+$ (cf. (2.2.3)) then $Or(a, b, c) := (W|e_2, \sigma(c)).$

We say (a, b, c) is positively oriented if Or(a, b, c) = 1 otherwise negatively.

The orientation *Or* induces a *cyclic order* ω on \mathbf{E}_1 turning the commutative group (\mathbf{E}_1, \bullet) in a *cyclic ordered group* ($\mathbf{E}_1, \bullet, \omega$) by:

For $\{a, b, c\} \in {E_1 \choose 3}$ we have $(a, b, c) \in \Delta$ and therefore we set $\omega(a, b, c) := Or(a, b, c)$.

Now we can introduce a measure for angles : if $\alpha = \angle (b, a, c) = (db, ac)$ is an angle let again $\sigma \in \mathcal{A}_+$ with $\sigma(db) = W_+$ then $\mu(\alpha) := [\sigma(c)]_+ \cap \mathbf{E}_1$ is called the *measure* of α .

Analogously to (3.3) we have:

(3.5) Let $\gamma := \angle (a, c, b)$ be an angle, let $d \in \mathbf{E} \setminus \{o\}$ with $(\overline{c, d}|a, b) = -1$ then $\mu(\gamma) = \mu(\angle (a, c, d)) \bullet \mu(\angle (d, c, b))$.

Moreover for any $x \in \mathbf{E}^*$ let $\xi := [x]_+ \cap \mathbf{E}_1$. Then the pair $(|x|, \xi) \in W_+ \times \mathbf{E}_1$ is called the *polar coordinates* of *x*, and the function $pc : \mathbf{E}^* \to W_+ \times \mathbf{E}_1$; $x \mapsto (|x|, [x]_+ \cap \mathbf{E}_1)$ is a bijection; for if $\xi \in \mathbf{E}_1$ and $w \in W_+$ are given then $x := \xi^{\bullet}(w)$ is exactly the point with the polar coordinates (w, ξ) .

4. Direct sums and direct pairs

Since for each $a \in \mathbf{E}_1$ the motion $a^{\bullet} = \widehat{e_1 a} \circ \widetilde{W}$ is an automorphism of the loop $(\mathbf{E}, +)$ we set $\bullet : \mathbf{E}_1 \times \mathbf{E} \to \mathbf{E}$; $(a, x) \mapsto a \bullet x := a^{\bullet}(x)$ and call the elements of \mathbf{E}_1 *multipliers*. To each $p \in \mathbf{E}^*$ we associate the multiplier $p_1 := [p]_+ \cap \mathbf{E}_1$ then:

(4.1) $\forall a, b \in \mathbf{E}_1, \forall x, y \in \mathbf{E}, \forall p \in \mathbf{E}^*$:

(1) e₁ • x = x, |a • x| = |x| and (a • p)₁ = a • p₁
(2) a • (x + y) = a • x + a • y
(3) a • (b • x) = (a • b) • x
(4) E₁ • x := {a • x | a ∈ E₁} is a circle with center *o* passing through x
(5) p = p₁ • |p|, i.e. (|p|, p₁) are the polar coordinates of p
(6) -e₁ ∈ E₁, (-e₁)• = õ and (-e₁) • x = -x.
(7) a • [p] = [a • p].

We call the commutative group (W, +) scalar domain and their elements scalars and introduce between W and \mathbf{E}^* by:

$$\oplus: W \times \mathbf{E}^* \to \mathbf{E}; (w, p) \mapsto w \oplus p := p_1 \bullet (w + |p|) = p_1 \bullet w + p$$

an operation which has the properties:

(4.2) For all $u, v \in W$, for all $p \in \mathbf{E}^*$:

(1) $o \oplus p = p$ (2) $((u + v) \oplus p) + p = (u \oplus p) + (v \oplus p)$ (3) If $u \ge o$ then $|u \oplus p| = u + |p|$ (4) $W \oplus p = [p], W_+ \oplus p = [p]_+.$

If $a, b \in \mathbf{E}^*$ and $u, v \in W$ then the expression $(u \oplus a) + (v \oplus b)$ shall be called *scalar combination* of *a* and *b*. Then:

(4.3) For all $a, b \in \mathbf{E}^*$, for all $u, v \in W$, for all $c \in \mathbf{E}_1 : c \bullet (u \oplus a) = u \oplus (c \bullet a), c \bullet ((u \oplus a) + (v \oplus b)) = (u \oplus (c \bullet a)) + (v \oplus (c \bullet b)).$

(4.4) Let $a, c \in \mathbf{E}^*$ with $[a] \neq [c]$ and let $b \in [a] \setminus \{a\}$ then:

- (1) $[a] \cap (a + [c]) = \{a\}$
- (2) $(b + [c]) \cap (a + [c]) = \emptyset$
- (3) $\forall p \in \mathbf{E}$ there is at most one pair $(x, y) \in [a] \times [c]$ such that p = x + y, i.e. there is at most one pair (u, v) of scalars such that $p = (u \oplus a) + (v \oplus c)$ is a scalar combination of a and c.

Proof. "(1)": By assumption $[a] \cap [c] = \{o\}$, since [a] is a subgroup of the loop $(\mathbf{E}, +)$ and a^+ a permutation we have: $\{a\} = (a + [a]) \cap (a + [c]) = [a] \cap (a + [c])$.

"(2)": Let $a' := Fix \ \widetilde{oa}, b' := Fix \ \widetilde{ob}$ hence $\widetilde{a'} = \widetilde{oa}, \widetilde{b'} = \widetilde{ob}$ and a' resp. b' is the midpoint of $\{o, a\}$ resp. $\{o, b\}$. By $b \in [a]$ follows $o, a', b' \in [a]$ hence by (2.3.1) there is a $d' \in [a]$ with $\widetilde{d'} = \widetilde{b'} \circ \widetilde{a'} \circ \widetilde{o} = \widetilde{ob} \circ \widetilde{oa} \circ \widetilde{o}$. Since $\widetilde{o}([c]) = [c]$ we obtain by (2.3.2) :

 $(b + [c]) \cap (a + [c]) = \widetilde{ob}([c]) \cap \widetilde{ob} \circ \widetilde{oa}([c])) = \widetilde{ob}([c] \cap \widetilde{d'}([c]) \neq \emptyset \Longleftrightarrow$

$$[c] \cap d'([c]) \neq \emptyset \Longleftrightarrow d' \in [a] \cap [c] = \{o\} \Longleftrightarrow \widetilde{oa} = ob \Longleftrightarrow a = b.$$

Since $a \neq b$, (2) is valid.

"(3)": Assume there are $(x, y), (x', y') \in [a] \times [c]$ with p = x + y = x' + y' and $x \neq x'$ then for instance $x \neq o$ and so $x' \in [a] = [x]$. Thus $p \in (x + [c]) \cap (x' + [c])$ and by (2), $(x + [c]) \cap (x' + [c]) = \emptyset$, a contradiction. Hence x = x' and so y = y'.

A pair $(a, b) \in \mathbf{E} \times \mathbf{E}$ is called a *direct pair* if $[a] + [b] := \{x + y \mid x \in [a], y \in [b]\} = \mathbf{E}$ or equivalently if $\mathbf{E} = (W \oplus a) + (W \oplus b)$. Then by (4.4.3) for every direct pair (a, b) the loop $(\mathbf{E}, +)$ is representable as *direct sum* of the commutative subgroups [a] and [b], i.e. each element $p \in \mathbf{E}$ is uniquely representable as a scalar combination of a and b.

(4.5) Let $a, b \in \mathbf{E}^*$ with $[a] \perp [b]$ then (a, b) is a direct pair.

Proof. Let $p \in \mathbf{E}$, $x := (p \perp [a]) \cap [a]$ then $[a] \perp [b]$, $x + [a] = \widetilde{ox}([a]) = [a]$ and $x + [b] = \widetilde{ox}([b])$ imply $[a] \perp (x + [b])$ hence $p \in (p \perp [a]) = x + [b]$ and so there is a $y \in [b]$ with p = x + y.

We call the K-loop (**E**, +) of an absolute plane *vectorspacelike* if for all $a, b \in \mathbf{E}^*$ with $[a] \neq [b], (a, b)$ is a direct pair.

(4.6) The K-loop of a singular plane is vectorspacelike if and only if the plane is Euclidean.

Proof. By (2.5.2) (**E**, +) is a commutative group. Let $a, b \in \mathbf{E}^*$ with $[a] \neq [b]$ and let p = x + y with $x \in [a]$ and $y \in [b]$ then $p = (x + [b]) \cap (y + [a]) = (p + [b]) \cap (p + [a])$.

Therefore (a, b) is a direct pair if for all $p \in \mathbf{E}$ holds:

 $(p + [a]) \cap [b] \neq \emptyset$ and $(p + [b]) \cap [a] \neq \emptyset$. Clearly, if the parallelaxiom is valid then this condition is satisfied:

for let $u, x, y, z \in \mathbf{E}$ with $y, z \neq o$ then $(u + [y]) \parallel (x + [z]) \iff [y] = [z]$.

If the parallelaxiom is not satisfied then by (2.2.2) there exist lines C, [a], [b] with $[a] \neq [b]$ and $C \cap ([a] \cup [b]) = \emptyset$. If C = d + [c] then at least one of the statements $[c] \neq [a]$ or $[c] \neq [b]$ is true for instance $[c] \neq [a]$. Since $(d + [c]) \cap [a] = C \cap [a] = \emptyset$ it follows that (a, c) is not a direct pair.

Next we consider the case $(a, b) \in \mathbf{E}^* \times \mathbf{E}^*$ with $[a] \neq [b]$ and $[a] \not\perp [b]$. Then there are $a_1 \in [a] \cap \mathbf{E}_1$, $b_1 \in [b] \cap \mathbf{E}_1$ such that $\gamma := \angle (b_1, o, a_1)$ is an acute angle hence $\mu(\gamma) = a_1^{-1} \bullet b_1 \in \mathbf{E}_1$ with $\omega(e_1, \mu(\gamma), e_2) = 1$. We show:

(4.7) For $a, b \in \mathbf{E}_1$ with $\omega(e_1, a^{-1} \bullet b, e_2) = 1$ the following statements are equivalent:

(1) (a, b) is a direct pair

- (2) $\forall w \in W_+ : [b] \cap D([a]; w) \neq \emptyset$
- (3) $\forall w \in W_+$ exists a rectangular triangle $\Delta = (p, q, r)$ with $\overline{p, q} \perp \overline{r, q}, \mu(\angle(r, p, q))$ = $a^{-1} \bullet b$ and $\lambda(r, q) = w$.

Proof. By (2.6) and (4.3), $(a^{-1})^{\bullet}$ is a proper motion and an automorphism of $(\mathbf{E}, +, W; \oplus)$. Therefore we may assume $a = e_1$ and $\omega(e_1, b, e_2) = 1$.

"(1) \Rightarrow (2), (3)". Let $w \in W_+$ be given. Since (a, b) is a direct pair there are uniquely determined scalars $u, v \in W$ such that $e_2 \bullet w = (u \oplus e_1) + (v \oplus b) = (u + e_1) + (v \oplus b)$.

Since w > o and $\omega(e_1, b, e_2) = 1$ we have v > o and $u + e_1 < o$. We consider the triangle $\Delta := (o, -(u + e_1), (v \oplus b))$ which has the properties:

1. Since $u + e_1 \in W$ and $o \neq u + e_1$ we have $\overline{o, -(u + e_1)} = W = [e_1]$ and $(-(u + e_1))^+$ is a proper motion fixing the line $[e_1]$. Since $[e_1] \perp [e_2]$ also the lines $[e_1]$ and $(-(u + e_1))$ $(e_1)^+([e_2]) = -(u+e_1) + [e_2]$ are orthogonal. The line $-(u+e_1) + [e_2]$ contains the points $-(u + e_1)$ and $-(u \oplus e_1) + e_2 \bullet w = -(u \oplus e_1) + ((u \oplus e_1) + (v \oplus b)) = v \oplus b$. Therefore Δ is rectangular with $\overline{o, -(u+e_1)} \perp \overline{-(u+e_1), v \oplus b}$ and so $-(u+e_1)$ is the orthogonal projection of $(v \oplus b)$ onto $[e_1]$. Hence: $\lambda(v \oplus b, [e_1]) = \lambda(-(u+e_1), v \oplus b) =$ $|-(u+e_1)-(v\oplus b)| = |-e_2 \bullet w| = |w| = w$ implying $v \oplus b \in D([e_1]; w)$, i.e. $[b] \cap D([e_1]; w) \neq \emptyset$ and (2) is proved. Finally since v > o and $-(u + e_1) > o$ we have $[v \oplus b]_{+} = [b]_{+}$ and $[-(u+e_1)]_{+} = [e_1]_{+}$ hence $\angle (v \oplus b, o, -(u+e_1)) = \angle (b, o, e_1)$ and so $\mu(\angle(b, o, e_1)) = b$, i.e. also (3) is proved. "(2) \Rightarrow (1)". Let $p \in \mathbf{E}$ be given. If $p \in [e_1]$ then p = p + o with $o \in [b]$. Therefore let $p \notin [e_1]$. Then by assumption (2) there is exactly one $v \in W$ such that $\{v \oplus b\} = [b] \cap D([e_1], p)$. Let $p_W := (p \perp [e_1]) \cap [e_1]$ and $(v \oplus b)_W := (v \oplus b \perp [e_1]) \cap [e_1]$, then $-p_W + p = -(v \oplus b)_W + (v \oplus b) \in [e_2]$ and since (W, +) is a commutative group there is exactly one $u \in W$ such that $p_W =$ $(u \oplus e_1) + (v \oplus b)_w = (u \oplus e_1)^+ (v \oplus b)_W$. Consequently: $p = p_W^+ \circ (-(v \oplus b)_W)^+ (v \oplus b) =$ $(u \oplus e_1)^+ \circ ((v \oplus b)_W)^+ \circ (-(v \oplus b)_W)^+ (v \oplus b) = (u \oplus e_1)^+ (v \oplus b) = (u \oplus e_1) + (v \oplus b).$

From (4.7) follows:

(4.8) The K-loop of an absolute plane is vectorspacelike if and only if : $\exists A \in \mathcal{G}$ and $a \in A : \forall G \in \mathcal{G} \setminus \{A\}$ with $a \in G, \forall x \in \mathbf{E} \setminus A : G \cap D(A, x) \neq \emptyset$.

5. b-Rings, rotational extensions and quasidilatations

Quasidilatations for the K-loop of an absolute geometry were introduced in [4]. In order to define them we consider firstly the ordered commutative group(W, +, <) (cf.(3.1)).

Let ξ denote the betweenness relation on *W* corresponding to <, let Iso(W, +, <) resp. *Bet*(*W*, +, ξ) be the set of all endomorphisms of the group (*W*, +) which are strictly isotone

resp. which preserve the betweenness relation ξ on W, let: $v : W \to W$; $x \mapsto -x := \tilde{o}(x)$ and let Mon(W, +) be the set of all monomorphisms of (W, +). Then $Bet(W, +, \xi) = Iso(W, +, <) \cup v \circ Iso(W, +, <) \subseteq Mon(W, +)$ where $v \circ Iso(W, +, <)$ is the set of all antitone monomorphisms.

 $(Bet(W, +, \xi), \circ)$, $(Iso(W, +, <), \circ)$ and (Iso(W, +, <), +) are semigroups. The automorphism groups $Aut(W, +, \xi)$ resp. Aut(W, +, <) are subgroups of $(Bet(W, +, \xi), \circ)$ resp. $(Iso(W, +, <), \circ)$ and $Aut(W, +, \xi) = Aut(W, +, <) \cup v \circ Aut(W, +, <)$.

We show:

(5.1) (W, +) is uniquely divisible by 2 : for $a \in W$ let $\frac{1}{2}a$ be the midpoint of o and a then $\frac{1}{2}a \in W$ and $\frac{1}{2}a + \frac{1}{2}a = a$.

Proof. Let $a' := \frac{1}{2}a$ then $a' + a' = \widetilde{oa'} \circ \widetilde{o}(a') = \widetilde{a'} \circ \widetilde{oa'}(a') = \widetilde{a'}(o) = \widetilde{oa}(o) = a$ and if $a = b + b = \widetilde{ob} \circ \widetilde{o}(b) = \widetilde{b} \circ \widetilde{ob}(b) = \widetilde{b}(o)$ then b is the midpoint of o and a hence b = a'.

Since (W, +, <) is an ordered commutative group, (W, +) is a **Z**-module such that $\forall n \in \mathbf{Z}^* := \mathbf{Z} \setminus \{0\}$, the map $n^: : W \to W$; $x \mapsto n \cdot x$ is a monomorphism where $n^:$ is isotone if $n \in \mathbf{N}$ and antitone if $-n \in \mathbf{N}$. By (5.1), 2[:] is even an automorphism with $(2^:)^{-1}(x) = \frac{1}{2}x$.

Therefore:

(5.2) Let $\mathbf{P}_W := \{p \in \mathbf{P} \mid p \in SymW\}$ be the set of all prime numbers p such that p is even an automorphism of (W, +), let \mathbf{N}_W be the set of all natural numbers which are products of prime numbers of \mathbf{P}_W and let $\mathbf{Z}_W := \{\frac{m}{n} \mid m \in \mathbf{Z}, n \in \mathbf{N}_W\}$ be the subring of the field \mathbf{Q} consisting of all fractions where the denominator is an element of \mathbf{N}_W . Then:

- (1) $2 \in \mathbf{P}_W$ (by (5.1)) and $\mathbf{Z}_2 := \{m \cdot 2^{-n} \mid m \in \mathbf{Z}, n \in \mathbf{N} \cup \{0\}\} \subseteq \mathbf{Z}_W$.
- (2) $\forall r = \frac{m}{n} \in \mathbb{Z}_W^*$ the map $r^{\cdot} = m^{\cdot} \circ ((n^{\cdot})^{-1}$ is a monomorphism of (W, +) and r^{\cdot} is strictly isotone resp. antitone if r > 0 resp. r < 0.
- (3) If $r := \frac{m}{n}$ is a unit of \mathbb{Z}_W hence if $m \in \mathbb{N}_W$ then r is an automorphism of (W, +).
- (4) $(-e_1)_{|W}^{\bullet} = (-1)^{\cdot}$ is an antitone automorphism of (W, +).
- (5) \mathbf{Z}_W is a subring of End(W, +) with $\mathbf{Z}_W^* := \mathbf{Z}_W \setminus \{0\} \subseteq Bet(W, +, \xi)$.

(5.3) If $\mathbf{P}_W = \mathbf{P}$, i.e. for each $n \in \mathbf{N}$, n is a permutation of W then $\mathbf{Z}_W = \mathbf{Q}$ and (W, +) is a \mathbf{Q} -module, i.e. (W, \mathbf{Q}) is a vectorspace.

A subring *B* of the endomorphismring End(W, +) is called *b*-ring of (W, +) if $\mathbb{Z}_W \subseteq B$ and $B^* := B \setminus \{0\} \subseteq Bet(W, +, \xi)$.

By (5.2.5) \mathbb{Z}_W is a b-ring of (W, +, <).

Now let *B* be a b-ring of (W, +, <). Then $B^* := B \setminus \{o\} \subseteq Bet(W, +, \xi) \subseteq Mon(W, +)$ implies that B^* is a subsemigroup of $(Mon(W, +), \circ)$ and so the map $\iota : B \to W; \beta \mapsto \beta(e_1)$ is injective. If $\beta_i \in B$, $i \in \{1, 2\}$ and $b_i := \beta_i(e_1)$ then $\beta_1 + \beta_2 \in B$ and so $b_1 + b_2 = \beta_1(e_1) + \beta_2(e_1) = (\beta_1 + \beta_2)(e_1)$. Therefore ι is a monomorphism from (B, +) into (W, +) hence $\iota(B)$ a subgroup of (W, +) isomorphic with (B, +). We identify always *B* and $\iota(B)$ and if for $\beta \in B$ and $b := \iota(\beta) = \beta(e_1)$ we set $b^* := \beta$ and define :

 $\cdot : B \times W \to W; (b, w) \mapsto b \cdot w := b'(w).$

If B = W then the b-ring B is called *transitive*.

(5.4) Let $(B, +, \circ)$ be a b-ring of (W, +, <). Then for $a, b \in B^*$ and $x, y \in W$ we have $: e_1 \in B, e'_1 = id, e_1 \cdot x = x, a \cdot e_1 = e_1 \cdot a = a, a \cdot b = a'(b) = a' \circ b'(e_1) \in B$ hence $(a \cdot b)' = a' \circ b'$ and $a \cdot (b \cdot x) = (a \cdot b) \cdot x, (a + b) \cdot x = a \cdot x + b \cdot x, a \cdot (x + y) =$ $a \cdot x + a \cdot y, a \cdot x = a \cdot y \iff x = y$ and $a \cdot x = b \cdot x \iff a = b$ or x = o.

This shows: $((W, +), B, \cdot)$ is a *nearfield* in the sense of H.Zassenhaus (cf.[9],[3] p.2) (i.e. (W, +) is a group, $B \subseteq W$ with $B^* \neq \emptyset$ and if $a, b \in B$ then $a(b) \in B$ and $(a(b))^{-} = a \circ b^{-}$, i.e. (B, \cdot) is a semigroup, if $x \in W^*$ with a'(x) = b'(x) then a = b and $B^{*} := \{b' \mid b \in B^*\}$ is a subgroup of the automorphism group $Aut(W, +).)^2$ Moreover $B_+ := B \cap W_+$ is a subsemigroup of (B^*, \cdot) and $B_+ \cdot W_+ = W_+$.

(5.5) If $(B, +, \circ)$ is a transitive b-ring of (W, +, <) hence $B := \iota(B) = B(e_1) = W$ then $(W, +, \cdot)$ is a complete nearfield even a field and $(W, +, \cdot, <)$ is an ordered field.

Proof. $B^* \subseteq Bet(W, +, \xi) \subseteq Mon(W, +)$, $B^*(e) = W^*$ and (5.4) imply that (W^*, \cdot) is a group hence by (5.4) $(W, +, \cdot)$ is a field and so if $a \in W^*$ then a^{\cdot} is an automorphism of (W, +).

Consequently $B^* \subseteq Aut(W, +, \xi) = Aut(W, +, <) \cup v \circ Aut(W, +, <).$

Let a < b and o < c. Then $c \in Aut(W, +, \xi)$, $o < e_1$ and $c(e_1) = c$ imply $c \in Aut(W, +, <)$ and therefore $c \cdot a = c(a) < c(b) = c \cdot b$. Moreover a < b hence o < -a + b implies $(-a + b) \in Aut(W, +, <)$ and so $o < (-a + b)(c) = (-a + b) \cdot c$. Since $(W, +, \cdot)$ is a field we obtain $o < -a \cdot c + b \cdot c$, i.e. $a \cdot c < b \cdot c$.

REMARK. If (W, +, <) is an archimedian ordered group then (by the theorem of O. Hölder) (W, +) is isomorphic to a subgroup of $(\mathbf{R}, +)$ (resp. to $(\mathbf{R}, +)$). Therefore:

(5.6) If (W, +, <) is continuous then $(\mathbf{R}, +, \cdot)$ is a transitive b-ring of (W, +, <) and (W, +) can be provided with a multiplication "·" such that $(W, +, \cdot)$ is a field isomorphic to $(\mathbf{R}, +, \cdot)$.

²Zassenhaus calls a nearfield *complete* if B = W. Today the notion "nearfield" is used for complete nearfields in the sense of Zassenhaus.

Helmut Karzel and Mario Marchi

J. Geom.

We call a map $\varphi : \mathbf{E} \to \mathbf{E}$ rotational (homogenous) if : $\forall a \in \mathbf{E}_1 : \varphi \circ a^{\bullet} = a^{\bullet} \circ \varphi$.

A rotational map φ fixes *o* and is completely determined by its restriction $\varphi_{|W_+}$: for if $x = x_1 \bullet |x| \in \mathbf{E}^*$ is given by its polar coordinates then $\varphi(x) = \varphi(x_1 \bullet |x|) = \varphi(x_1^\bullet \circ |x|) = x_1^\bullet \circ \varphi(|x|) = x_1^\bullet \circ \varphi_{|W_+}(|x|)$ and since $W = \{o\} \cup W_+ \cup (-e_1) \bullet W_+$ and $[x] = x_1 \bullet W = \{o\} \cup x_1 \bullet W_+ \cup x_1 \bullet (-e_1) \bullet W_+$ we have : $\varphi([x]) = x_1 \bullet \varphi(W) = \{o\} \cup x_1 \bullet \varphi(W_+) \cup x_1 \bullet (-e_1) \bullet W_+$ we have : $\varphi([x]) = x_1 \bullet \varphi(W) = \{o\} \cup x_1 \bullet \varphi(W_+) \cup x_1 \bullet (-e_1) \bullet \varphi(W_+)$.

Conversely:

(5.7) Any map $\psi : W_+ \to \mathbf{E}$ can be uniquely extended to a rotational map $\bar{\psi} : \mathbf{E} \to \mathbf{E}$ by $\bar{\psi}(x) = \bar{\psi}(x_1 \bullet |x|) := x_1^{\bullet}(\psi(|x|))$ for all $x \in \mathbf{E}^*$. $\bar{\psi}$ is then called rotational extension of ψ .

Proof. We have to show that $\bar{\psi}$ is rotational. Let $a \in \mathbf{E}_1$ and $x = x_1 \bullet |x| \in \mathbf{E}^*$ then $a \bullet x_1 \in \mathbf{E}_1$ (cf. (2.6)) and $(a \bullet x_1)^{\bullet} = a^{\bullet} \circ x_1^{\bullet}$ hence $\bar{\psi} \circ a^{\bullet}(x) = \bar{\psi} \circ a^{\bullet}(x_1^{\bullet}(|x|)) = \bar{\psi}((a \bullet x_1)^{\bullet}(|x|) = (a \bullet x_1)^{\bullet}(\psi(|x|)) = a^{\bullet} \circ x_1^{\bullet}(\psi(|x|)) = a^{\bullet} \circ \bar{\psi}(x)$.

If *A* is an arbitrary set then any two maps $\varphi, \psi \in Map(A, \mathbf{E})$ from *A* into the loop $(\mathbf{E}, +)$ can be added with the help of the loop operation "+" by: $(\varphi + \psi)(x) := \varphi(x) + \psi(x)$ for $x \in A$.

Then $\varphi + \psi \in Map(A, \mathbf{E})$ and so $(Map(A, \mathbf{E}), +)$ is also a loop. The properties of the loop $(\mathbf{E}, +)$ pass on $(Map(A, \mathbf{E}), +)$, i.e. in our case $(Map(A, \mathbf{E}), +)$ is a K-loop too. For $A = \mathbf{E}$ we set $Map(\mathbf{E}) := Map(\mathbf{E}, \mathbf{E})$. In this case with $\varphi, \psi, \chi \in Map(\mathbf{E})$ also $\varphi \circ \psi \in Map(\mathbf{E})$, (i.e. $(Map(\mathbf{E}), \circ)$ is a semigroup) and $(\varphi + \psi) \circ \chi = \varphi \circ \chi + \psi \circ \chi$. This shows that $(Map(\mathbf{E}), +, \circ)$ is a (right) K-loop-nearring (cf.[8]).

Let $\mathcal{R}(\mathbf{E}, o) := \{ \varphi \in Map(\mathbf{E}) \mid \forall a \in \mathbf{E}_1 : \varphi \circ a^{\bullet} = a^{\bullet} \circ \varphi \}$ be the set of all *rotational maps* of the loop $(\mathbf{E}, +)$, let $\mathcal{R}(\mathbf{E}, []) := \{ \varphi \in \mathcal{R}(\mathbf{E}, o) \mid \forall x \in \mathbf{E} \text{ with } \varphi(x) \neq o : \varphi([x]) \subseteq [\varphi(x)] \}$, $\mathcal{R}(\mathbf{E}, [[]]) := \{ \varphi \in \mathcal{R}(\mathbf{E}, o) \mid \forall x \in \mathbf{E}^* : \varphi(x) \subseteq [x] \}$ and $\mathcal{R}(W, o) := \{ \varphi \in Map(W) \mid v \circ \varphi = \varphi \circ v \}$. Then we can show:

(5.8)

- (1) $\mathcal{R}(\mathbf{E}, o)$ is a subloop-nearring of the K-loop-nearring $(Map(\mathbf{E}), +, \circ)$.
- (2) $\mathcal{R}(W, o)$ is a subnearring of the nearring $(Map(W), +, \circ)$.
- $(3) \ (\mathcal{R}(E, [[\]]), \circ) \leq (\mathcal{R}(E, [\]), \circ) \leq (\mathcal{R}(E), \circ) \text{ and } E_1^{\bullet} \leq (\mathcal{R}(E, [\]), \circ).$
- (4) R(E, [[]]) is a subnearring of (R(E, []), +, ∘) and (R(E, [[(]]), +, ∘) is isomorphic to (R(W, o), +, ∘): The map ι : R(W, o) → R(E, [[]]); φ ↦ (φ|W₊ (where φ|W₊ denotes the rotational extension of the restriction φ|W₊) is an isomorphism from (R(W, o), +, ∘) onto (R(E, []), +, ∘).
- (5) The endomorphismring End(W, +) is a subring of the nearring $\mathcal{R}(W, o), +, \circ)$ and so $En(\mathbf{E}, o) := \iota(End(W, +))$ is a subring of the nearring $(\mathcal{R}(\mathbf{E}, [[]]), +, \circ)$. The

elements φ of $En(\mathbf{E}, o)$ are rotational maps characterized by: If $x, y \in \mathbf{E}$ with [x] = [y] then $\varphi(x + y) = \varphi(x) + \varphi(y)$.

Proof. Let $\varphi, \psi \in \mathcal{R}(\mathbf{E}, +), a \in \mathbf{E}_1, x \in \mathbf{E}$ and observe $a^{\bullet} \in Aut(\mathbf{E}, +)$ (cf.(2.6.1)) then $(\varphi + \psi) \circ a^{\bullet}(x) = \varphi \circ a^{\bullet}(x) + \psi \circ a^{\bullet}(x) = a^{\bullet}(\varphi(x)) + a^{\bullet}(\psi(x)) = a^{\bullet}(\varphi(x) + \psi(x)) = a^{\bullet} \circ (\varphi + \psi)(x)$ and $(\varphi \circ \psi) \circ a^{\bullet} = \varphi \circ a^{\bullet} \circ \psi = a^{\bullet} \circ (\varphi \circ \psi)$. Hence $\varphi + \psi, \varphi \circ \psi \in \mathcal{R}(\mathbf{E}, o)$. This shows (1).

Since with (W, +) also (Map(W), +) is a commutative group, $(Map(W), +, \circ)$ is a nearring and with the previous arguments, (2) is proved.

By (4.1.6) $-\varphi = (-e_1)^{\bullet} \circ \varphi \in \mathcal{R}(\mathbf{E}, o)$. Now assume moreover $\varphi, \psi \in \mathcal{R}(\mathbf{E}, [])$ and $\varphi \circ \psi(x) \neq o$. Then (since $\varphi(o) = o$) $\psi(x) \neq o$ and so $\varphi(\psi([x])) \subseteq \varphi([\psi(x)]) \subseteq [\varphi(\psi(x))] = [\varphi \circ \psi(x)]$. If even $\varphi, \psi \in \mathcal{R}(\mathbf{E}, [[]])$ and $x \in \mathbf{E}^*$ then $\varphi(\psi([x])) \subseteq \varphi([x]) \subseteq [x]$ and $(\varphi + \psi)([x]) = \{(\varphi + \psi)(y) = \varphi(y) + \psi(y) \mid y \in [x]\} \subseteq [x] + [x] \subseteq [x]$, i.e. $\varphi \circ \psi, \varphi + \psi \in \mathcal{R}(\mathbf{E}, [[]])$. Moreover by (4.1.7), $a^{\bullet}([x]) = [a^{\bullet}(x)]$ hence (3) is completely proved.

If $\psi \in \mathcal{R}(\mathbf{E}, [[\]])$ then $\psi(W) = \psi([e_1]) \subseteq [e_1] = W$, $\psi(o) = o$ and if $w \in W$ then $\psi(-w) = \psi(v(w)) = \psi((-e)^{\bullet}(w) = (-e)^{\bullet} \circ \psi(w) = v(\psi(w))$ hence $\varphi := \psi|W \in \mathcal{R}(W, \circ)$ and so φ is completely determined by $\varphi|W_+$ and by (5.7) we have firstly $\psi = \overline{\varphi|W_+}$ and secondly that ι is injective and surjective. Clearly if $\varphi, \psi \in \mathcal{R}(W, o)$ and $x \in \mathbf{E}^*$ then by (5.7) and $x_1^{\bullet} \in Aut(\mathbf{E}, +), \overline{\varphi|W_+}(x) + \overline{\psi|W_+}(x) = x_1^{\bullet}(\varphi(|x|) + x_1^{\bullet}(\psi(|x|)) = x_1^{\bullet}(\varphi(|x|) + \psi(|x|)) = x_1^{\bullet} \circ (\varphi + \psi)(|x|) = (\varphi + \psi)|W_+(x)$, i.e. $\overline{\varphi|W_+} + \overline{\psi|W_+} = (\varphi + \psi)|W_+$. Furthermore $\overline{(\varphi \circ \psi)|W_+}(x) = x_1^{\bullet}(\varphi \circ \psi)(|x|) = x_1^{\bullet} \circ (\psi(|x|))_1^{\bullet}(\varphi(|\psi(|x|)|))$ and observing (5.7), $\overline{\varphi|W_+} \circ \overline{\psi|W_+}(x) = \overline{\varphi|W_+}(x_1^{\bullet} \circ \psi(|x|)) = x_1^{\bullet} \circ \overline{\varphi|W_+}(\psi(|x|)) = x_1^{\bullet} \circ (\psi(|x|))_1^{\bullet}(\varphi(|\psi(|x|)|))$. Thus ι is an isomorphism.

Since (W, +) is a commutative group the map $v : W \to W$; $w \mapsto -w$ is an automorphism of (W, +) hence $v \in End(W, +)$ and if $\varphi \in End(W, +)$ and $x \in W$ then $\varphi \circ v(x) = \varphi(-x) = -\varphi(x) = v \circ \varphi(x)$ hence $End(W, +) \leq (\mathcal{R}(W, o), +, \circ)$. The other statements of (5) are a consequence of (4).

Now let *B* be a b-ring of (W, +, <) and let $\lambda \in B$ be the rotational extension of the leftmultiplication $\lambda_l : W \to W$; $w \mapsto \lambda \cdot w$ (cf. (5.4)) hence $\lambda^{\cdot} : \mathbf{E} \to \mathbf{E}$; $x = x_1 \bullet |x| \mapsto x_1 \bullet (\mathbf{\lambda} \cdot |x|)$ is called a *B*-quasidilatation. By [4]p.407 follows:

(5.9) Let *B* be a *b*-ring of (W, +, <), let *U* be the set of units of $(B, +, \cdot)$ and let $\mathcal{F} := \{[x] \mid x \in \mathbf{E}^*\}$. Then $(\mathbf{E}, +, \mathcal{F}, B, \cdot)$ is a structure where $(\mathbf{E}, +, \mathcal{F})$ is a loop with an incidence fibration and $\cdot : B \times \mathbf{E} \to \mathbf{E}; (\lambda, x) \mapsto \lambda \cdot x := \lambda^{-}(x)$ is a map such that for all $\lambda, \mu \in B$, for all $X \in \mathcal{F}$ and for all $a, b \in \mathbf{E}$ the following hold:

- (1) $\lambda \cdot a = o \Leftrightarrow \lambda = 0 \text{ or } a = o.$
- (2) If $\lambda \in U$, then $\lambda \cdot \mathbf{E} = \mathbf{E}$ and $\lambda \cdot X = X$.

Helmut Karzel and Mario Marchi

J. Geom.

- (3) $(\lambda \cdot \mu) \cdot a = \lambda \cdot (\mu \cdot a)$, $(\lambda + \mu) \cdot a = \lambda \cdot a + \mu \cdot a$.
- (4) If $a, b \in X$ then $\lambda \cdot (a + b) = \lambda \cdot a + \lambda \cdot b$.

(5.10) For $\lambda \in \mathbb{Z}_W \setminus \{0, 1\}$ the \mathbb{Z}_W -quasidilatation λ^{\cdot} is a collination of $(\mathbb{E}, \mathcal{G})$ if and only if $(\mathbb{E}, \mathcal{G}, \alpha, \equiv)$ is singular.

Let *B* be a b-ring of our absolute plane, i.e. of (W, +, <). If $a, b \in \mathbf{E}$ and $\lambda, \mu \in B$ then the expression $\lambda \cdot a + \mu \cdot b$ shall be called *quasilinear B-combination* or shortly *q-linear B-combination*.

(5.11) If (W, +, <) possesses a transitive b-ring (i.e. by (5.5), W can be turned in an ordered field $(W, +, \cdot, <)$) then for all $a, b \in \mathbf{E}^*$ with $[a] \neq [b]$ each element $x \in [a] + [b]$ can be written uniquely as a quasilinear W-combination of a and b, i.e. $\exists_1(\alpha, \beta) \in W \times W$: $x = \alpha \cdot a + \beta \cdot b$.

6. Hyperbolic planes

Among the absolute planes the hyperbolic planes (**E**, \mathcal{G} , α , \equiv) are characterized by the following axiom (cf. [6]p.149):

(H) $\forall G \in \mathcal{G}, \forall p \in \mathbf{E} \setminus G \exists H \in \mathcal{G} \text{ with } p \in H \land H \parallel_h G$

where $H \parallel_h G$ is defined by: Let $P := (p \perp G)$ then: $G \cap H = \emptyset$, $\tilde{P}(H) \neq H, \forall x \in \mathbf{E} \setminus (H \cup \tilde{P}(H))$ with $(H|x, \tilde{P}(x)) = 1 : \overline{p, x} \cap G \neq \emptyset$.

In [6] it is shown that there is a one-to-one correspondence between the hyperbolic planes and the commutative Euclidean fields $(K, +, \cdot)$. A commutative field is *Euclidean* if $K^{(2)} :=$ $\{x^2 \mid x \in K^* := K \setminus \{o\}\}$ is a positive domain. For $a \in K^*$ let $sgn \ a = 1$ if $a \in K^{(2)}$ and $sgn \ a = -1$ if $a \notin K^{(2)}$. Starting from a commutative Euclidean field $(K, +, \cdot)$ one can obtain the corresponding hyperbolic plane in the following way:

Let $(\mathcal{M}, +, \cdot)$ be the ring of all 2×2 -matrices $A = (a_{ij})$ (with $a_{ij} \in K$) over the Euclidean field, let $E = (\delta_{ij})$ be the identity matrix and let $(K, +, \cdot)$ be imbedded in $(\mathcal{M}, +, \cdot)$ via the map : $K \to \mathcal{M}$; $u \mapsto u \cdot E$. For $A, B \in \mathcal{M}$ let :

$$\hat{A} = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}, \quad A^T = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix},$$

 $A^{\Box}(B) := A \cdot B \cdot A^{T}$ and $f(A, B) := A \cdot \hat{B} + B \cdot \hat{A}$. Then $det A = A \cdot \hat{A} = \frac{1}{2}f(A, A)$ and $TrA = A + \hat{A}$.

We denote by $S := \{X \in M \mid X^T = X\}$ the set of all symmetric matrices of M and consider the subset $\mathbf{E} := S^{1,+} := \{S \in S \mid S \cdot \hat{S} = 1 \land S + \hat{S} > 0\}$ as *point-set* of the hyperbolic plane.

For $G \in S^{-1} := \{S \in S \mid S \cdot \hat{S} = -1\}$ let $\underline{G} := \{X \in S^{1+} \mid f(X, G) = 0\}$ and let $\mathcal{G} := \{\underline{G} \mid G \in S^{-1}\}$ be the set of *lines*

NOTE: for $G, H \in S^{-1}$: $\underline{G} = \underline{H} \iff H \in \{G, -G\}.$

The *congruence* \equiv is given by:

If $A, B, C, D \in \mathbf{E}$ then: $(A, B) \equiv (C, D) : \iff f(A, B) = f(C, D)$

And the *order* α is defined by:

If $A, B \in \mathbf{E}, G \in S^{-1}$ and $A, B \notin \underline{G}$ then: $(\underline{G}|A, B) := sgn(f(A, G) \cdot f(B, G)).$

In [6] and [5] it is shown that $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is a hyperbolic plane.

If $A \in \mathbf{E} = S^{1+}$ and $G \in S^{-1}$ then the reflection in the point A and in the line <u>G</u> is given by:

 $\tilde{A} : \mathbf{E} \to \mathbf{E}; \ X \mapsto A^{\Box}(\hat{X}) = A \cdot \hat{X} \cdot A^{T}$ and

 $\underline{\tilde{G}}: \mathbf{E} \to \mathbf{E}; \ X \mapsto G^{\Box}(\hat{X}) = G \cdot \hat{X} \cdot G^T$ and the foot by

 $A_G := (A \perp \underline{G}) \cap \underline{G} = (2 + f(A, G)^2)^{-\frac{1}{2}} (A + G \cdot \hat{A} \cdot G).$

Let $(o, e_1, e_2) := (E, \frac{1}{2} \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \frac{1}{4} \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix})$ be our frame of reference and let " \diamondsuit " denote the K-loop operation corresponding to the point *E*. Then $[e_i] = \underline{G_i}$ where $G_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $G_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ hence $W := [e_1] := \{ \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} \mid x \in K^{(2)} \}$ and $W_+ := \{ \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} \mid x \in K^{(2)} : 1 < x \}$. For $A := \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$, $B := \begin{pmatrix} b & 0 \\ 0 & b^{-1} \end{pmatrix} \in W$ we have:

$$\widetilde{EA} = \begin{pmatrix} \sqrt{a} & 0 \\ 0 & \sqrt{a^{-1}} \end{pmatrix}^{\Box} \circ \wedge \text{ hence } A^{\diamondsuit} = \widetilde{EA} \circ \widetilde{E} = \begin{pmatrix} \sqrt{a} & 0 \\ 0 & \sqrt{a^{-1}} \end{pmatrix}^{\Box} \text{ and}$$
$$A \diamondsuit B = \begin{pmatrix} \sqrt{a} & 0 \\ 0 & \sqrt{a^{-1}} \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & b^{-1} \end{pmatrix} \begin{pmatrix} \sqrt{a} & 0 \\ 0 & \sqrt{a^{-1}} \end{pmatrix} = \begin{pmatrix} ab & 0 \\ 0 & (ab)^{-1} \end{pmatrix}.$$

Therefore the map $\varphi : (K^{(2)}, \cdot) \to (W, \Diamond); \quad x \mapsto \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}$ is an isomorphism of the multiplicative group of all squares of the Euclidean field $(K, +, \cdot)$ onto the scalar domain (W, \Diamond) and so (W, \Diamond) can be identified with the group $(K^{(2)}, \cdot)$.

Then the absolute value $| | : \mathbf{E} \to W_+ \cup \{o\} = \{\lambda \in K^{(2)} | 1 \le \lambda\}$ is given by: $|X| = \frac{1}{2}(TrX + \sqrt{(TrX)^2 - 4}).$

Now we can prove:

(6.1) The K-loop of a hyperbolic plane is vectorspacelike.

Proof. By (4.8) we may consider the line $\underline{G_1}$ and the point *E*. The lines passing through *E* are given by the set of matrices

$$\mathcal{S}^{-1}(E) := \left\{ \begin{pmatrix} u & v \\ v & -u \end{pmatrix} \mid u, v \in K : u^2 + v^2 = 1 \right\},$$

and for $X = \begin{pmatrix} x & y \\ y & x^{-1}(1+y^2) \end{pmatrix} \in \mathbf{E} \setminus \underline{G_1}$ we have $y \neq 0$ and

$$D(\underline{G_1}, X) = \left\{ \begin{pmatrix} \lambda^2 x & y \\ y & \lambda^{-2} x^{-1} (1+y^2) \end{pmatrix} \mid \lambda \in K^* \right\}$$
$$= \left\{ \begin{pmatrix} \lambda x & y \\ y & \lambda^{-1} x^{-1} (1+y^2) \end{pmatrix} \mid \lambda \in K^{(2)} \right\}.$$
(6.1)

Now let $U = \begin{pmatrix} u & v \\ v & -u \end{pmatrix} \in S^{-1}(E)$ with $\underline{U} \neq \underline{G_1}$, i.e. $v \neq 0$. Then

$$\underline{U} \cap D(\underline{G_1}, X) = \{ \begin{pmatrix} \lambda x & y \\ y & \lambda^{-1} x^{-1} (1+y^2) \end{pmatrix} \mid \lambda \in K^{(2)} : \ (*) \ \lambda^2 u x + 2yv - u x^{-1} (1+y^2) = 0 \}.$$

The equation (*) has a solution if the discriminant $d = u^2(1+y^2) + y^2v^2 \in K^{(2)}$. But since $(K, +, \cdot)$ is an Euclidean field and since $y, v \neq 0$ we have $d \in K^{(2)}$. Thus the criterion (4.8) is fulfilled and any hyperbolic plane is vectorspacelike.

From (5.6),(5.11) and (6.1) we obtain the result of A. Greil [1]:

(6.2) Let $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ be the classical hyperbolic plane (i.e. also the continuity axiom is assumed), let $o \in \mathbf{E}$ be fixed, let $(\mathbf{E}, +)$ be the corresponding K-loop and let $a, b \in \mathbf{E} \setminus \{o\}$ with $\overline{o, a} \neq \overline{o, b}$ then each point $p \in \mathbf{E}$ can be written uniquely as a quasilinear **R**-combination of a and b, i.e.: $\forall p \in \mathbf{E} \ \exists_1(\alpha, \beta) \in \mathbf{R} \times \mathbf{R} : p = \alpha \cdot a + \beta \cdot b$.

References

- [1] A. Greil, Communication on: "Existenz und Berechenbarkeit von Linearkombinationen in der klassischen hyperbolischen Ebene. Given at the 29. Arbeitstagung über Geomertrie und Algebra", Berlin 2002.
- [2] D. Gröger, Archimedisierung absoluter Ebenen. J. Geom. 25 (1985) 49–76.
- [3] H. Karzel, From Nearrings and Nearfields to K-Loops, in : Nearrings, Nearfields and K-Loops, G. Saad and M.J. Thomsen, Eds., Kluwer Academic Publishers, Dordrecht, 1997, 1–20.
- [4] H. Karzel, Recent developments on absolute geometries and algebraization by K-loops. Discrete Math. 208/209 (1999) 387–409.
- [5] H. Karzel, Raum-Zeit-Welt und hyperbolische Geometrie, Vorlesungsausarbeitung von A. Konrad, Techn. Univ. München, Beiträge Geom. Algebra 29, TUM-M9412, 1994.
- [6] H. Karzel, K. Sörensen, D. Windelberg, Einführung in die Geometrie, Vandenhoeck, Göttingen, 1973.
- [7] H. Kiechle. Theory of K-Loops, Lecture Notes in Mathematics **1778**, Springer, Berlin, 2002.

Vectorspacelike representation of absolute planes

[8] S. Pianta, Loop-Nearrings, in: Nearrings and nearfields, H. Kiechle et al., Eds., Springer, Dordrecht, 2005, 57–67.

[9] H. Zassenhaus, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg 11 (1936) 187–220.

Helmut Karzel Zentrum Mathematik Technische Universität München Boltzmannstr. 3 85747 Garching Germany e-mail: karzel@ma.tum.de Mario Marchi Dipartimento di Matematica Università Cattolica Via Trieste, 17 25121 Brescia Italy e-mail: geomet@dmf.unicatt.it

Received 31 January 2005.