Journal of Geometry

Vectorspacelike representation of absolute planes

Dedicated to Walter Benz on the occasion of his $75^{\text {th }}$ birthday, in friendship

Helmut Karzel and Mario Marchi*

Abstract

The pointset \mathbf{E} of an absolute plane $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ can be provided with a binary operation " + " such that $(\mathbf{E},+)$ becomes a loop and for each $a \in \mathbf{E} \backslash\{o\}$ the line $[a]$ through o and a is a commutative subgroup of $(\mathbf{E},+)$. Two elements $a, b \in \mathbf{E} \backslash\{o\}$ are called independent if $[a] \cap[b]=\{o\}$ and the absolute plane is called vectorspacelike if for any two independent elements we have $\mathbf{E}=[a]+[b]:=\{x+y \mid x \in[a], y \in[b]\}$. If $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is singular then $(\mathbf{E},+)$ is a commutative group and $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is vectorspacelike iff $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is Euclidean. If $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is a hyperbolic plane then $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is vectorspacelike and in the continous case if a, b are independent, each point p has a unique representation as a quasilinear combination $p=\alpha \cdot a+\mu \cdot b$ where $\alpha \cdot a \in[a]$ and $\beta \cdot b \in[b]$ are points, α, β real numbers such that $\boldsymbol{\lambda}(o, \lambda \cdot a)=|\lambda| \cdot \boldsymbol{\lambda}(o, a)$ and $\boldsymbol{\lambda}(o, \mu \cdot b)=|\mu| \cdot$ $\boldsymbol{\lambda}(o, b)$ and $\boldsymbol{\lambda}$ is the distance function.

Mathematics Subject Classification (2000): 51F05, 20N05.
Key words: Absolute plane, vectorspacelike K-loop.

1. Introduction

After fixing two points o and e the pointset \mathbf{E} of an absolute plane ($\mathbf{E}, \mathcal{G}, \alpha$, \equiv) can be furnished with a binary operation " + " such that $(\mathbf{E},+)$ becomes a K-loop with o as neutral element. If $\mathbf{E}^{*}:=\mathbf{E} \backslash\{o\}$ then for each $a \in \mathbf{E}^{*}$ the line $[a]:=\overline{o, a}$ through o and a is a commutative subgroup of the loop $(\mathbf{E},+$) and all these groups are isomorphic. Moreover the halfline $[a]_{+}:=o \nless a$ is a positive domain of the group $([a],+$) and so by " $x<y: \Longleftrightarrow$ $-x+y \in[a]_{+} ",([a],+,<)$ becomes an ordered group. Such an ordered group $(W,+,<)$ with $W:=[e]$ will be choosen as "scalar domain" and an operation " $\oplus: W \times \mathbf{E}^{*} \rightarrow$ $\mathbf{E} ;(w, p) \mapsto w \oplus p "$ between scalars and elements of \mathbf{E} introduced such that $[p]=W \oplus p$ holds.

If $(a, b) \in \mathbf{E}^{*} \times \mathbf{E}^{*}$ then the pair is called independent if $[a] \neq[b]$ and direct if $\mathbf{E}=$ $[a]+[b]:=\{x+y \mid x \in[a], y \in[b]\}=\{(u \oplus a)+(v \oplus b) \mid u, v \in W\}$. If $[a] \perp[b]$ then (a, b) is a direct pair (cf.(4.5)). We call $(\mathbf{E},+)$ vectorspacelike if each independent pair is direct. We show:

[^0]$(\mathbf{E},+)$ is vectorspacelike \Longleftrightarrow to a given segment $\left(s_{1}, s_{2}\right)$ and an acute angle α there exists a rectangular triangle (p, q, r) with $\overline{p, q} \perp \overline{q, r} \quad,(q, r) \equiv\left(s_{1}, s_{2}\right)$ and $\alpha \equiv \angle(r, p, q)$ (cf.(4.7),(4.8)).

For each $n \in \mathbf{N}$ the map $n: W \rightarrow W ; x \mapsto n \cdot x=x+\cdots+x$ (n times) is a strictly isotone monomorphism of $(W,+,<)$. The set $\mathbf{N}_{W}:=\{n \in \mathbf{N} \mid n$ is surjective $\}$ contains 2 (cf.(5.1)) and the imbedding of the subring $\mathbf{Z}_{W}:=\left\{\left.\frac{m}{n} \right\rvert\, m \in \mathbf{Z}, n \in \mathbf{N}_{W}\right\}$ of the field of rational numbers \mathbf{Q} in $(W,+,<)$ by $\frac{m}{n} \mapsto m^{\circ} \circ\left(n^{\circ}\right)^{-1}(e)$ is a monomorphism from $\left(\mathbf{Z}_{W},+\right)$ into $(W,+)$. In this way \mathbf{Z}_{W} will be considered as a subset of W with the operation $\cdot: \mathbf{Z}_{W} \times W \rightarrow W ;\left(\frac{m}{n}, x\right) \mapsto \frac{m}{n} \cdot x:=m \circ\left(n^{*}\right)^{-1}(x)$. Then for $r \in \mathbf{Z}_{W}, r \neq 0$ the map $r: W \rightarrow W ; w \mapsto r \cdot w$ is contained in the set $\operatorname{Bet}(W,+, \xi)$ of all betweenness preserving monomorphisms of $(W,+, \xi) ; r$ is isotone resp. antitone if $o<r$ resp. $r<o$. A subset $B \subseteq W$ together with an operation $\cdot: B \times W \rightarrow W$ will be called b-ring of $(W,+,<)$ if $(B,+, \cdot)$ is a ring containing $\left(\mathbf{Z}_{W},+, \cdot\right)$ as a subring and if for each $\beta \in B^{*}:=B \backslash\{o\}$ the map $\beta_{l}: W \rightarrow W ; w \mapsto \beta \cdot w$ is in $\operatorname{Bet}(W,+, \xi)$. If B is a b-ring and $\beta \in B^{*}$ then by a so called rotational extension (cf.(5.7)) β_{l} becomes an injection $\beta: \mathbf{E} \rightarrow \mathbf{E} ; x \mapsto$ $\beta \cdot x$ called B-quasidilatation (cf. Sec. 4). For $o<\beta<e$ the quasidilatation β is a contraction hence if $x \in \mathbf{E}^{*}$ then $\beta \cdot x$ is a point of the open segment] o, x [and if $e<\beta$ then β is an enlargement, i.e. $x \in] o, \beta \cdot x[$. For $a, b \in \mathbf{E}$ and $\lambda, \mu \in B$ the expression $\lambda \cdot a+\mu \cdot b$ is called quasilinear B-combination. If B is transitive, i.e. $B=W$, then $[a]+[b]=\{\lambda \cdot a+\mu \cdot b \mid \lambda, \mu \in B\}$ if $a, b \in \mathbf{E}_{1}$ or if $(W,+, \cdot):=(B,+, \cdot)$ is a field. In the case that $(W,+,<)$ is continuous W can be established with a multiplication "." such that ($W,+, \cdot,<$) becomes an ordered field (isomorphic to the reals \mathbf{R}) (cf. (5.6)) and then $[a]+[b]=W \cdot a+W \cdot b=\{\lambda \cdot a+\mu \cdot b \mid \lambda, \mu \in W\}$ for all $a, b \in \mathbf{E}$.

The loop $(\mathbf{E},+)$ is a group if the absolute plane is singular. In this case $(\mathbf{E},+)$ is vectorspacelike iff $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is an Euclidean plane (cf. (4.6)). In the ordinary case the loop of a hyperbolic plane is vectorspacelike (cf. (6.1)).

With the theorems (5.6) and (6.1) one obtains the result of A. Greil [1]:
If $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is a continuous hyperbolic plane (then \mathbf{R} is a b-ring) and if $a, b \in \mathbf{E}^{*}$ with $[a] \neq[b]$ then each point $x \in \mathbf{E}$ can be uniquely represented as a quasilinear \mathbf{R}-combination $x=\lambda \cdot a+\mu \cdot b$ with $\lambda(o, \lambda \cdot a)=|\lambda| \cdot \lambda(o, a)$ and $\lambda(o, \mu \cdot b)=|\mu| \cdot \lambda(o, b)$ where λ is the distance function (cf. Sec. 2).

2. Notations, assumptions and known results

In this paper let $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ be an absolute plane in the sense of [6] p. 96; \mathbf{E} and \mathcal{G} denotes the set of points and lines respectively, α the order-function and \equiv the congruence. Let \mathcal{A} be the motion group of $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$. For $a \in \mathbf{E}, A \in \mathcal{G}$ let \tilde{a} resp. \tilde{A} denote the point- resp. line-reflection in a resp. in A and let $\tilde{\mathbf{E}}:=\{\tilde{a} \mid a \in \mathbf{E}\}$ resp. $\tilde{\mathcal{G}}:=\{\tilde{A} \mid$
$A \in \mathcal{G}\}$ be the set of all point- resp. line-reflections. If $a, b \in \mathbf{E}$ and $a \neq b$ let $\widetilde{a b}$ resp. $\widehat{a b}$ denote the (uniquely determined) point- resp. line-reflection interchanging a and b (cf. [6] (16.11), (16.12), (17.1), (17.2)) (i.e. $\widetilde{a b}$ resp. $\widehat{a b}$ is the reflection in the midpoint resp. midline of a and b (cf. [6](16.11) and p. 105)). Moreover let $\overline{a, b}$ denote the line joining a and b and let $a, b:=\{x \in \overline{a, b} \mid(a \mid b, x)=1\}^{1}$ be the halfine and let $\mathcal{H}:=\left\{a^{\chi}, b \mid a, b \in \mathbf{E}, a \neq b\right\}$ be the set of all halflines.
By [6] (17.6),(17.9),(17.7) and $\tilde{\mathcal{G}} \subseteq \tilde{\mathcal{G}}^{3}$ follows:
(2.1) $\mathcal{A}=\tilde{\mathcal{G}}^{2} \dot{\cup} \tilde{\mathcal{G}}^{3}, \quad \tilde{\mathbf{E}} \subseteq \tilde{\mathcal{G}}^{2}$ and $\tilde{\mathcal{G}}^{2} \unlhd \mathcal{A}$ is a normal subgroup of \mathcal{A} of index 2 .

We call the elements of $\mathcal{A}_{+}:=\tilde{\mathcal{G}}^{2}$ proper motions. By [6] (17.8) and (18.3) we have:
(2.2) Let $\varphi \in \mathcal{A}, a \in \mathbf{E}$ and $G \in \mathcal{G}$ then:
(1) $\varphi \circ \tilde{G} \circ \varphi^{-1}=\varphi \widetilde{(G)}$ hence $\varphi \circ \tilde{\mathcal{G}} \circ \varphi^{-1}=\tilde{\mathcal{G}}$, i.e. $\tilde{\mathcal{G}}$ is an invariant subset consisting of involutory motions of \mathcal{A} and acting transitively on \mathbf{E}.
(2) $\varphi \circ \tilde{a} \circ \varphi^{-1}=\widetilde{\varphi(a)}$ hence $\varphi \circ \tilde{\mathbf{E}} \circ \varphi^{-1}=\tilde{\mathbf{E}}$, i.e. $(\mathbf{E}, \tilde{\mathbf{E}})$ is an invariant set of involutory motions acting regularly on \mathbf{E}.
(3) $\forall a, b, c, d \in \mathbf{E}, a \neq b, c \neq d \quad \exists_{1} \sigma \in \mathcal{A}_{+}: \quad \sigma\left(a^{\chi}, b\right)=c^{\chi}, d$, i.e. the group of proper motions acts regularly on the set \mathcal{H} of all halfines (cf. [6] (17.15)).
From [6] (17.7.2) and (17.13.2) resp. (16.10.2) and p. 105 follows:
(2.3) Let $D \in \mathcal{G}, a, b, c \in D$ and $p \in \mathbf{E} \backslash D$ then:
(1) $\exists m \in D: \tilde{a} \circ \tilde{b} \circ \tilde{c}=\tilde{m}$.
(2) $\tilde{p}(D) \cap D=\emptyset$.

The absolute planes split into two classes: the singular planes characterized by $\tilde{\mathbf{E}}^{3} \subset \tilde{\mathbf{E}}$ and the ordinary planes characterized by $\tilde{\mathbf{E}}^{3} \not \subset \tilde{\mathbf{E}}$
(2.4) If $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is singular then $\tilde{\mathbf{E}}^{2}$ is a commutative normal subgroup of \mathcal{A} acting regularly on \mathbf{E}. (cf. [6] (21.6))

Now let three non collinear points $o, e_{1}, e_{2} \in \mathbf{E}$ with $\left(o, e_{1}\right) \equiv\left(o, e_{2}\right)$ and $\overline{o, e_{1}} \perp \overline{o, e_{2}}$ be fixed as a frame of reference, let $\mathbf{E}_{1}:=\left\{x \in \mathbf{E} \mid(o, x) \equiv\left(o, e_{1}\right)\right\}$ and $\mathbf{E}^{*}:=\mathbf{E} \backslash\{o\}$. For any $a \in \mathbf{E}^{*}$ let:
$[a]:=\overline{o, a}$ the line joining o and a,
$[a]_{+}:=\{x \in[a] \mid(o \mid a, x)=1\}$ the halfine,
$a^{+}:=\tilde{o a} \circ \tilde{o}$ and $o^{+}:=i d\left(\operatorname{let} \mathbf{E}^{+}:=\left\{a^{+} \mid a \in \mathbf{E}\right\}\right)$.
For $a \in \mathbf{E}_{1} \backslash\left\{e_{1}\right\}$ let $a^{\bullet}:=\widehat{e_{1} a} \circ \widetilde{o, e_{1}}$ and $e_{1}^{\bullet}:=i d$.

[^1]Then by [4] p.405:
(2.5) $(\mathbf{E},+)$ with $a+b:=a^{+}(b)$ is $a \mathrm{~K}$-loop, i.e. a loop characterized by:
$\forall a, b \in \mathbf{E}: a^{+} \circ b^{+} \circ a^{+}=(a+(b+a))^{+}$and $\tilde{o} \circ a^{+}=(\tilde{o}(a))^{+} \circ \tilde{o}$
Moreover:
(1) \mathbf{E}^{+}is a set of fixed point free proper motions of $(\mathbf{E}, \mathcal{G}, \alpha$, $\equiv)$ acting regularly on the point set $\mathbf{E}(c f .(2.2 .2))$.
(2) $(\mathbf{E},+)$ is a group (and then even a commutative group) if and only if $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is singular; in this case $(\mathbf{E},+)$ and $\left(\tilde{\mathbf{E}}^{2}, \circ\right)$ are isomorphic.
(3) $\forall a \in \mathbf{E}^{*},[a]$ is a commutative subgroup of the loop $(\mathbf{E},+)$ and $[a]_{+}$a subsemigroup of $[a]$ with $[a]=[a]_{+} \dot{\cup}\{o\} \dot{\cup}[-a]_{+}$.
(4) $\mathcal{G}=\left\{a+[b] \mid a \in \mathbf{E}, b \in \mathbf{E}^{*}\right\}$ and the set \mathcal{H} of all halfines is represented by $\mathcal{H}=\left\{a+[b]_{+} \mid a \in \mathbf{E}, b \in \mathbf{E}^{*}\right\}$.
(5) If $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is ordinary then $\forall a \in \mathbf{E}^{*}, \forall \sigma \in \operatorname{Aut}(\mathbf{E},+):[a]=\left\{x \in \mathbf{E} \mid a^{+} \circ x^{+}=\right.$ $\left.x^{+} \circ a^{+}\right\}, \quad \sigma([a])=[\sigma(a)]$ and $\operatorname{Aut}(\mathbf{E},+) \leq \operatorname{Aut}(\mathbf{E}, \mathcal{G})$.

Proof. "(5)" $\forall x \in \mathbf{E}: \sigma \circ a^{+} \circ \sigma^{-1}(x)=\sigma\left(a+\sigma^{-1}(x)\right)=\sigma(a)+x=(\sigma(a))^{+}(x)$ hence $\sigma \circ a^{+} \circ \sigma^{-1}=(\sigma(a))^{+}$and so $(\sigma(a))^{+} \circ(\sigma(x))^{+}=\sigma \circ a^{+} \circ x^{+} \circ \sigma^{-1}=(\sigma(x))^{+} \circ$ $(\sigma(a))^{+} \Longleftrightarrow a^{+} \circ x^{+}=x^{+} \circ a^{+}$.

Consequently $\sigma([a])=[\sigma(a)]$. Since $\sigma(a+[b])=\sigma(a)+\sigma([b])=\sigma(a)+[\sigma(b)]$ we have $\sigma \in \operatorname{Aut}(\mathbf{E}, \mathcal{G})$.

From [6] (16.12) and (19.1) we obtain the first part of the following theorem:
(2.6) $\left(\mathbf{E}_{1}, \bullet\right)$ with $a \bullet b:=a^{\bullet}(b)$ is a commutative group with the neutral element e_{1}, isomorphic to the rotation group in o and for $a \in \mathbf{E}_{1}$ and $b \in \mathbf{E}^{*}$ we have:
(1) $a^{\bullet} \circ b^{+}=\left(a^{\bullet}(b)\right)^{+} \circ a^{\bullet}$, i.e. $a^{\bullet} \in \operatorname{Aut}(\mathbf{E},+)$ hence $\mathbf{E}_{1}^{\bullet}:=\left\{a^{\bullet} \mid a \in \mathbf{E}_{1}\right\} \leq$ $\operatorname{Aut}(\mathbf{E},+)$.
(2) $a^{\bullet}([b])=\left[a^{\bullet}(b)\right], a^{\bullet}\left([b]_{+}\right)=\left[a^{\bullet}(b)\right]_{+}$, i.e. the automorphism a^{\bullet} maps the commutative subgroup $[b]$ of the loop $(\mathbf{E},+)$ onto the subgroup $\left[a^{\bullet}(b)\right]$, in particular $a^{\bullet}\left(\left[e_{1}\right]\right)=[a]$.
(3) $\left|[b]_{+} \cap \mathbf{E}_{1}\right|=1$.
(4) $\forall b, c \in \mathbf{E}^{*} \exists_{1} m \in \mathbf{E}_{1}:[c]_{+}=m^{\bullet}\left([b]_{+}\right)=\left[m^{\bullet}(b)\right]_{+}$.
(5) For $a, b \in \mathbf{E}$ let $\delta_{a, b}:=\left((a+b)^{+}\right)^{-1} \circ a^{+} \circ b^{+}$and let $d_{a, b}:=\delta_{a, b}\left(e_{1}\right)$ then $\delta_{a, b}=d_{a, b}^{\bullet}$ and $a^{+} \circ b^{+}=(a+b)^{+} \circ d_{a, b}^{\bullet}$.
(6) $\mathbf{E}^{+} \triangleleft_{Q} \mathbf{E}_{1}^{\bullet}=\mathcal{A}_{+}$is the quasidirect product of the loop $(\mathbf{E},+$) and the commutative group $\left(\mathbf{E}_{1}, \bullet\right)$: If $\sigma \in \mathcal{A}_{+}, a:=\sigma(o)$ and $b:=\left(a^{+}\right)^{-1} \circ \sigma\left(e_{1}\right)$ then $b \in \mathbf{E}_{1}$ and $\sigma=a^{+} \circ b^{\bullet}$ and if $a, b \in \mathbf{E}, c, d \in \mathbf{E}_{1}$ then $\left(a^{+} \circ c^{\bullet}\right) \circ\left(b^{+} \circ d^{\bullet}\right)=$ $\left(a+c^{\bullet}(b)\right)^{+} \circ\left(\left(d_{a, c^{\bullet}(b)}\right) \bullet c \bullet d\right)^{\bullet}$.

Proof. "(1)" Since $\left(o, e_{1}\right) \equiv(o, a)$ the midline of e_{1} and a contains the point o (cf.[6] (16.12), (16.13)) hence $\widehat{e_{1} a}(o)=o$ and so $a^{\bullet}(o)=o$. Therefore by (2.2.2), $a^{\bullet} \circ \tilde{o} \circ\left(a^{\bullet}\right)^{-1}=$ $a^{\bullet}(o)=\tilde{o}$ and $a^{\bullet} \circ \widetilde{o b} \circ\left(a^{\bullet}\right)^{-1}=\left(a^{\bullet}\left(\widetilde{o) a^{\bullet}}(b)\right)=o \widetilde{\bullet}(b)\right.$ implying $a^{\bullet} \circ b^{+} \circ\left(a^{\bullet}\right)^{-1}=$ $\left(o \widetilde{a^{\bullet}}(b)\right) \circ \tilde{o}=\left(a^{\bullet}(b)\right)^{+}$.

3. Measurement and polar coordinates

Let $W:=\left[e_{1}\right], W_{+}:=\left[e_{1}\right]_{+}$and $\mathbf{E}_{+}:=\left\{x \in \mathbf{E} \mid\left(W \mid e_{2}, x\right)=1\right\}$. According to [6] (13.3) there is a total order relation " $<$ " on W such that $o<e_{1}$ and for all $\{x, y, z\} \in\binom{W}{3}$ holds: $(x \mid y, z)=-1 \Longleftrightarrow y<x<z$ or $z<x<y$.

From the excelent paper of D. Gröger (cf. [2] §2) we obtain:
(3.1) Between the commutative group $(W,+)(c f .(2.5 .3))$ and the ordered set $(W,<)$ there are the following relations :
(1) $\forall a \in W, \quad \tilde{a}_{\mid W}$ is an antiton permutation of $(W,<)$.
(2) $\forall a \in W, \quad a_{\mid W}^{+}$is an isoton permutation, i.e. $(W,+,<)$ is an ordered commutative group.
(3) W_{+}is a positive domain hence for $a, b \in W: a<b \Longleftrightarrow-a+b \in W_{+}$.

By (2.6.4) to any $x \in \mathbf{E}^{*}$ there exists exactly one $m \in \mathbf{E}_{1}$ with $m^{\bullet}\left([x]_{+}\right)=\left[e_{1}\right]_{+}=W_{+}$. Therefore the map

$$
\left|\mid: \mathbf{E} \quad \rightarrow \quad W_{+} \cup\{o\} \quad ; \quad x \mapsto \begin{cases}m^{\bullet}(x) & \text { if } x \neq o \\ o & \text { if } x=o\end{cases}\right.
$$

called absolute value, is welldefined and we have:
(3.2) $\forall x, y \in \mathbf{E}: \quad|x|=|y| \quad \Longleftrightarrow \quad(o, x) \equiv(o, y)$.

Using the loop operation of $(\mathbf{E},+)$ we define:

$$
\lambda: \mathbf{E} \times \mathbf{E} \rightarrow W_{+} \cup\{o\} ;(a, b) \mapsto \lambda(a, b):=|-a+b|
$$

and call $\lambda(a, b)$ the distance of the points a and b. Since the maps a^{+}are also motions we can summarize the results of ([2] (2.5), (2.6), (2.7)) and state:
(3.3) Let $a, b, c, d \in \mathbf{E}$ and $\varphi \in \mathcal{A}$ then :
(1) $(a, b) \equiv(c, d) \Longleftrightarrow \lambda(a, b)=\lambda(c, d)$
(2) $\lambda(\varphi(a), \varphi(b))=\lambda(a, b)=\lambda(b, a)$
(3) $\lambda(a, b)=o \Longleftrightarrow a=b$
(4) If (a, b, c) is a rectangular triangle with $\overline{a, c} \perp \overline{b, c}$ then $\lambda(a, c)<\lambda(a, b)$.
(5) (triangular inequality) $\boldsymbol{\lambda}(a, b) \leq \boldsymbol{\lambda}(a, c)+\boldsymbol{\lambda}(b, c)$ and $\lambda(a, b)=\lambda(a, c)+\lambda(b, c) \Longleftrightarrow$ $c \in[a, b]$.

From (3.3.4) follows:
(3.4) For $A \in \mathcal{G}$ and $x \in \mathbf{E}$ let $x_{A}:=(x \perp A) \cap A$ be the foot of x on A then for $a \in A, \lambda\left(x, x_{A}\right) \leq \lambda(x, a)$ and $\lambda(x, A):=\lambda\left(x, x_{A}\right)$ is called the distance from the point x to the line A.

If $p, q \in \mathbf{E}, A \in \mathcal{G}$ and $u \in W_{+}$are given with $p \neq q$ and $q \notin A$, let
$D(A, q):=\{x \in \mathbf{E} \mid \lambda(x, A)=\lambda(q, A) \wedge(A \mid q, x)=1\}$ resp.
$D(A ; u):=\{x \in \mathbf{E} \mid \lambda(x, A)=u\}$
be the equidistant of A through q resp. the set of all points having the distance u from A. If $\lambda(q, A)=u$ then $D(A ; u)=D(A, q) \dot{\cup} D(A, \tilde{A}(q))$.

In the absolute plane $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ we introduce an orientation $\operatorname{Or}: \Delta \rightarrow\{1,-1\}$; $(a, b, c) \mapsto \operatorname{Or}(a, b, c)$, i.e. a function defined on the set Δ of all triangles by:

Let $\sigma \in \mathcal{A}_{+}$be the proper motion uniquely determined by $\sigma\left(a^{\chi}, b\right)=W_{+}$(cf. (2.2.3)) then $\operatorname{Or}(a, b, c):=\left(W \mid e_{2}, \sigma(c)\right)$.

We say (a, b, c) is positively oriented if $\operatorname{Or}(a, b, c)=1$ otherwise negatively.
The orientation Or induces a cyclic order ω on \mathbf{E}_{1} turning the commutative group $\left(\mathbf{E}_{1}, \bullet\right)$ in a cyclic ordered group $\left(\mathbf{E}_{1}, \bullet, \omega\right)$ by:

For $\{a, b, c\} \in\binom{\mathbf{E}_{1}}{3}$ we have $(a, b, c) \in \Delta$ and therefore we set $\omega(a, b, c):=\operatorname{Or}(a, b, c)$.
Now we can introduce a measure for angles: if $\alpha=\angle(b, a, c)=(d b, a c)$ is an angle let again $\sigma \in \mathcal{A}_{+}$with $\sigma(\alpha \mathfrak{b})=W_{+}$then $\boldsymbol{\mu}(\alpha):=[\sigma(c)]_{+} \cap \mathbf{E}_{1}$ is called the measure of α.

Analogously to (3.3) we have:
(3.5) Let $\gamma:=\angle(a, c, b)$ be an angle, let $d \in \mathbf{E} \backslash\{o\}$ with $(\overline{c, d} \mid a, b)=-1$ then $\boldsymbol{\mu}(\gamma)=$ $\boldsymbol{\mu}(L(a, c, d)) \bullet \boldsymbol{\mu}(\angle(d, c, b))$.

Moreover for any $x \in \mathbf{E}^{*}$ let $\xi:=[x]_{+} \cap \mathbf{E}_{1}$. Then the pair $(|x|, \xi) \in W_{+} \times \mathbf{E}_{1}$ is called the polar coordinates of x, and the function $p c: \mathbf{E}^{*} \rightarrow W_{+} \times \mathbf{E}_{1} ; x \mapsto\left(|x|,[x]_{+} \cap \mathbf{E}_{1}\right)$ is a bijection; for if $\xi \in \mathbf{E}_{1}$ and $w \in W_{+}$are given then $x:=\xi^{\bullet}(w)$ is exactly the point with the polar coordinates (w, ξ).

4. Direct sums and direct pairs

Since for each $a \in \mathbf{E}_{1}$ the motion $a^{\bullet}=\widehat{e_{1} a} \circ \tilde{W}$ is an automorphism of the loop $(\mathbf{E},+)$ we set $\bullet: \mathbf{E}_{1} \times \mathbf{E} \rightarrow \mathbf{E} ;(a, x) \mapsto a \bullet x:=a^{\bullet}(x)$ and call the elements of \mathbf{E}_{1} multipliers. To each $p \in \mathbf{E}^{*}$ we associate the multiplier $p_{1}:=[p]_{+} \cap \mathbf{E}_{1}$ then:
(4.1) $\forall a, b \in \mathbf{E}_{1}, \forall x, y \in \mathbf{E}, \forall p \in \mathbf{E}^{*}$:
(1) $e_{1} \bullet x=x,|a \bullet x|=|x|$ and $(a \bullet p)_{1}=a \bullet p_{1}$
(2) $a \bullet(x+y)=a \bullet x+a \bullet y$
(3) $a \bullet(b \bullet x)=(a \bullet b) \bullet x$
(4) $\mathbf{E}_{1} \bullet x:=\left\{a \bullet x \mid a \in \mathbf{E}_{1}\right\}$ is a circle with center o passing through x
(5) $p=p_{1} \bullet|p|$, i.e. $\left(|p|, p_{1}\right)$ are the polar coordinates of p
(6) $-e_{1} \in \mathbf{E}_{1},\left(-e_{1}\right)^{\bullet}=\tilde{o}$ and $\left(-e_{1}\right) \bullet x=-x$.
(7) $a \bullet[p]=[a \bullet p]$.

We call the commutative group $(W,+)$ scalar domain and their elements scalars and introduce between W and \mathbf{E}^{*} by:

$$
\oplus: W \times \mathbf{E}^{*} \rightarrow \mathbf{E} ;(w, p) \mapsto w \oplus p:=p_{1} \bullet(w+|p|)=p_{1} \bullet w+p
$$

an operation which has the properties:
(4.2) For all $u, v \in W$, for all $p \in \mathbf{E}^{*}$:
(1) $o \oplus p=p$
(2) $((u+v) \oplus p)+p=(u \oplus p)+(v \oplus p)$
(3) If $u \geq o$ then $|u \oplus p|=u+|p|$
(4) $W \oplus p=[p], W_{+} \oplus p=[p]_{+}$.

If $a, b \in \mathbf{E}^{*}$ and $u, v \in W$ then the expression $(u \oplus a)+(v \oplus b)$ shall be called scalar combination of a and b. Then:
(4.3) For all $a, b \in \mathbf{E}^{*}$, for all $u, v \in W$, for all $c \in \mathbf{E}_{1}: c \bullet(u \oplus a)=u \oplus(c \bullet a), c \bullet$ $((u \oplus a)+(v \oplus b))=(u \oplus(c \bullet a))+(v \oplus(c \bullet b))$.
(4.4) Let $a, c \in \mathbf{E}^{*}$ with $[a] \neq[c]$ and let $b \in[a] \backslash\{a\}$ then:
(1) $[a] \cap(a+[c])=\{a\}$
(2) $(b+[c]) \cap(a+[c])=\emptyset$
(3) $\forall p \in \mathbf{E}$ there is at most one pair $(x, y) \in[a] \times[c]$ such that $p=x+y$, i.e. there is at most one pair (u, v) of scalars such that $p=(u \oplus a)+(v \oplus c)$ is a scalar combination of a and c.

Proof. "(1)" : By assumption $[a] \cap[c]=\{o\}$, since $[a]$ is a subgroup of the loop $(\mathbf{E},+)$ and a^{+}a permutation we have: $\{a\}=(a+[a]) \cap(a+[c])=[a] \cap(a+[c])$.
"(2)": Let $a^{\prime}:=$ Fix $\widetilde{o a}, b^{\prime}:=$ Fix $\widetilde{o b}$ hence $\widetilde{a^{\prime}}=\widetilde{o a}, \widetilde{b^{\prime}}=\widetilde{o b}$ and a^{\prime} resp. b^{\prime} is the midpoint of $\{o, a\}$ resp. $\{o, b\}$. By $b \in[a]$ follows $o, a^{\prime}, b^{\prime} \in[a]$ hence by (2.3.1) there is a $d^{\prime} \in[a]$ with $\widetilde{d^{\prime}}=\widetilde{b^{\prime}} \circ \widetilde{a^{\prime}} \circ \tilde{o}=\widetilde{o b} \circ \tilde{o} a \circ \tilde{o}$. Since $\tilde{o}([c])=[c]$ we obtain by (2.3.2) :
$(b+[c]) \cap(a+[c])=\widetilde{o b}([c]) \cap \tilde{o b} \circ \tilde{o a}([c]))=\widetilde{o b}\left([c] \cap \widetilde{d^{\prime}}([c]) \neq \emptyset \Longleftrightarrow\right.$
$[c] \cap \tilde{d^{\prime}}([c]) \neq \emptyset \Longleftrightarrow d^{\prime} \in[a] \cap[c]=\{o\} \Longleftrightarrow \tilde{o a}=\widetilde{o b} \Longleftrightarrow a=b$.
Since $a \neq b,(2)$ is valid.
"(3)": Assume there are $(x, y),\left(x^{\prime}, y^{\prime}\right) \in[a] \times[c]$ with $p=x+y=x^{\prime}+y^{\prime}$ and $x \neq x^{\prime}$ then for instance $x \neq o$ and so $x^{\prime} \in[a]=[x]$. Thus $p \in(x+[c]) \cap\left(x^{\prime}+[c]\right)$ and by (2), $(x+[c]) \cap\left(x^{\prime}+[c]\right)=\emptyset$, a contradiction. Hence $x=x^{\prime}$ and so $y=y^{\prime}$.

A pair $(a, b) \in \mathbf{E} \times \mathbf{E}$ is called a direct pair if $[a]+[b]:=\{x+y \mid x \in[a], y \in[b]\}=\mathbf{E}$ or equivalently if $\mathbf{E}=(W \oplus a)+(W \oplus b)$. Then by (4.4.3) for every direct pair (a, b) the loop $(\mathbf{E},+)$ is representable as direct sum of the commutative subgroups $[a]$ and $[b]$, i.e. each element $p \in \mathbf{E}$ is uniquely representable as a scalar combination of a and b.
(4.5) Let $a, b \in \mathbf{E}^{*}$ with $[a] \perp[b]$ then (a, b) is a direct pair.

Proof. Let $p \in \mathbf{E}, \quad x:=(p \perp[a]) \cap[a]$ then $[a] \perp[b], \quad x+[a]=\widetilde{o x}([a])=[a]$ and $x+[b]=\tilde{o x}([b])$ imply $[a] \perp(x+[b])$ hence $p \in(p \perp[a])=x+[b]$ and so there is a $y \in[b]$ with $p=x+y$.

We call the K-loop $(\mathbf{E},+)$ of an absolute plane vectorspacelike if for all $a, b \in \mathbf{E}^{*}$ with $[a] \neq[b],(a, b)$ is a direct pair.
(4.6) The K-loop of a singular plane is vectorspacelike if and only if the plane is Euclidean.

Proof. By (2.5.2) $(\mathbf{E},+)$ is a commutative group. Let $a, b \in \mathbf{E}^{*}$ with $[a] \neq[b]$ and let $p=x+y$ with $x \in[a]$ and $y \in[b]$ then $p=(x+[b]) \cap(y+[a])=(p+[b]) \cap(p+[a])$.

Therefore (a, b) is a direct pair if for all $p \in \mathbf{E}$ holds:
$(p+[a]) \cap[b] \neq \emptyset$ and $(p+[b]) \cap[a] \neq \emptyset$. Clearly, if the parallelaxiom is valid then this condition is satisfied:
for let $u, x, y, z \in \mathbf{E}$ with $y, z \neq o$ then $(u+[y]) \|(x+[z]) \quad \Longleftrightarrow \quad[y]=[z]$.
If the parallelaxiom is not satisfied then by (2.2.2) there exist lines $C,[a],[b]$ with $[a] \neq[b]$ and $C \cap([a] \cup[b])=\emptyset$. If $C=d+[c]$ then at least one of the statements $[c] \neq[a]$ or $[c] \neq[b]$ is true for instance $[c] \neq[a]$. Since $(d+[c]) \cap[a]=C \cap[a]=\emptyset$ it follows that (a, c) is not a direct pair.

Next we consider the case $(a, b) \in \mathbf{E}^{*} \times \mathbf{E}^{*}$ with $[a] \neq[b]$ and $[a] \not \perp[b]$. Then there are $a_{1} \in[a] \cap \mathbf{E}_{1}, \quad b_{1} \in[b] \cap \mathbf{E}_{1}$ such that $\gamma:=\angle\left(b_{1}, o, a_{1}\right)$ is an acute angle hence $\boldsymbol{\mu}(\gamma)=a_{1}^{-1} \bullet b_{1} \in \mathbf{E}_{1}$ with $\omega\left(e_{1}, \boldsymbol{\mu}(\gamma), e_{2}\right)=1$. We show:
(4.7) For $a, b \in \mathbf{E}_{1}$ with $\omega\left(e_{1}, a^{-1} \bullet b, e_{2}\right)=1$ the following statements are equivalent:
(1) (a, b) is a direct pair
(2) $\forall w \in W_{+}:[b] \cap D([a] ; w) \neq \emptyset$
(3) $\forall w \in W_{+}$exists a rectangular triangle $\Delta=(p, q, r)$ with $\overline{p, q} \perp \overline{r, q}, \boldsymbol{\mu}(\angle(r, p, q))$ $=a^{-1} \bullet b$ and $\lambda(r, q)=w$.

Proof. By (2.6) and (4.3), $\left(a^{-1}\right)^{\bullet}$ is a proper motion and an automorphism of $(\mathbf{E},+, W ; \oplus)$. Therefore we may assume $a=e_{1}$ and $\omega\left(e_{1}, b, e_{2}\right)=1$.
" $(1) \Rightarrow(2),(3) "$. Let $w \in W_{+}$be given. Since (a, b) is a direct pair there are uniquely determined scalars $u, v \in W$ such that $e_{2} \bullet w=\left(u \oplus e_{1}\right)+(v \oplus b)=\left(u+e_{1}\right)+(v \oplus b)$.

Since $w>o$ and $\omega\left(e_{1}, b, e_{2}\right)=1$ we have $v>o$ and $u+e_{1}<o$. We consider the triangle $\Delta:=\left(o,-\left(u+e_{1}\right),(v \oplus b)\right)$ which has the properties:

1. Since $u+e_{1} \in W$ and $o \neq u+e_{1}$ we have $\overline{o,-\left(u+e_{1}\right)}=W=\left[e_{1}\right]$ and $\left(-\left(u+e_{1}\right)\right)^{+}$ is a proper motion fixing the line $\left[e_{1}\right]$. Since $\left[e_{1}\right] \perp\left[e_{2}\right]$ also the lines $\left[e_{1}\right]$ and $(-(u+$ $\left.\left.e_{1}\right)\right)^{+}\left(\left[e_{2}\right]\right)=-\left(u+e_{1}\right)+\left[e_{2}\right]$ are orthogonal. The line $-\left(u+e_{1}\right)+\left[e_{2}\right]$ contains the points $-\left(u+e_{1}\right)$ and $-\left(u \oplus e_{1}\right)+e_{2} \bullet w=-\left(u \oplus e_{1}\right)+\left(\left(u \oplus e_{1}\right)+(v \oplus b)\right)=v \oplus b$. Therefore Δ is rectangular with $\overline{o,-\left(u+e_{1}\right)} \perp \overline{-\left(u+e_{1}\right), v \oplus b}$ and so $-\left(u+e_{1}\right)$ is the orthogonal projection of $(v \oplus b)$ onto $\left[e_{1}\right]$. Hence: $\lambda\left(v \oplus b,\left[e_{1}\right]\right)=\lambda\left(-\left(u+e_{1}\right), v \oplus b\right)=$ $\left|-\left(u+e_{1}\right)-(v \oplus b)\right|=\left|-e_{2} \bullet w\right|=|w|=w$ implying $v \oplus b \in D\left(\left[e_{1}\right] ; w\right)$, i.e. $[b] \cap D\left(\left[e_{1}\right] ; w\right) \neq \emptyset$ and (2) is proved. Finally since $v>o$ and $-\left(u+e_{1}\right)>o$ we have $[v \oplus b]_{+}=[b]_{+}$and $\left[-\left(u+e_{1}\right)\right]_{+}=\left[e_{1}\right]_{+}$hence $\angle\left(v \oplus b, o,-\left(u+e_{1}\right)\right)=\angle\left(b, o, e_{1}\right)$ and so $\boldsymbol{\mu}\left(\angle\left(b, o, e_{1}\right)\right)=b$, i.e. also (3) is proved. "(2) \Rightarrow (1)". Let $p \in \mathbf{E}$ be given. If $p \in\left[e_{1}\right]$ then $p=p+o$ with $o \in[b]$. Therefore let $p \notin\left[e_{1}\right]$. Then by assumption (2) there is exactly one $v \in W$ such that $\{v \oplus b\}=[b] \cap D\left(\left[e_{1}\right], p\right)$. Let $p_{W}:=\left(p \perp\left[e_{1}\right]\right) \cap\left[e_{1}\right]$ and $(v \oplus b)_{W}:=\left(v \oplus b \perp\left[e_{1}\right]\right) \cap\left[e_{1}\right]$, then $-p_{W}+p=-(v \oplus b)_{W}+(v \oplus b) \in\left[e_{2}\right]$ and since $(W,+)$ is a commutative group there is exactly one $u \in W$ such that $p_{W}=$ $\left(u \oplus e_{1}\right)+(v \oplus b)_{w}=\left(u \oplus e_{1}\right)^{+}(v \oplus b)_{W}$. Consequently: $p=p_{W}^{+} \circ\left(-(v \oplus b)_{W}\right)^{+}(v \oplus b)=$ $\left(u \oplus e_{1}\right)^{+} \circ\left((v \oplus b)_{W}\right)^{+} \circ\left(-(v \oplus b)_{W}\right)^{+}(v \oplus b)=\left(u \oplus e_{1}\right)^{+}(v \oplus b)=\left(u \oplus e_{1}\right)+(v \oplus b)$.

From (4.7) follows:
(4.8) The K-loop of an absolute plane is vectorspacelike if and only if : $\exists A \in \mathcal{G}$ and $a \in A: \forall G \in \mathcal{G} \backslash\{A\}$ with $a \in G, \forall x \in \mathbf{E} \backslash A: G \cap D(A, x) \neq \emptyset$.

5. b-Rings, rotational extensions and quasidilatations

Quasidilatations for the K-loop of an absolute geometry were introduced in [4]. In order to define them we consider firstly the ordered commutative group $(W,+,<)$ (cf.(3.1)) .

Let ξ denote the betweenness relation on W corresponding to $<$, let $\operatorname{Iso}(W,+,<)$ resp. $\operatorname{Bet}(W,+, \xi)$ be the set of all endomorphisms of the group $(W,+)$ which are strictly isotone
resp. which preserve the betweenness relation ξ on W, let: $v: W \rightarrow W ; x \mapsto-x:=\tilde{o}(x)$ and let $\operatorname{Mon}(W,+)$ be the set of all monomorphisms of $(W,+)$. Then $\operatorname{Bet}(W,+, \xi)=$ $\operatorname{Iso}(W,+,<) \dot{U} v \circ \operatorname{Iso}(W,+,<) \subseteq \operatorname{Mon}(W,+)$ where $v \circ \operatorname{Iso}(W,+,<)$ is the set of all antitone monomorphisms.
$(\operatorname{Bet}(W,+, \xi), \circ),(\operatorname{Iso}(W,+,<), \circ)$ and $(\operatorname{Iso}(W,+,<),+)$ are semigroups. The automorphism groups $\operatorname{Aut}(W,+, \xi)$ resp. $\operatorname{Aut}(W,+,<)$ are subgroups of $(\operatorname{Bet}(W,+, \xi), \circ)$ resp. $(\operatorname{Iso}(W,+,<), \circ)$ and $\operatorname{Aut}(W,+, \xi)=\operatorname{Aut}(W,+.<)$ U் $\circ \operatorname{Aut}(W,+,<)$.

We show:
(5.1) $(W,+)$ is uniquely divisible by $2:$ for $a \in W$ let $\frac{1}{2} a$ be the midpoint of o and a then $\frac{1}{2} a \in W$ and $\frac{1}{2} a+\frac{1}{2} a=a$.

Proof. Let $a^{\prime}:=\frac{1}{2} a$ then $a^{\prime}+a^{\prime}=\widetilde{o a^{\prime}} \circ \tilde{o}\left(a^{\prime}\right)=\widetilde{a^{\prime}} \circ \widetilde{o a^{\prime}}\left(a^{\prime}\right)=\widetilde{a^{\prime}}(o)=\widetilde{o a}(o)=a$ and if $a=b+b=\widetilde{o} b \circ \tilde{o}(b)=\tilde{b} \circ \widetilde{o b}(b)=\tilde{b}(o)$ then b is the midpoint of o and a hence $b=a^{\prime}$.

Since $(W,+,<)$ is an ordered commutative group,$(W,+)$ is a \mathbf{Z} - module such that $\forall n \in$ $\mathbf{Z}^{*}:=\mathbf{Z} \backslash\{0\}$, the map $n: W \rightarrow W ; x \mapsto n \cdot x$ is a monomorphism where n is isotone if $n \in \mathbf{N}$ and antitone if $-n \in \mathbf{N}$. By (5.1), 2 is even an automorphism with $\left(2^{\cdot}\right)^{-1}(x)=\frac{1}{2} x$.

Therefore:
(5.2) Let $\mathbf{P}_{W}:=\{p \in \mathbf{P} \mid p \in S y m W\}$ be the set of all prime numbers p such that p. is even an automorphism of $(W,+)$, let \mathbf{N}_{W} be the set of all natural numbers which are products of prime numbers of \mathbf{P}_{W} and let $\mathbf{Z}_{W}:=\left\{\left.\frac{m}{n} \right\rvert\, m \in \mathbf{Z}, n \in \mathbf{N}_{W}\right\}$ be the subring of the field \mathbf{Q} consisting of all fractions where the denominator is an element of \mathbf{N}_{W}. Then:
(1) $2 \in \mathbf{P}_{W}\left(\right.$ by (5.1)) and $\mathbf{Z}_{2}:=\left\{m \cdot 2^{-n} \mid m \in \mathbf{Z}, n \in \mathbf{N} \cup\{0\}\right\} \subseteq \mathbf{Z}_{W}$.
(2) $\forall r=\frac{m}{n} \in \mathbf{Z}_{W}^{*}$ the map $r=m^{\circ} \circ\left(\left(n^{*}\right)^{-1}\right.$ is a monomorphism of $(W,+)$ and r^{\cdot} is strictly isotone resp. antitone if $r>0$ resp. $r<0$.
(3) If $r:=\frac{m}{n}$ is a unit of \mathbf{Z}_{W} hence if $m \in \mathbf{N}_{W}$ then r is an automorphism of $(W,+)$.
(4) $\left(-e_{1}\right)_{\mid W}^{\bullet}=(-1)^{\prime}$ is an antitone automorphism of $(W,+)$.
(5) \mathbf{Z}_{W} is a subring of $\operatorname{End}(W,+)$ with $\mathbf{Z}_{W}^{*}:=\mathbf{Z}_{W} \backslash\{0\} \subseteq \operatorname{Bet}(W,+, \xi)$.
(5.3) If $\mathbf{P}_{W}=\mathbf{P}$, i.e. for each $n \in \mathbf{N}, n$ is a permutation of W then $\mathbf{Z}_{W}=\mathbf{Q}$ and $(W,+)$ is a \mathbf{Q}-module, i.e. (W, \mathbf{Q}) is a vectorspace.

A subring B of the endomorphismring $\operatorname{End}(W,+)$ is called b-ring of $(W,+)$ if $\mathbf{Z}_{W} \subseteq B$ and $\left.B^{*}:=B \backslash\{0\} \subseteq \operatorname{Bet}(W,+, \xi)\right)$.

By (5.2.5) \mathbf{Z}_{W} is a b-ring of $(W,+,<)$.

Now let B be a b-ring of $(W,+,<)$. Then $B^{*}:=B \backslash\{o\} \subseteq \operatorname{Bet}(W,+, \xi) \subseteq \operatorname{Mon}(W,+)$ implies that B^{*} is a subsemigroup of $(\operatorname{Mon}(W,+), \circ)$ and so the map $\iota: B \rightarrow W ; \beta \mapsto$ $\beta\left(e_{1}\right)$ is injective. If $\beta_{i} \in B, \quad i \in\{1,2\}$ and $b_{i}:=\beta_{i}\left(e_{1}\right)$ then $\beta_{1}+\beta_{2} \in B$ and so $b_{1}+b_{2}=\beta_{1}\left(e_{1}\right)+\beta_{2}\left(e_{1}\right)=\left(\beta_{1}+\beta_{2}\right)\left(e_{1}\right)$. Therefore ι is a monomorphism from $(B,+)$ into $(W,+)$ hence $\iota(B)$ a subgroup of $(W,+)$ isomorphic with $(B,+)$. We identify always B and $\iota(B)$ and if for $\beta \in B$ and $b:=\iota(\beta)=\beta\left(e_{1}\right)$ we set $b:=\beta$ and define :
$\cdot: B \times W \rightarrow W ;(b, w) \mapsto b \cdot w:=b(w)$.
If $B=W$ then the b -ring B is called transitive.
(5.4) Let $(B,+, \circ)$ be a b-ring of $(W,+,<)$. Then for $a, b \in B^{*}$ and $x, y \in W$ we have $: e_{1} \in B, e_{1}=i d, e_{1} \cdot x=x, a \cdot e_{1}=e_{1} \cdot a=a, a \cdot b=a^{\prime}(b)=a \circ b\left(e_{1}\right) \in B$ hence $(a \cdot b)^{\cdot}=a^{\circ} \circ b$ and $a \cdot(b \cdot x)=(a \cdot b) \cdot x,(a+b) \cdot x=a \cdot x+b \cdot x, a \cdot(x+y)=$ $a \cdot x+a \cdot y, a \cdot x=a \cdot y \Longleftrightarrow x=y$ and $a \cdot x=b \cdot x \Longleftrightarrow a=b$ or $x=o$.

This shows: $((W,+), B, \cdot)$ is a nearfield in the sense of H.Zassenhaus (cf.[9],[3] p.2) (i.e. $(W,+)$ is a group, $B \subseteq W$ with $B^{*} \neq \emptyset$ and if $a, b \in B$ then $a^{\cdot}(b) \in B$ and $\left(a^{*}(b)\right)^{\cdot}=a^{\circ} \circ b^{*}$, i.e. (B, \cdot) is a semigroup, if $x \in W^{*}$ with $a^{\prime}(x)=b^{\cdot}(x)$ then $a=b$ and $B^{* *}:=\left\{b^{*} \mid b \in B^{*}\right\}$ is a subgroup of the automorphism group $\operatorname{Aut}(W,+).)^{2}$ Moreover $B_{+}:=B \cap W_{+}$is a subsemigroup of ($\left.B^{*}, \cdot\right)$ and $B_{+} \cdot W_{+}=W_{+}$.
(5.5) If $(B,+, \circ)$ is a transitive b-ring of $(W,+,<)$ hence $B:=\iota(B)=B\left(e_{1}\right)=W$ then $(W,+, \cdot)$ is a complete nearfield even a field and $(W,+, \cdot,<)$ is an ordered field.

Proof. $B^{*} \subseteq \operatorname{Bet}(W,+, \xi) \subseteq \operatorname{Mon}(W,+), B^{*}(e)=W^{*}$ and (5.4) imply that $\left(W^{*}, \cdot\right)$ is a group hence by (5.4) ($W,+, \cdot$) is a field and so if $a \in W^{*}$ then a is antomorphism of ($W,+$).
Consequently $B^{*} \subseteq \operatorname{Aut}(W,+, \xi)=\operatorname{Aut}(W,+,<) \dot{\cup} v \circ \operatorname{Aut}(W,+,<)$.
Let $a<b$ and $o<c$. Then $c \in \operatorname{Aut}(W,+, \xi), o<e_{1}$ and $c^{*}\left(e_{1}\right)=c$ imply $c \in$ $\operatorname{Aut}(W,+,<)$ and therefore $c \cdot a=c^{\prime}(a)<c^{\prime}(b)=c \cdot b$. Moreover $a<b$ hence $o<-a+b$ implies $(-a+b)^{\cdot} \in \operatorname{Aut}(W,+,<)$ and so $o<(-a+b)^{\cdot}(c)=(-a+b) \cdot c$. Since $(W,+, \cdot)$ is a field we obtain $o<-a \cdot c+b \cdot c$, i.e. $a \cdot c<b \cdot c$.

REMARK. If $(W,+,<)$ is an archimedian ordered group then (by the theorem of O. Hölder) $(W,+)$ is isomorphic to a subgroup of $(\mathbf{R},+)$ (resp. to $(\mathbf{R},+))$. Therefore:
(5.6) If $(W,+,<)$ is continuous then $(\mathbf{R},+, \cdot)$ is a transitive b-ring of $(W,+,<)$ and $(W,+)$ can be provided with a multiplication "." such that $(W,+, \cdot)$ is a field isomorphic to $(\mathbf{R},+, \cdot)$.

[^2]We call a map $\varphi: \mathbf{E} \rightarrow \mathbf{E}$ rotational (homogenous) if : $\forall a \in \mathbf{E}_{1}: \varphi \circ a^{\bullet}=a^{\bullet} \circ \varphi$.
A rotational map φ fixes o and is completely determined by its restriction $\varphi_{\mid W_{+}}$: for if $x=x_{1} \bullet|x| \in \mathbf{E}^{*}$ is given by its polar coordinates then $\varphi(x)=\varphi\left(x_{1} \bullet|x|\right)=\varphi\left(x_{1}^{\bullet} \circ|x|\right)=$ $x_{1}^{\bullet} \circ \varphi(|x|)=x_{1}^{\bullet} \circ \varphi_{\mid W_{+}}(|x|)$ and since $W=\{o\} \dot{\cup} W_{+} \dot{U}\left(-e_{1}\right) \bullet W_{+}$and $[x]=x_{1} \bullet W=$ $\{o\} \dot{\cup} x_{1} \bullet W_{+} \dot{U} x_{1} \bullet\left(-e_{1}\right) \bullet W_{+}$we have : $\varphi([x])=x_{1} \bullet \varphi(W)=\{o\} \dot{\cup} x_{1} \bullet \varphi\left(W_{+}\right) \dot{U} x_{1} \bullet$ $\left(-e_{1}\right) \bullet \varphi\left(W_{+}\right)$.

Conversely:
(5.7) Any map $\psi: W_{+} \rightarrow \mathbf{E}$ can be uniquely extended to a rotational map $\bar{\psi}: \mathbf{E} \rightarrow$ \mathbf{E} by $\bar{\psi}(x)=\bar{\psi}\left(x_{1} \bullet|x|\right):=x_{1}^{\bullet}(\psi(|x|))$ for all $x \in \mathbf{E}^{*}$. $\bar{\psi}$ is then called rotational extension of ψ.

Proof. We have to show that $\bar{\psi}$ is rotational. Let $a \in \mathbf{E}_{1}$ and $x=x_{1} \bullet|x| \in \mathbf{E}^{*}$ then $a \bullet x_{1} \in \mathbf{E}_{1}\left(\right.$ cf. (2.6)) and $\left(a \bullet x_{1}\right)^{\bullet}=a^{\bullet} \circ x_{1}^{\bullet}$ hence $\bar{\psi} \circ a^{\bullet}(x)=\bar{\psi} \circ a^{\bullet}\left(x_{1}^{\bullet}(|x|)\right)=$ $\bar{\psi}\left(\left(a \bullet x_{1}\right)^{\bullet}(|x|)=\left(a \bullet x_{1}\right)^{\bullet}(\psi(|x|))=a^{\bullet} \circ x_{1}^{\bullet}(\psi(|x|))=a^{\bullet} \circ \bar{\psi}(x)\right.$.

If A is an arbitrary set then any two maps $\varphi, \psi \in \operatorname{Map}(A, \mathbf{E})$ from A into the loop (E, +) can be added with the help of the loop operation " + " by: $(\varphi+\psi)(x):=\varphi(x)+\psi(x)$ for $x \in A$.

Then $\varphi+\psi \in \operatorname{Map}(A, \mathbf{E})$ and so $(\operatorname{Map}(A, \mathbf{E}),+)$ is also a loop. The properties of the loop $(\mathbf{E},+)$ pass on $(\operatorname{Map}(A, \mathbf{E}),+)$, i.e. in our case $(\operatorname{Map}(A, \mathbf{E}),+)$ is a K -loop too. For $A=\mathbf{E}$ we set $\operatorname{Map}(\mathbf{E}):=\operatorname{Map}(\mathbf{E}, \mathbf{E})$. In this case with $\varphi, \psi, \chi \in \operatorname{Map}(\mathbf{E})$ also $\varphi \circ \psi \in \operatorname{Map}(\mathbf{E})$, (i.e. $(\operatorname{Map}(\mathbf{E}), \circ)$ is a semigroup) and $(\varphi+\psi) \circ \chi=\varphi \circ \chi+\psi \circ \chi$. This shows that $(\operatorname{Map}(\mathbf{E}),+, \circ)$ is a (right) K-loop-nearring (cf.[8]).

Let $\mathcal{R}(\mathbf{E}, o):=\left\{\varphi \in \operatorname{Map}(\mathbf{E}) \mid \forall a \in \mathbf{E}_{1}: \varphi \circ a^{\bullet}=a^{\bullet} \circ \varphi\right\}$ be the set of all rotational maps of the loop $(\mathbf{E},+)$, let $\mathcal{R}(\mathbf{E},[]):=\{\varphi \in \mathcal{R}(\mathbf{E}, o) \mid \forall x \in \mathbf{E}$ with $\varphi(x) \neq o: \varphi([x]) \subseteq[\varphi(x)]\}$, $\mathcal{R}(\mathbf{E},[[]]):=\left\{\varphi \in \mathcal{R}(\mathbf{E}, o) \mid \forall x \in \mathbf{E}^{*}: \varphi(x) \subseteq[x]\right\}$ and $\mathcal{R}(W, o):=\{\varphi \in \operatorname{Map}(W) \mid$ $\nu \circ \varphi=\varphi \circ \nu\}$. Then we can show:
(5.8)
(1) $\mathcal{R}(\mathbf{E}, o)$ is a subloop-nearring of the K-loop-nearring $(\operatorname{Map}(\mathbf{E}),+, \circ)$.
(2) $\mathcal{R}(W, o)$ is a subnearring of the nearring $(\operatorname{Map}(W),+, \circ)$.
(3) $(\mathcal{R}(\mathbf{E},[[]]), \circ) \leq(\mathcal{R}(\mathbf{E},[]), \circ) \leq(\mathcal{R}(\mathbf{E}), \circ)$ and $\mathbf{E}_{1}^{\bullet} \leq(\mathcal{R}(\mathbf{E},[]), \circ)$.
(4) $\mathcal{R}(\mathbf{E},[[]])$ is a subnearring of $(\mathcal{R}(\mathbf{E},[]),+, \circ)$ and $(\mathcal{R}(\mathbf{E},[[(]]),+, \circ)$ is isomorphic to $(\mathcal{R}(W, o),+, \circ)$: The map $\iota: \mathcal{R}(W, o) \rightarrow \mathcal{R}(\mathbf{E},[[]]) ; \varphi \mapsto \overline{\left(\varphi \mid W_{+}\right.}$(where $\overline{\varphi \mid W_{+}}$ denotes the rotational extension of the restriction $\varphi \mid W_{+}$) is an isomorphism from ($\mathcal{R}(W, o),+, \circ$) onto $(\mathcal{R}(\mathbf{E},[]),+, \circ)$.
(5) The endomorphismring $\operatorname{End}(W,+)$ is a subring of the nearring $\mathcal{R}(W, o),+, \circ)$ and so $\operatorname{En}(\mathbf{E}, o):=\iota(\operatorname{End}(W,+))$ is a subring of the nearring $(\mathcal{R}(\mathbf{E},[[]]),+, \circ)$. The
elements φ of $E n(\mathbf{E}, o)$ are rotational maps characterized by: If $x, y \in \mathbf{E}$ with $[x]=[y]$ then $\varphi(x+y)=\varphi(x)+\varphi(y)$.

Proof. Let $\varphi, \psi \in \mathcal{R}(\mathbf{E},+), a \in \mathbf{E}_{1}, x \in \mathbf{E}$ and observe $a^{\bullet} \in \operatorname{Aut}(\mathbf{E},+$) (cf.(2.6.1)) then $(\varphi+\psi) \circ a^{\bullet}(x)=\varphi \circ a^{\bullet}(x)+\psi \circ a^{\bullet}(x)=a^{\bullet}(\varphi(x))+a^{\bullet}(\psi(x))=a^{\bullet}(\varphi(x)+\psi(x))=$ $a^{\bullet} \circ(\varphi+\psi)(x)$ and $(\varphi \circ \psi) \circ a^{\bullet}=\varphi \circ a^{\bullet} \circ \psi=a^{\bullet} \circ(\varphi \circ \psi)$. Hence $\varphi+\psi, \varphi \circ \psi \in \mathcal{R}(\mathbf{E}, o)$. This shows (1).

Since with $(W,+)$ also $(\operatorname{Map}(W),+)$ is a commutative group, $(\operatorname{Map}(W),+, \circ)$ is a nearring and with the previous arguments, (2) is proved.

By (4.1.6) $-\varphi=\left(-e_{1}\right)^{\bullet} \circ \varphi \in \mathcal{R}(\mathbf{E}, o)$. Now assume moreover $\varphi, \psi \in \mathcal{R}(\mathbf{E},[])$ and $\varphi \circ \psi(x) \neq o$. Then $($ since $\varphi(o)=o) \psi(x) \neq o$ and so $\varphi(\psi([x])) \subseteq \varphi([\psi(x)]) \subseteq$ $[\varphi(\psi(x))]=[\varphi \circ \psi(x)]$. If even $\varphi, \psi \in \mathcal{R}(\mathbf{E},[[]])$ and $x \in \mathbf{E}^{*}$ then $\varphi(\psi([x])) \subseteq \varphi([x]) \subseteq$ $[x]$ and $(\varphi+\psi)([x])=\{(\varphi+\psi)(y)=\varphi(y)+\psi(y) \mid y \in[x]\} \subseteq[x]+[x] \subseteq[x]$, i.e. $\varphi \circ \psi, \varphi+\psi \in \mathcal{R}(\mathbf{E},[[]])$. Moreover by (4.1.7), $a^{\bullet}([x])=\left[a^{\bullet}(x)\right]$ hence (3) is completely proved.

If $\psi \in \mathcal{R}(\mathbf{E},[[]])$ then $\psi(W)=\psi\left(\left[e_{1}\right]\right) \subseteq\left[e_{1}\right]=W, \psi(o)=o$ and if $w \in W$ then $\psi(-w)=\psi(\nu(w))=\psi\left((-e)^{\bullet}(w)=(-e)^{\bullet} \circ \psi(w)=v(\psi(w))\right.$ hence $\varphi:=\psi \mid W \in$ $\mathcal{R}(W, \circ)$ and so φ is completely determined by $\varphi \mid W_{+}$and by (5.7) we have firstly $\psi=\overline{\varphi \mid W_{+}}$ and secondly that ι is injective and surjective. Clearly if $\varphi, \psi \in \mathcal{R}(W, o)$ and $x \in \mathbf{E}^{*}$ then by (5.7) and $x_{1}^{\bullet} \in \operatorname{Aut}(\mathbf{E},+), \overline{\varphi \mid W_{+}}(x)+\overline{\psi \mid W_{+}}(x)=x_{1}^{\bullet}\left(\varphi(|x|)+x_{1}^{\bullet}\left(\psi(|x|)=x_{1}^{\bullet}(\varphi(|x|)+\right.\right.$ $\psi(|x|))=x_{1}^{\bullet} \circ(\varphi+\psi)(|x|)=\overline{(\varphi+\psi) \mid W_{+}}(x)$, i.e. $\overline{\varphi \mid W_{+}}+\overline{\psi \mid W_{+}}=\overline{(\varphi+\psi) \mid W_{+}}$. Furthermore $\overline{(\varphi \circ \psi) \mid W_{+}}(x)=x_{1}^{\bullet}(\varphi \circ \psi)(|x|)=x_{1}^{\bullet} \circ(\psi(|x|))_{1}^{\bullet}(\varphi(|\psi(|x|)|))$ and observing (5.7), $\overline{\varphi \mid W_{+}} \circ \overline{\psi \mid W_{+}}(x)=\overline{\varphi \mid W_{+}}\left(x_{1}^{\bullet} \circ \psi(|x|)\right)=x_{1}^{\bullet} \circ \overline{\varphi \mid W_{+}}(\psi(|x|))=x_{1}^{\bullet} \circ(\psi(|x|))_{1}^{\bullet}(\varphi(|\psi(|x|)|))$. Thus ι is an isomorphism.
Since $(W,+)$ is a commutative group the map $v: W \rightarrow W ; w \mapsto-w$ is an automorphism of $(W,+)$ hence $v \in \operatorname{End}(W,+)$ and if $\varphi \in \operatorname{End}(W,+)$ and $x \in W$ then $\varphi \circ \nu(x)=$ $\varphi(-x)=-\varphi(x)=\nu \circ \varphi(x)$ hence $\operatorname{End}(W,+) \leq(\mathcal{R}(W, o),+, \circ)$. The other statements of (5) are a consequence of (4).

Now let B be a b-ring of $(W,+,<)$ and let $\lambda \in B$ be the rotational extension of the leftmultiplication $\lambda_{l}: W \rightarrow W ; w \mapsto \lambda \cdot w\left(\right.$ cf. (5.4)) hence $\lambda^{\prime}: \mathbf{E} \rightarrow \mathbf{E} ; x=x_{1} \bullet|x| \mapsto$ $x_{1} \bullet(\lambda \cdot|x|)$ is called a B-quasidilatation. By [4]p. 407 follows:
(5.9) Let B be a b-ring of $(W,+,<)$, let U be the set of units of $(B,+, \cdot)$ and let $\mathcal{F}:=\{[x] \mid$ $\left.x \in \mathbf{E}^{*}\right\}$. Then $(\mathbf{E},+, \mathcal{F}, B, \cdot)$ is a structure where $(\mathbf{E},+, \mathcal{F})$ is a loop with an incidence fibration and $\cdot: B \times \mathbf{E} \rightarrow \mathbf{E} ; \quad(\lambda, x) \mapsto \lambda \cdot x:=\lambda \cdot(x)$ is a map such that for all $\lambda, \mu \in B$, for all $X \in \mathcal{F}$ and for all $a, b \in \mathbf{E}$ the following hold:
(1) $\lambda \cdot a=o \Leftrightarrow \lambda=0$ or $a=o$.
(2) If $\lambda \in U$, then $\lambda \cdot \mathbf{E}=\mathbf{E}$ and $\lambda \cdot X=X$.
(3) $(\lambda \cdot \mu) \cdot a=\lambda \cdot(\mu \cdot a),(\lambda+\mu) \cdot a=\lambda \cdot a+\mu \cdot a$.
(4) If $a, b \in X$ then $\lambda \cdot(a+b)=\lambda \cdot a+\lambda \cdot b$.
(5.10) For $\lambda \in \mathbf{Z}_{W} \backslash\{0,1\}$ the \mathbf{Z}_{W}-quasidilatation λ^{*} is a collination of $(\mathbf{E}, \mathcal{G})$ if and only if $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is singular.
Let B be a b-ring of our absolute plane, i.e. of $(W,+,<)$. If $a, b \in \mathbf{E}$ and $\lambda, \mu \in B$ then the expression $\lambda \cdot a+\mu \cdot b$ shall be called quasilinear B-combination or shortly q-linear B-combination.
(5.11) If $(W,+,<)$ possesses a transitive b-ring (i.e. by (5.5), W can be turned in an ordered field $(W,+, \cdot,<))$ then for all $a, b \in \mathbf{E}^{*}$ with $[a] \neq[b]$ each element $x \in[a]+[b]$ can be written uniquely as a quasilinear W-combination of a and b, i.e. $\exists_{1}(\alpha, \beta) \in W \times W$: $x=\alpha \cdot a+\beta \cdot b$.

6. Hyperbolic planes

Among the absolute planes the hyperbolic planes $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ are characterized by the following axiom (cf. [6]p.149):
(H) $\forall G \in \mathcal{G}, \forall p \in \mathbf{E} \backslash G \quad \exists H \in \mathcal{G}$ with $p \in H \wedge H \|_{h} G$
where $H \|_{h} G$ is defined by: Let $P:=(p \perp G)$ then: $G \cap H=\emptyset, \tilde{P}(H) \neq H, \forall x \in$ $\mathbf{E} \backslash(H \cup \tilde{P}(H))$ with $(H \mid x, \tilde{P}(x))=1: \overline{p, x} \cap G \neq \emptyset$.

In [6] it is shown that there is a one-to-one correspondence between the hyperbolic planes and the commutative Euclidean fields $(K,+, \cdot)$. A commutative field is Euclidean if $K^{(2)}:=$ $\left\{x^{2} \mid x \in K^{*}:=K \backslash\{o\}\right\}$ is a positive domain. For $a \in K^{*}$ let sgn $a=1$ if $a \in K^{(2)}$ and $\operatorname{sgn} a=-1$ if $a \notin K^{(2)}$. Starting from a commutative Euclidean field ($K,+, \cdot$) one can obtain the corresponding hyperbolic plane in the following way:

Let $(\mathcal{M},+, \cdot)$ be the ring of all 2×2-matrices $A=\left(a_{i j}\right)$ (with $\left.a_{i j} \in K\right)$ over the Euclidean field, let $E=\left(\delta_{i j}\right)$ be the identity matrix and let $(K,+, \cdot)$ be imbedded in $(\mathcal{M},+, \cdot)$ via the map : $K \rightarrow \mathcal{M} ; u \mapsto u \cdot E$. For $A, B \in \mathcal{M}$ let:

$$
\hat{A}=\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right), \quad A^{T}=\left(\begin{array}{cc}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right)
$$

$A^{\square}(B):=A \cdot B \cdot A^{T}$ and $f(A, B):=A \cdot \hat{B}+B \cdot \hat{A}$. Then $\operatorname{det} A=A \cdot \hat{A}=\frac{1}{2} f(A, A)$ and $\operatorname{Tr} A=A+\hat{A}$.

We denote by $\mathcal{S}:=\left\{X \in \mathcal{M} \mid X^{T}=X\right\}$ the set of all symmetric matrices of \mathcal{M} and consider the subset $\mathbf{E}:=\mathcal{S}^{1,+}:=\{S \in \mathcal{S} \mid S \cdot \hat{S}=1 \wedge S+\hat{S}>0\}$ as point-set of the hyperbolic plane.

For $G \in \mathcal{S}^{-1}:=\{S \in \mathcal{S} \mid S \cdot \hat{S}=-1\}$ let $\underline{G}:=\left\{X \in \mathcal{S}^{1+} \mid f(X, G)=0\right\}$ and let $\mathcal{G}:=\left\{\underline{G} \mid G \in \mathcal{S}^{-1}\right\}$ be the set of lines

NOTE: for $G, H \in \mathcal{S}^{-1}: \underline{G}=\underline{H} \Longleftrightarrow H \in\{G,-G\}$.
The congruence \equiv is given by:
If $A, B, C, D \in \mathbf{E}$ then: $(A, B) \equiv(C, D): \Longleftrightarrow f(A, B)=f(C, D)$
And the order α is defined by:
If $A, B \in \mathbf{E}, G \in \mathcal{S}^{-1}$ and $A, B \notin \underline{G}$ then: $(\underline{G} \mid A, B):=\operatorname{sgn}(f(A, G) \cdot f(B, G))$.
In [6] and [5] it is shown that $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ is a hyperbolic plane.
If $A \in \mathbf{E}=\mathcal{S}^{1+}$ and $G \in \mathcal{S}^{-1}$ then the reflection in the point A and in the line \underline{G} is given by:
$\tilde{A}: \mathbf{E} \rightarrow \mathbf{E} ; X \mapsto A^{\square}(\hat{X})=A \cdot \hat{X} \cdot A^{T}$ and
$\underline{\tilde{G}}: \mathbf{E} \rightarrow \mathbf{E} ; \quad X \mapsto G^{\square}(\hat{X})=G \cdot \hat{X} \cdot G^{T}$ and the foot by
$A_{G}:=(A \perp \underline{G}) \cap \underline{G}=\left(2+f(A, G)^{2}\right)^{-\frac{1}{2}}(A+G \cdot \hat{A} \cdot G)$.
Let $\left(o, e_{1}, e_{2}\right):=\left(E, \frac{1}{2}\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right), \frac{1}{4}\left(\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right)\right)$ be our frame of reference and let " \diamond " denote the K-loop operation corresponding to the point E. Then $\left[e_{i}\right]=\underline{G_{i}}$ where $G_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad G_{2}=$ $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ hence $W:=\left[e_{1}\right]:=\left\{\left.\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right) \right\rvert\, x \in K^{(2)}\right\}$ and $W_{+}:=\left\{\left.\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right) \right\rvert\, x \in K^{(2)}: 1<\right.$ $x\}$. For $A:=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right), B:=\left(\begin{array}{cc}b & 0 \\ 0 & b^{-1}\end{array}\right) \in W$ we have:
$\widetilde{E A}=\left(\begin{array}{cc}\sqrt{a} & 0 \\ 0 & \sqrt{a^{-1}}\end{array}\right)^{\square} \circ \wedge$ hence $A^{\diamond}=\widetilde{E A} \circ \tilde{E}=\left(\begin{array}{cc}\sqrt{a} & 0 \\ 0 & \sqrt{a^{-1}}\end{array}\right)^{\square}$ and
$A \diamond B=\left(\begin{array}{cc}\sqrt{a} & 0 \\ 0 & \sqrt{a^{-1}}\end{array}\right)\left(\begin{array}{cc}b & 0 \\ 0 & b^{-1}\end{array}\right)\left(\begin{array}{cc}\sqrt{a} & 0 \\ 0 & \sqrt{a}\end{array}\right)=\left(\begin{array}{cc}a b & 0 \\ 0 & (a b)^{-1}\end{array}\right)$.
Therefore the map $\varphi:\left(K^{(2)}, \cdot\right) \rightarrow(W, \diamond) ; \quad x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right)$ is an isomorphism of the multiplicative group of all squares of the Euclidean field $(K,+, \cdot)$ onto the scalar domain (W, \diamond) and so (W, \diamond) can be identified with the group $\left(K^{(2)}, \cdot\right)$.

Then the absolute value $\left|\mid: \mathbf{E} \rightarrow W_{+} \cup\{o\}=\left\{\lambda \in K^{(2)} \mid 1 \leq \lambda\right\}\right.$ is given by: $|X|=\frac{1}{2}\left(\operatorname{Tr} X+\sqrt{(\operatorname{Tr} X)^{2}-4}\right)$.

Now we can prove:
(6.1) The K-loop of a hyperbolic plane is vectorspacelike.

Proof. By (4.8) we may consider the line G_{1} and the point E. The lines passing through E are given by the set of matrices

$$
\mathcal{S}^{-1}(E):=\left\{\left.\left(\begin{array}{cc}
u & v \\
v & -u
\end{array}\right) \right\rvert\, u, v \in K: u^{2}+v^{2}=1\right\}
$$

and for $X=\left(\begin{array}{cc}x & y \\ y & x^{-1}\left(1+y^{2}\right)\end{array}\right) \in \mathbf{E} \backslash \underline{G_{1}}$ we have $y \neq 0$ and

$$
\begin{align*}
D\left(\underline{G_{1}}, X\right) & =\left\{\left.\left(\begin{array}{cc}
\lambda^{2} x & y \\
y & \lambda^{-2} x^{-1}\left(1+y^{2}\right)
\end{array}\right) \right\rvert\, \lambda \in K^{*}\right\} \\
& =\left\{\left.\left(\begin{array}{cc}
\lambda x & y \\
y & \lambda^{-1} x^{-1}\left(1+y^{2}\right)
\end{array}\right) \right\rvert\, \lambda \in K^{(2)}\right\} . \tag{6.1}
\end{align*}
$$

Now let $U=\left(\begin{array}{cc}u & v \\ v & -u\end{array}\right) \in \mathcal{S}^{-1}(E)$ with $\underline{U} \neq \underline{G_{1}}$, i.e. $v \neq 0$. Then
$\underline{U} \cap D\left(\underline{G_{1}}, X\right)=\left\{\left.\left(\begin{array}{cc}\lambda x & y \\ y & \lambda^{-1} x^{-1}\left(1+y^{2}\right)\end{array}\right) \right\rvert\, \lambda \in K^{(2)}:(*) \lambda^{2} u x+2 y v-u x^{-1}\left(1+y^{2}\right)=\right.$ $0\}$.

The equation (*) has a solution if the discriminant $d=u^{2}\left(1+y^{2}\right)+y^{2} v^{2} \in K^{(2)}$. But since $(K,+, \cdot)$ is an Euclidean field and since $y, v \neq 0$ we have $d \in K^{(2)}$. Thus the criterion (4.8) is fulfilled and any hyperbolic plane is vectorspacelike.

From (5.6),(5.11) and (6.1) we obtain the result of A. Greil [1]:
(6.2) Let $(\mathbf{E}, \mathcal{G}, \alpha, \equiv)$ be the classical hyperbolic plane (i.e. also the continuity axiom is assumed), let $o \in \mathbf{E}$ be fixed, let $(\mathbf{E},+)$ be the corresponding K-loop and let $a, b \in$ $\mathbf{E} \backslash\{o\}$ with $\overline{o, a} \neq \overline{o, b}$ then each point $p \in \mathbf{E}$ can be written uniquely as a quasilinear \mathbf{R}-combination of a and b, i.e.: $\forall p \in \mathbf{E} \exists_{1}(\alpha, \beta) \in \mathbf{R} \times \mathbf{R}: p=\alpha \cdot a+\beta \cdot b$.

References

[1] A. Greil, Communication on: "Existenz und Berechenbarkeit von Linearkombinationen in der klassischen hyperbolischen Ebene. Given at the 29. Arbeitstagung über Geomertrie und Algebra", Berlin 2002.
[2] D. Gröger, Archimedisierung absoluter Ebenen. J. Geom. 25 (1985) 49-76.
[3] H. Karzel, From Nearrings and Nearfields to K-Loops, in : Nearrings, Nearfields and K-Loops, G. Saad and M.J. Thomsen, Eds., Kluwer Academic Publishers, Dordrecht, 1997, 1-20.
[4] H. Karzel, Recent developments on absolute geometries and algebraization by K-loops. Discrete Math. 208/209 (1999) 387-409.
[5] H. Karzel, Raum-Zeit-Welt und hyperbolische Geometrie, Vorlesungsausarbeitung von A. Konrad, Techn. Univ. München, Beiträge Geom. Algebra 29, TUM-M9412, 1994.
[6] H. Karzel, K. Sörensen, D. Windelberg, Einführung in die Geometrie, Vandenhoeck, Göttingen, 1973.
[7] H. Kiechle. Theory of K-Loops, Lecture Notes in Mathematics 1778, Springer, Berlin, 2002.
[8] S. Pianta, Loop-Nearrings, in: Nearrings and nearfields, H. Kiechle et al., Eds., Springer, Dordrecht, 2005, 57-67.
[9] H. Zassenhaus, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg 11 (1936) 187-220.

Helmut Karzel	Mario Marchi
Zentrum Mathematik	Dipartimento di Matematica
Technische Universität München	Università Cattolica
Boltzmannstr. 3	Via Trieste, 17
85747 Garching	25121 Brescia
Germany	Italy
e-mail: karzel@ma.tum.de	e-mail: geomet@dmf.unicatt.it

Received 31 January 2005.

[^0]: *This work was partially supported by the Research Project of MIUR (Italian Ministery of Education and University) "Geometria combinatoria e sue applicazioni" and by the research group GNSAGA of INDAM.

[^1]: ${ }^{1}(a \mid b, x):=\alpha(a, b, x)($ cf. [6] (13.9))

[^2]: ${ }^{2}$ Zassenhaus calls a nearfield complete if $B=W$. Today the notion "nearfield" is used for complete nearfields in the sense of Zassenhaus.

