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Vectorspacelike representation of absolute planes

Dedicated to Walter Benz on the occasion of his 75th birthday, in friendship

Helmut Karzel and Mario Marchi∗

Abstract. The pointset E of an absolute plane (E,G, α,≡) can be provided with a binary operation “+” such
that (E,+) becomes a loop and for each a ∈ E \ {o} the line [a] through o and a is a commutative subgroup of
(E,+). Two elements a, b ∈ E \ {o} are called independent if [a] ∩ [b] = {o} and the absolute plane is called
vectorspacelike if for any two independent elements we have E = [a] + [b] := {x + y | x ∈ [a], y ∈ [b]}. If
(E,G, α,≡) is singular then (E,+) is a commutative group and (E,G, α,≡) is vectorspacelike iff (E,G, α,≡) is
Euclidean. If (E,G, α,≡) is a hyperbolic plane then (E,G, α,≡) is vectorspacelike and in the continous case if
a, b are independent, each point p has a unique representation as a quasilinear combination p = α ·a+µ ·bwhere
α ·a ∈ [a]and β ·b ∈ [b] are points, α, β real numbers such that λ(o, λ ·a) = |λ| ·λ (o, a) and λ (o, µ ·b) = |µ|·
λ(o, b) and λ is the distance function.
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1. Introduction

After fixing two points o and e the pointset E of an absolute plane (E,G, α,≡) can be
furnished with a binary operation “+” such that (E,+) becomes a K-loop with o as neutral
element. If E∗ := E \ {o} then for each a ∈ E∗ the line [a] := o, a through o and a is a
commutative subgroup of the loop (E,+) and all these groups are isomorphic. Moreover
the halfline [a]+ := �o, a is a positive domain of the group ([a],+) and so by “x < y :⇐⇒
−x+y ∈ [a]+”, ([a],+, <) becomes an ordered group. Such an ordered group (W,+, <)
with W := [e] will be choosen as “scalar domain” and an operation “⊕ : W × E∗ →
E; (w, p) 	→ w⊕p” between scalars and elements of E introduced such that [p] = W ⊕p
holds.

If (a, b) ∈ E∗ × E∗ then the pair is called independent if [a] 
= [b] and direct if E =
[a] + [b] := {x+ y | x ∈ [a], y ∈ [b]} = {(u⊕ a)+ (v⊕ b) | u, v ∈ W} . If [a] ⊥ [b] then
(a, b) is a direct pair (cf.(4.5)). We call (E,+) vectorspacelike if each independent pair is
direct. We show:
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(E,+) is vectorspacelike ⇐⇒ to a given segment (s1, s2) and an acute angle α there exists
a rectangular triangle (p, q, r) with p, q ⊥ q, r , (q, r) ≡ (s1, s2) and α ≡ 
 (r, p, q)
(cf.(4.7),(4.8)).

For each n ∈ N the map n· : W → W; x 	→ n · x = x + · · · + x (n times) is a
strictly isotone monomorphism of (W,+, <). The set NW := {n ∈ N | n· is surjective }
contains 2 (cf.(5.1)) and the imbedding of the subring ZW := {m

n
| m ∈ Z, n ∈ NW } of the

field of rational numbers Q in (W,+, <) by m
n

	→ m· ◦ (n·)−1(e) is a monomorphism from
(ZW,+) into (W,+). In this way ZW will be considered as a subset ofW with the operation
· : ZW ×W → W; (m

n
, x) 	→ m

n
· x := m· ◦ (n·)−1(x). Then for r ∈ ZW, r 
= 0 the map

r· : W → W;w 	→ r ·w is contained in the set Bet(W,+, ξ) of all betweenness preserving
monomorphisms of (W,+, ξ) ; r· is isotone resp. antitone if o < r resp. r < o. A subset
B ⊆ W together with an operation · : B ×W → W will be called b-ring of (W,+, <) if
(B,+, ·) is a ring containing (ZW,+, ·) as a subring and if for each β ∈ B∗ := B \ {o}
the map βl : W → W;w 	→ β · w is in Bet(W,+, ξ). If B is a b-ring and β ∈ B∗ then
by a so called rotational extension (cf.(5.7)) βl becomes an injection β· : E → E ; x 	→
β · x called B-quasidilatation (cf. Sec. 4). For o < β < e the quasidilatation β· is a
contraction hence if x ∈ E∗ then β · x is a point of the open segment ]o, x[ and if e < β

then β· is an enlargement, i.e. x ∈]o, β · x[. For a, b ∈ E and λ,µ ∈ B the expression
λ · a + µ · b is called quasilinear B-combination. If B is transitive, i.e. B = W , then
[a] + [b] = {λ · a+ µ · b | λ,µ ∈ B} if a, b ∈ E1 or if (W,+, ·) := (B,+, ·) is a field. In
the case that (W,+, <) is continuous W can be established with a multiplication “·” such
that (W,+, ·, <) becomes an ordered field (isomorphic to the reals R) (cf. (5.6)) and then
[a] + [b] = W · a+W · b = {λ · a+ µ · b | λ,µ ∈ W} for all a, b ∈ E.

The loop (E,+) is a group if the absolute plane is singular. In this case (E,+) is vec-
torspacelike iff (E,G, α,≡) is an Euclidean plane (cf. (4.6)). In the ordinary case the loop
of a hyperbolic plane is vectorspacelike (cf. (6.1)).

With the theorems (5.6) and (6.1) one obtains the result of A. Greil [1]:

If (E,G, α,≡) is a continuous hyperbolic plane (then R is a b-ring) and if a, b ∈ E∗ with
[a] 
= [b] then each point x ∈ E can be uniquely represented as a quasilinear R-combination
x = λ · a+µ · b with λ(o, λ · a) = |λ| · λ(o, a) and λ(o, µ · b) = |µ|· λ(o, b) where λ is
the distance function (cf. Sec. 2).

2. Notations, assumptions and known results

In this paper let (E,G, α,≡) be an absolute plane in the sense of [6] p. 96; E and G denotes
the set of points and lines respectively, α the order-function and ≡ the congruence. Let
A be the motion group of (E,G, α,≡). For a ∈ E, A ∈ G let ã resp. Ã denote the
point- resp. line-reflection in a resp. in A and let Ẽ := {ã | a ∈ E} resp. G̃ := {Ã |
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A ∈ G} be the set of all point- resp. line-reflections. If a, b ∈ E and a 
= b let ãb resp.
âb denote the (uniquely determined) point- resp. line-reflection interchanging a and b
(cf. [6] (16.11), (16.12), (17.1), (17.2)) (i.e. ãb resp. âb is the reflection in the midpoint
resp. midline of a and b (cf. [6](16.11) and p. 105)). Moreover let a, b denote the
line joining a and b and let �a, b := {x ∈ a, b | (a|b, x) = 1}1 be the halfline and let
H := { �a, b | a, b ∈ E, a 
= b} be the set of all halflines.

By [6] (17.6),(17.9),(17.7) and G̃ ⊆ G̃3 follows:

(2.1) A = G̃2 ∪̇ G̃3, Ẽ ⊆ G̃2 and G̃2 � A is a normal subgroup of A of index 2.

We call the elements of A+ := G̃2 proper motions. By [6] (17.8) and (18.3) we have:

(2.2) Let ϕ ∈ A, a ∈ E and G ∈ G then:

(1) ϕ ◦ G̃ ◦ϕ−1 = ϕ̃(G) hence ϕ ◦ G̃ ◦ϕ−1 = G̃ , i.e. G̃ is an invariant subset consisting
of involutory motions of A and acting transitively on E.

(2) ϕ◦ ã◦ϕ−1 = ϕ̃(a) hence ϕ◦ Ẽ◦ϕ−1 = Ẽ, i.e. (E, Ẽ) is an invariant set of involutory
motions acting regularly on E.

(3) ∀a, b, c, d ∈ E, a 
= b, c 
= d ∃1 σ ∈ A+ : σ( �a, b) = �c, d, i.e. the group of
proper motions acts regularly on the set H of all halflines (cf. [6] (17.15)).

From [6] (17.7.2) and (17.13.2) resp. (16.10.2) and p.105 follows:

(2.3) Let D ∈ G, a, b, c ∈ D and p ∈ E \D then:

(1) ∃ m ∈ D : ã ◦ b̃ ◦ c̃ = m̃.
(2) p̃(D) ∩D = ∅.

The absolute planes split into two classes: the singular planes characterized by Ẽ3 ⊂ Ẽ
and the ordinary planes characterized by Ẽ3 
⊂ Ẽ

(2.4) If (E,G, α,≡) is singular then Ẽ2 is a commutative normal subgroup of A acting
regularly on E. (cf. [6] (21.6))

Now let three non collinear points o, e1, e2 ∈ E with (o, e1) ≡ (o, e2) and o, e1 ⊥ o, e2 be
fixed as a frame of reference, let E1 := {x ∈ E | (o, x) ≡ (o, e1)} and E∗ := E \ {o}. For
any a ∈ E∗ let:

[a] := o, a the line joining o and a,
[a]+ := {x ∈ [a] | (o|a, x) = 1} the halfline,
a+ := õa ◦ õ and o+ := id (let E+ := {a+ | a ∈ E}).

For a ∈ E1 \ {e1} let a• := ê1a ◦ õ, e1 and e•1 := id.

1(a|b, x) := α(a, b, x) (cf. [6] (13.9))
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Then by [4] p.405:

(2.5) (E,+) with a+ b := a+(b) is a K-loop, i.e. a loop characterized by:

∀a, b ∈ E : a+ ◦ b+ ◦ a+ = (a+ (b+ a))+ and õ ◦ a+ = (õ(a))+ ◦ õ
Moreover:

(1) E+ is a set of fixed point free proper motions of (E,G, α,≡) acting regularly on the
point set E (cf.(2.2.2)).

(2) (E,+) is a group (and then even a commutative group) if and only if (E,G, α,≡) is
singular; in this case (E,+) and (Ẽ2, ◦) are isomorphic.

(3) ∀a ∈ E∗, [a] is a commutative subgroup of the loop (E,+) and [a]+ a subsemigroup
of [a] with [a] = [a]+∪̇{o}∪̇[−a]+.

(4) G = {a + [b] | a ∈ E, b ∈ E∗} and the set H of all halflines is represented by
H = {a+ [b]+ | a ∈ E, b ∈ E∗}.

(5) If (E,G, α,≡) is ordinary then ∀a ∈ E∗,∀σ ∈ Aut(E,+) : [a] = {x ∈ E | a+◦x+ =
x+ ◦ a+}, σ([a]) = [σ(a)] and Aut(E,+) ≤ Aut(E,G).

Proof. “(5)” ∀x ∈ E : σ ◦ a+ ◦ σ−1(x) = σ(a+ σ−1(x)) = σ(a)+ x = (σ(a))+(x) hence
σ ◦ a+ ◦ σ−1 = (σ(a))+ and so (σ(a))+ ◦ (σ(x))+ = σ ◦ a+ ◦ x+ ◦ σ−1 = (σ(x))+ ◦
(σ(a))+ ⇐⇒ a+ ◦ x+ = x+ ◦ a+.

Consequently σ([a]) = [σ(a)] . Since σ(a+ [b]) = σ(a)+σ([b]) = σ(a)+ [σ(b)] we have
σ ∈ Aut(E,G). �

From [6] (16.12) and (19.1) we obtain the first part of the following theorem:

(2.6) (E1, •) with a • b := a•(b) is a commutative group with the neutral element e1,
isomorphic to the rotation group in o and for a ∈ E1 and b ∈ E∗ we have:

(1) a• ◦ b+ = (a•(b))+ ◦ a•, i.e. a• ∈ Aut(E,+) hence E•
1 := {a• | a ∈ E1} ≤

Aut(E,+).
(2) a•([b]) = [a•(b)], a•([b]+) = [a•(b)]+ , i.e. the automorphism a• maps the com-

mutative subgroup [b] of the loop (E,+) onto the subgroup [a•(b)], in particular
a•([e1]) = [a].

(3) |[b]+ ∩ E1| = 1.
(4) ∀b, c ∈ E∗ ∃1m ∈ E1 : [c]+ = m•([b]+) = [m•(b)]+.
(5) For a, b ∈ E let δa,b := ((a + b)+)−1 ◦ a+ ◦ b+ and let da,b := δa,b(e1) then

δa,b = d•
a,b and a+ ◦ b+ = (a+ b)+ ◦ d•

a,b.
(6) E+ �Q E•

1 = A+ is the quasidirect product of the loop (E,+) and the commutative
group (E1, •): If σ ∈ A+, a := σ(o) and b := (a+)−1 ◦ σ(e1) then b ∈ E1

and σ = a+ ◦ b• and if a, b ∈ E, c, d ∈ E1 then (a+ ◦ c•) ◦ (b+ ◦ d•) =
(a+ c•(b))+ ◦ ((da,c•(b)) • c • d)•.
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Proof. “(1)” Since (o, e1) ≡ (o, a) the midline of e1 and a contains the point o (cf.[6]
(16.12), (16.13)) hence ê1a(o) = o and so a•(o) = o. Therefore by (2.2.2), a•◦õ◦(a•)−1 =
ã•(o) = õ and a• ◦ õb ◦ (a•)−1 = ( ˜a•(o)a•(b)) = ˜oa•(b) implying a• ◦ b+ ◦ (a•)−1 =
( ˜oa•(b)) ◦ õ = (a•(b))+. �

3. Measurement and polar coordinates

Let W := [e1],W+ := [e1]+ and E+ := {x ∈ E | (W |e2, x) = 1}. According to [6] (13.3)
there is a total order relation “<” on W such that o < e1 and for all {x, y, z} ∈ (W3 ) holds:
(x|y, z) = −1 ⇐⇒ y < x < z or z < x < y.

From the excelent paper of D. Gröger (cf. [2] §2) we obtain:

(3.1) Between the commutative group (W,+) (cf.(2.5.3)) and the ordered set (W,<) there
are the following relations :

(1) ∀a ∈ W, ã|W is an antiton permutation of (W,<).
(2) ∀a ∈ W, a+

|W is an isoton permutation , i.e. (W,+, <) is an ordered commutative
group.

(3) W+ is a positive domain hence for a, b ∈ W : a < b ⇐⇒ −a+ b ∈ W+. �

By (2.6.4) to any x ∈ E∗ there exists exactly one m ∈ E1 with m•([x]+) = [e1]+ = W+.
Therefore the map

| | : E → W+ ∪ {o} ; x 	→
{
m•(x) if x 
= o

o if x = o,

called absolute value, is welldefined and we have:

(3.2) ∀x, y ∈ E : |x| = |y| ⇐⇒ (o, x) ≡ (o, y). �

Using the loop operation of (E,+) we define:

λ : E × E → W+ ∪ {o}; (a, b) 	→ λ(a, b) := | − a+ b|
and call λ(a, b) the distance of the points a and b. Since the maps a+ are also motions we
can summarize the results of ([2] (2.5), (2.6), (2.7)) and state:

(3.3) Let a, b, c, d ∈ E and ϕ ∈ A then :

(1) (a, b) ≡ (c, d) ⇐⇒ λ(a, b) = λ(c, d)

(2) λ(ϕ(a), ϕ(b)) = λ(a, b) = λ(b, a)

(3) λ(a, b) = o ⇐⇒ a = b

(4) If (a, b, c) is a rectangular triangle with a, c ⊥ b, c then λ(a, c) < λ (a, b).
(5) (triangular inequality)λ(a, b) ≤ λ(a, c)+λ(b, c)andλ(a, b) = λ(a, c)+λ(b, c) ⇐⇒

c ∈ [a, b]. �
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From (3.3.4) follows:

(3.4) For A ∈ G and x ∈ E let xA := (x ⊥ A) ∩ A be the foot of x on A then for
a ∈ A,λ(x, xA) ≤ λ(x, a) and λ(x,A) := λ(x, xA) is called the distance from the point x
to the line A. �

If p, q ∈ E, A ∈ G and u ∈ W+ are given with p 
= q and q 
∈ A , let

D(A, q) := {x ∈ E | λ (x,A) = λ (q,A) ∧ (A|q, x) = 1} resp.

D(A; u) := {x ∈ E | λ(x,A) = u}
be the equidistant of A through q resp. the set of all points having the distance u from A.
If λ(q,A) = u then D(A; u) = D(A, q) ∪̇D(A, Ã(q)).
In the absolute plane (E,G, α,≡) we introduce an orientation Or : 	 → {1,−1};
(a, b, c) 	→ Or(a, b, c), i.e. a function defined on the set 	 of all triangles by:

Let σ ∈ A+ be the proper motion uniquely determined by σ( �a, b) = W+ (cf. (2.2.3)) then
Or(a, b, c) := (W |e2, σ(c)).

We say (a, b, c) is positively oriented if Or(a, b, c) = 1 otherwise negatively.

The orientation Or induces a cyclic order ω on E1 turning the commutative group (E1, •)
in a cyclic ordered group (E1, •, ω) by:

For {a, b, c} ∈ (E1
3

)
we have (a, b, c) ∈ 	 and therefore we set ω(a, b, c) := Or(a, b, c).

Now we can introduce a measure for angles : if α = 
 (b, a, c) = ( �ab, �ac) is an angle let
again σ ∈ A+ with σ( �ab) = W+ then µ (α) := [σ(c)]+ ∩ E1 is called the measure of α.

Analogously to (3.3) we have:

(3.5) Let γ := 
 (a, c, b) be an angle, let d ∈ E \ {o} with (c, d|a, b) = −1 then µ(γ) =
µ( 
 (a, c, d)) • µ( 
 (d, c, b)). �

Moreover for any x ∈ E∗ let ξ := [x]+ ∩ E1. Then the pair (|x|, ξ) ∈ W+ × E1 is called
the polar coordinates of x, and the function pc : E∗ → W+ × E1; x 	→ (|x|, [x]+ ∩ E1) is
a bijection; for if ξ ∈ E1 and w ∈ W+ are given then x := ξ•(w) is exactly the point with
the polar coordinates (w, ξ).

4. Direct sums and direct pairs

Since for each a ∈ E1 the motion a• = ê1a ◦ W̃ is an automorphism of the loop (E,+) we
set • : E1 × E → E; (a, x) 	→ a • x := a•(x) and call the elements of E1 multipliers. To
each p ∈ E∗ we associate the multiplier p1 := [p]+ ∩ E1 then:
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(4.1) ∀a, b ∈ E1,∀x, y ∈ E,∀p ∈ E∗:

(1) e1 • x = x, |a • x| = |x| and (a • p)1 = a • p1

(2) a • (x+ y) = a • x+ a • y
(3) a • (b • x) = (a • b) • x
(4) E1 • x := {a • x | a ∈ E1} is a circle with center o passing through x
(5) p = p1 • |p|, i.e. (|p|, p1) are the polar coordinates of p
(6) −e1 ∈ E1, (−e1)

• = õ and (−e1) • x = −x.
(7) a • [p] = [a • p]. �

We call the commutative group (W,+) scalar domain and their elements scalars and intro-
duce between W and E∗ by:

⊕ : W × E∗ → E; (w, p) 	→ w⊕ p := p1 • (w+ |p|) = p1 • w+ p

an operation which has the properties:

(4.2) For all u, v ∈ W , for all p ∈ E∗ :

(1) o⊕ p = p

(2) ((u+ v)⊕ p)+ p = (u⊕ p)+ (v⊕ p)

(3) If u ≥ o then |u⊕ p| = u+ |p|
(4) W ⊕ p = [p],W+ ⊕ p = [p]+. �

If a, b ∈ E∗ and u, v ∈ W then the expression (u ⊕ a) + (v ⊕ b) shall be called scalar
combination of a and b. Then:

(4.3) For all a, b ∈ E∗, for all u, v ∈ W , for all c ∈ E1 : c • (u ⊕ a) = u ⊕ (c • a), c •
((u⊕ a)+ (v⊕ b)) = (u⊕ (c • a))+ (v⊕ (c • b)).
(4.4) Let a, c ∈ E∗ with [a] 
= [c] and let b ∈ [a] \ {a} then:

(1) [a] ∩ (a+ [c]) = {a}
(2) (b+ [c]) ∩ (a+ [c]) = ∅
(3) ∀p ∈ E there is at most one pair (x, y) ∈ [a] × [c] such that p = x + y , i.e. there

is at most one pair (u, v) of scalars such that p = (u ⊕ a) + (v ⊕ c) is a scalar
combination of a and c.

Proof. “(1)” : By assumption [a] ∩ [c] = {o} , since [a] is a subgroup of the loop (E,+)
and a+ a permutation we have: {a} = (a+ [a]) ∩ (a+ [c]) = [a] ∩ (a+ [c]).

“(2)”: Let a′ := Fix õa, b′ := Fix õb hence ã′ = õa, b̃′ = õb and a′ resp. b′ is the midpoint
of {o, a} resp. {o, b}. By b ∈ [a] follows o, a′, b′ ∈ [a] hence by (2.3.1) there is a d′ ∈ [a]
with d̃′ = b̃′ ◦ ã′ ◦ õ = õb ◦ õa ◦ õ. Since õ([c]) = [c] we obtain by (2.3.2) :

(b+ [c]) ∩ (a+ [c]) = õb([c]) ∩ õb ◦ õa([c])) = õb([c] ∩ d̃′([c]) 
= ∅ ⇐⇒
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[c] ∩ d̃′([c]) 
= ∅ ⇐⇒ d′ ∈ [a] ∩ [c] = {o} ⇐⇒ õa = õb ⇐⇒ a = b.

Since a 
= b, (2) is valid.

“(3)”: Assume there are (x, y), (x′, y′) ∈ [a] × [c] with p = x + y = x′ + y′ and x 
= x′
then for instance x 
= o and so x′ ∈ [a] = [x]. Thus p ∈ (x+ [c]) ∩ (x′ + [c]) and by (2),
(x+ [c]) ∩ (x′ + [c]) = ∅, a contradiction. Hence x = x′ and so y = y′. �

A pair (a, b) ∈ E × E is called a direct pair if [a] + [b] := {x+ y | x ∈ [a], y ∈ [b]} = E
or equivalently if E = (W ⊕ a)+ (W ⊕ b). Then by (4.4.3) for every direct pair (a, b) the
loop (E,+) is representable as direct sum of the commutative subgroups [a] and [b], i.e.
each element p ∈ E is uniquely representable as a scalar combination of a and b.

(4.5) Let a, b ∈ E∗ with [a] ⊥ [b] then (a, b) is a direct pair.

Proof. Let p ∈ E, x := (p ⊥ [a]) ∩ [a] then [a] ⊥ [b], x + [a] = õx([a]) = [a] and
x + [b] = õx([b]) imply [a] ⊥ (x + [b]) hence p ∈ (p ⊥ [a]) = x + [b] and so there is a
y ∈ [b] with p = x+ y. �

We call the K-loop (E,+) of an absolute plane vectorspacelike if for all a, b ∈ E∗ with
[a] 
= [b], (a, b) is a direct pair.

(4.6) The K-loop of a singular plane is vectorspacelike if and only if the plane is Euclidean.

Proof. By (2.5.2) (E,+) is a commutative group. Let a, b ∈ E∗ with [a] 
= [b] and let
p = x+ y with x ∈ [a] and y ∈ [b] then p = (x+ [b])∩ (y+ [a]) = (p+ [b])∩ (p+ [a]).

Therefore (a, b) is a direct pair if for all p ∈ E holds:

(p+ [a])∩ [b] 
= ∅ and (p+ [b])∩ [a] 
= ∅. Clearly, if the parallelaxiom is valid then this
condition is satisfied:

for let u, x, y, z ∈ E with y, z 
= o then (u+ [y]) ‖ (x+ [z]) ⇐⇒ [y] = [z].

If the parallelaxiom is not satisfied then by (2.2.2) there exist linesC, [a], [b] with [a] 
= [b]
and C ∩ ([a] ∪ [b]) = ∅. If C = d + [c] then at least one of the statements [c] 
= [a] or
[c] 
= [b] is true for instance [c] 
= [a] .Since (d + [c]) ∩ [a] = C ∩ [a] = ∅ it follows that
(a, c) is not a direct pair. �

Next we consider the case (a, b) ∈ E∗ × E∗ with [a] 
= [b] and [a] 
⊥ [b]. Then there
are a1 ∈ [a] ∩ E1, b1 ∈ [b] ∩ E1 such that γ := 
 (b1, o, a1) is an acute angle hence
µ(γ) = a−1

1 • b1 ∈ E1 with ω(e1,µ(γ), e2) = 1. We show:

(4.7) For a, b ∈ E1 with ω(e1, a
−1 • b, e2) = 1 the following statements are equivalent:

(1) (a, b) is a direct pair
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(2) ∀w ∈ W+ : [b] ∩D([a];w) 
= ∅
(3) ∀w ∈ W+ exists a rectangular triangle 	 = (p, q, r) with p, q ⊥ r, q,µ( 
 (r, p, q))

= a−1 • b and λ(r, q) = w.

Proof. By (2.6) and (4.3) , (a−1)• is a proper motion and an automorphism of (E,+,W; ⊕).
Therefore we may assume a = e1 and ω(e1, b, e2) = 1.

“(1) ⇒ (2), (3)”. Let w ∈ W+ be given. Since (a, b) is a direct pair there are uniquely
determined scalars u, v ∈ W such that e2 •w = (u⊕ e1)+ (v⊕ b) = (u+ e1)+ (v⊕ b).

Since w > o and ω(e1, b, e2) = 1 we have v > o and u+ e1 < o. We consider the triangle
	 := (o,−(u+ e1), (v⊕ b)) which has the properties:

1. Since u+ e1 ∈ W and o 
= u+ e1 we have o,−(u+ e1) = W = [e1] and (−(u+ e1))
+

is a proper motion fixing the line [e1]. Since [e1] ⊥ [e2] also the lines [e1] and (−(u +
e1))

+([e2]) = −(u + e1) + [e2] are orthogonal. The line −(u + e1) + [e2] contains the
points −(u+ e1) and −(u⊕ e1)+ e2 • w = −(u⊕ e1)+ ((u⊕ e1)+ (v⊕ b)) = v⊕ b.
Therefore 	 is rectangular with o,−(u+ e1) ⊥ −(u+ e1), v⊕ b and so −(u+ e1) is the
orthogonal projection of (v⊕b) onto [e1]. Hence: λ(v⊕b, [e1]) = λ(−(u+e1), v⊕b) =
| − (u + e1) − (v ⊕ b)| = | − e2 • w| = |w| = w implying v ⊕ b ∈ D([e1];w), i.e.
[b] ∩D([e1];w) 
= ∅ and (2) is proved. Finally since v > o and −(u + e1) > o we have
[v⊕b]+ = [b]+ and [−(u+e1)]+ = [e1]+ hence 
 (v⊕b, o,−(u+e1)) = 
 (b, o, e1) and
so µ( 
 (b, o, e1)) = b, i.e. also (3) is proved. “(2) ⇒ (1)”. Let p ∈ E be given. If p ∈ [e1]
then p = p + o with o ∈ [b] . Therefore let p 
∈ [e1]. Then by assumption (2) there is
exactly one v ∈ W such that {v ⊕ b} = [b] ∩ D([e1], p). Let pW := (p ⊥ [e1]) ∩ [e1]
and (v ⊕ b)W := (v ⊕ b ⊥ [e1]) ∩ [e1], then −pW + p = −(v ⊕ b)W + (v ⊕ b) ∈ [e2]
and since (W,+) is a commutative group there is exactly one u ∈ W such that pW =
(u⊕e1)+(v⊕b)w = (u⊕e1)

+(v⊕b)W . Consequently: p = p+
W ◦(−(v⊕b)W)+(v⊕b) =

(u⊕ e1)
+ ◦ ((v⊕ b)W)+ ◦ (−(v⊕ b)W)+(v⊕ b) = (u⊕ e1)

+(v⊕ b) = (u⊕ e1)+ (v⊕ b).
�

From (4.7) follows:

(4.8) The K-loop of an absolute plane is vectorspacelike if and only if : ∃A ∈ G and
a ∈ A : ∀G ∈ G \ {A} with a ∈ G,∀x ∈ E \ A : G ∩D(A, x) 
= ∅.

5. b-Rings, rotational extensions and quasidilatations

Quasidilatations for the K-loop of an absolute geometry were introduced in [4]. In order to
define them we consider firstly the ordered commutative group(W,+, <) (cf.(3.1)) .

Let ξ denote the betweenness relation on W corresponding to <, let Iso(W,+, <) resp.
Bet(W,+, ξ) be the set of all endomorphisms of the group (W,+)which are strictly isotone
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resp. which preserve the betweenness relation ξ onW , let: ν : W → W; x 	→ −x := õ(x)

and let Mon(W,+) be the set of all monomorphisms of (W,+). Then Bet(W,+, ξ) =
Iso(W,+, <) ∪̇ ν ◦ Iso(W,+, <) ⊆ Mon(W,+) where ν ◦ Iso(W,+, <) is the set of all
antitone monomorphisms.

(Bet(W,+, ξ), ◦), (Iso(W,+, <), ◦) and (Iso(W,+, <),+) are semigroups. The auto-
morphism groups Aut(W,+, ξ) resp. Aut(W,+, <) are subgroups of (Bet(W,+, ξ), ◦)
resp. (Iso(W,+, <), ◦) and Aut(W,+, ξ) = Aut(W,+. <) ∪̇ν ◦ Aut(W,+, <).
We show:

(5.1) (W,+) is uniquely divisible by 2 : for a ∈ W let 1
2a be the midpoint of o and a then

1
2a ∈ W and 1

2a+ 1
2a = a.

Proof. Let a′ := 1
2a then a′ + a′ = õa′ ◦ õ(a′) = ã′ ◦ õa′(a′) = ã′(o) = õa(o) = a and

if a = b + b = õb ◦ õ(b) = b̃ ◦ õb(b) = b̃(o) then b is the midpoint of o and a hence
b = a′. �

Since (W,+, <) is an ordered commutative group , (W,+) is a Z- module such that ∀n ∈
Z∗ := Z \ {0}, the map n· : W → W; x 	→ n ·x is a monomorphism where n· is isotone if
n ∈ N and antitone if −n ∈ N . By (5.1) , 2· is even an automorphism with (2·)−1(x) = 1

2x.

Therefore:

(5.2) Let PW := {p ∈ P | p· ∈ SymW} be the set of all prime numbers p such that p·
is even an automorphism of (W,+), let NW be the set of all natural numbers which are
products of prime numbers of PW and let ZW := {m

n
| m ∈ Z, n ∈ NW } be the subring

of the field Q consisting of all fractions where the denominator is an element of NW .
Then:

(1) 2 ∈ PW (by (5.1)) and Z2 := {m · 2−n | m ∈ Z, n ∈ N ∪ {0}} ⊆ ZW .
(2) ∀ r = m

n
∈ Z∗

W the map r· = m· ◦ ((n·)−1 is a monomorphism of (W,+) and r· is
strictly isotone resp. antitone if r > 0 resp. r < 0.

(3) If r := m
n

is a unit of ZW hence if m ∈ NW then r· is an automorphism of (W,+).
(4) (−e1)

•|W = (−1)· is an antitone automorphism of (W,+).
(5) ZW is a subring of End(W,+) with Z∗

W := ZW \ {0} ⊆ Bet(W,+, ξ).
(5.3) If PW = P , i.e. for each n ∈ N , n· is a permutation of W then ZW = Q and (W,+)
is a Q-module, i.e. (W,Q) is a vectorspace.

A subring B of the endomorphismring End(W,+) is called b-ring of (W,+) if ZW ⊆ B

and B∗ := B \ {0} ⊆ Bet(W,+, ξ)).
By (5.2.5) ZW is a b-ring of (W,+, <).
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Now let B be a b-ring of (W,+, <). Then B∗ := B \ {o} ⊆ Bet(W,+, ξ) ⊆ Mon(W,+)
implies that B∗ is a subsemigroup of (Mon(W,+), ◦) and so the map ι : B → W;β 	→
β(e1) is injective. If βi ∈ B, i ∈ {1, 2} and bi := βi(e1) then β1 + β2 ∈ B and so
b1 + b2 = β1(e1)+ β2(e1) = (β1 + β2)(e1). Therefore ι is a monomorphism from (B,+)
into (W,+) hence ι(B) a subgroup of (W,+) isomorphic with (B,+). We identify always
B and ι(B) and if for β ∈ B and b := ι(β) = β(e1) we set b· := β and define :

· : B ×W → W; (b,w) 	→ b · w := b·(w).

If B = W then the b-ring B is called transitive.

(5.4) Let (B,+, ◦) be a b-ring of (W,+, <). Then for a, b ∈ B∗ and x, y ∈ W we have
: e1 ∈ B , e·1 = id , e1 · x = x , a · e1 = e1 · a = a, a · b = a·(b) = a· ◦ b·(e1) ∈ B

hence (a · b)· = a· ◦ b· and a · (b · x) = (a · b) · x, (a+ b) · x = a · x+ b · x, a · (x+ y) =
a · x+ a · y, a · x = a · y ⇐⇒ x = y and a · x = b · x ⇐⇒ a = b or x = o. �

This shows: ((W,+), B, ·) is a nearfield in the sense of H.Zassenhaus (cf.[9],[3] p.2) (i.e.
(W,+) is a group , B ⊆ W withB∗ 
= ∅ and if a, b ∈ B then a·(b) ∈ B and (a·(b))· = a·◦b· ,
i.e. (B, ·) is a semigroup , if x ∈ W∗ with a·(x) = b·(x) then a = b andB∗· := {b· | b ∈ B∗}
is a subgroup of the automorphism group Aut(W,+).)2 Moreover B+ := B ∩ W+ is a
subsemigroup of (B∗, ·) and B+ ·W+ = W+.

(5.5) If (B,+, ◦) is a transitive b-ring of (W,+, <) hence B := ι(B) = B(e1) = W then
(W,+, ·) is a complete nearfield even a field and (W,+, ·, <) is an ordered field.

Proof. B∗ ⊆ Bet(W,+, ξ) ⊆ Mon(W,+) , B∗(e) = W∗ and (5.4) imply that (W∗, ·) is a
group hence by (5.4) (W,+, ·) is a field and so if a ∈ W∗ then a· is an automorphism of
(W,+).
Consequently B∗ ⊆ Aut(W,+, ξ) = Aut(W,+, <) ∪̇ ν ◦ Aut(W,+, <).
Let a < b and o < c . Then c· ∈ Aut(W,+, ξ), o < e1 and c·(e1) = c imply c· ∈
Aut(W,+, <) and therefore c · a = c·(a) < c·(b) = c · b. Moreover a < b hence
o < −a+ b implies (−a+ b)· ∈ Aut(W,+, <) and so o < (−a+ b)·(c) = (−a+ b) · c.
Since (W,+, ·) is a field we obtain o < −a · c + b · c, i.e. a · c < b · c. �

REMARK. If (W,+, <) is an archimedian ordered group then (by the theorem of O.
Hölder) (W,+) is isomorphic to a subgroup of (R,+) (resp. to (R,+)). Therefore:

(5.6) If (W,+, <) is continuous then (R,+, ·) is a transitive b-ring of (W,+, <) and (W,+)
can be provided with a multiplication “·” such that (W,+, ·) is a field isomorphic to (R,+, ·).

2Zassenhaus calls a nearfield complete if B = W . Today the notion “nearfield” is used for complete nearfields
in the sense of Zassenhaus.
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We call a map ϕ : E → E rotational (homogenous) if : ∀a ∈ E1 : ϕ ◦ a• = a• ◦ ϕ.

A rotational map ϕ fixes o and is completely determined by its restriction ϕ|W+ : for if
x = x1 • |x| ∈ E∗ is given by its polar coordinates then ϕ(x) = ϕ(x1 • |x|) = ϕ(x•

1 ◦ |x|) =
x•

1 ◦ ϕ(|x|) = x•
1 ◦ ϕ|W+(|x|) and since W = {o} ∪̇W+ ∪̇ (−e1) •W+ and [x] = x1 •W =

{o} ∪̇ x1 •W+ ∪̇ x1 • (−e1) •W+ we have : ϕ([x]) = x1 •ϕ(W) = {o} ∪̇ x1 •ϕ(W+) ∪̇ x1 •
(−e1) • ϕ(W+).

Conversely:

(5.7) Any map ψ : W+ → E can be uniquely extended to a rotational map ψ̄ : E →
E by ψ̄(x) = ψ̄(x1 • |x|) := x•

1(ψ(|x|)) for all x ∈ E∗. ψ̄ is then called rotational
extension of ψ.

Proof. We have to show that ψ̄ is rotational. Let a ∈ E1 and x = x1 • |x| ∈ E∗ then
a • x1 ∈ E1 (cf. (2.6)) and (a • x1)

• = a• ◦ x•
1 hence ψ̄ ◦ a•(x) = ψ̄ ◦ a•(x•

1(|x|)) =
ψ̄((a • x1)

•(|x|) = (a • x1)
•(ψ(|x|)) = a• ◦ x•

1(ψ(|x|)) = a• ◦ ψ̄(x). �

If A is an arbitrary set then any two maps ϕ,ψ ∈ Map(A,E) from A into the loop (E,+)
can be added with the help of the loop operation “+” by: (ϕ + ψ)(x) := ϕ(x) + ψ(x) for
x ∈ A.

Then ϕ + ψ ∈ Map(A,E) and so (Map(A,E),+) is also a loop. The properties of the
loop (E,+) pass on (Map(A,E),+) , i.e. in our case (Map(A,E),+) is a K-loop too.
For A = E we set Map(E) := Map(E,E). In this case with ϕ,ψ, χ ∈ Map(E) also
ϕ ◦ψ ∈ Map(E), (i.e. (Map(E), ◦) is a semigroup) and (ϕ+ψ) ◦χ = ϕ ◦χ+ψ ◦χ. This
shows that (Map(E),+, ◦) is a (right) K-loop-nearring (cf.[8]).

Let R(E, o) := {ϕ ∈ Map(E) | ∀a ∈ E1 : ϕ◦a• = a•◦ϕ} be the set of all rotational maps of
the loop (E,+), let R(E, [ ]) := {ϕ ∈ R(E, o) | ∀x ∈ E with ϕ(x) 
= o : ϕ([x]) ⊆ [ϕ(x)]},
R(E, [[ ]]) := {ϕ ∈ R(E, o) | ∀x ∈ E∗ : ϕ(x) ⊆ [x]} and R(W, o) := {ϕ ∈ Map(W) |
ν ◦ ϕ = ϕ ◦ ν}. Then we can show:

(5.8)

(1) R(E, o) is a subloop-nearring of the K-loop-nearring (Map(E),+, ◦).
(2) R(W, o) is a subnearring of the nearring (Map(W),+, ◦).
(3) (R(E, [[ ]]), ◦) ≤ (R(E, [ ]), ◦) ≤ (R(E), ◦) and E•

1 ≤ (R(E, [ ]), ◦).
(4) R(E, [[ ]]) is a subnearring of (R(E, [ ]),+, ◦) and (R(E, [[ (]]),+, ◦) is isomorphic

to (R(W, o),+, ◦): The map ι : R(W, o) → R(E, [[ ]]);ϕ 	→ (ϕ|W+ (where ϕ|W+
denotes the rotational extension of the restriction ϕ|W+) is an isomorphism from
(R(W, o),+, ◦) onto (R(E, [ ]),+, ◦).

(5) The endomorphismring End(W,+) is a subring of the nearring R(W, o),+, ◦) and
so En(E, o) := ι(End(W,+)) is a subring of the nearring (R(E, [[ ]]),+, ◦). The
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elements ϕ of En(E, o) are rotational maps characterized by: If x, y ∈ E with
[x] = [y] then ϕ(x+ y) = ϕ(x)+ ϕ(y).

Proof. Let ϕ,ψ ∈ R(E,+), a ∈ E1, x ∈ E and observe a• ∈ Aut(E,+) (cf.(2.6.1)) then
(ϕ + ψ) ◦ a•(x) = ϕ ◦ a•(x) + ψ ◦ a•(x) = a•(ϕ(x)) + a•(ψ(x)) = a•(ϕ(x) + ψ(x)) =
a• ◦ (ϕ+ψ)(x) and (ϕ◦ψ)◦a• = ϕ◦a• ◦ψ = a• ◦ (ϕ◦ψ). Hence ϕ+ψ, ϕ◦ψ ∈ R(E, o).
This shows (1).

Since with (W,+) also (Map(W),+) is a commutative group, (Map(W),+, ◦) is a nearring
and with the previous arguments, (2) is proved.

By (4.1.6) −ϕ = (−e1)
• ◦ ϕ ∈ R(E, o). Now assume moreover ϕ,ψ ∈ R(E, [ ]) and

ϕ ◦ ψ(x) 
= o. Then (since ϕ(o) = o) ψ(x) 
= o and so ϕ(ψ([x])) ⊆ ϕ([ψ(x)]) ⊆
[ϕ(ψ(x))] = [ϕ ◦ψ(x)]. If even ϕ,ψ ∈ R(E, [[ ]]) and x ∈ E∗ then ϕ(ψ([x])) ⊆ ϕ([x]) ⊆
[x] and (ϕ + ψ)([x]) = {(ϕ + ψ)(y) = ϕ(y) + ψ(y) | y ∈ [x]} ⊆ [x] + [x] ⊆ [x],
i.e.ϕ ◦ ψ, ϕ + ψ ∈ R(E, [[ ]]). Moreover by (4.1.7), a•([x]) = [a•(x)] hence (3) is
completely proved.

If ψ ∈ R(E, [[ ]]) then ψ(W) = ψ([e1]) ⊆ [e1] = W, ψ(o) = o and if w ∈ W

then ψ(−w) = ψ(ν(w)) = ψ((−e)•(w) = (−e)• ◦ ψ(w) = ν(ψ(w)) hence ϕ := ψ|W ∈
R(W, ◦) and so ϕ is completely determined by ϕ|W+ and by (5.7) we have firstlyψ = ϕ|W+
and secondly that ι is injective and surjective. Clearly if ϕ,ψ ∈ R(W, o) and x ∈ E∗ then
by (5.7) and x•

1 ∈ Aut(E,+), ϕ|W+(x)+ψ|W+(x) = x•
1(ϕ(|x|)+x•

1(ψ(|x|) = x•
1(ϕ(|x|)+

ψ(|x|)) = x•
1◦(ϕ+ψ)(|x|) = (ϕ + ψ)|W+(x), i.e. ϕ|W++ψ|W+ = (ϕ + ψ)|W+. Further-

more (ϕ ◦ ψ)|W+(x) = x•
1(ϕ ◦ψ)(|x|) = x•

1◦ (ψ(|x|))•1(ϕ(|ψ(|x|)|)) and observing (5.7),
ϕ|W+◦ψ|W+(x) = ϕ|W+(x•

1◦ψ(|x|)) = x•
1◦ϕ|W+(ψ(|x|)) = x•

1 ◦ (ψ(|x|))•1(ϕ(|ψ(|x|)|)).
Thus ι is an isomorphism.

Since (W,+) is a commutative group the map ν : W → W;w 	→ −w is an automorphism
of (W,+) hence ν ∈ End(W,+) and if ϕ ∈ End(W,+) and x ∈ W then ϕ ◦ ν(x) =
ϕ(−x) = −ϕ(x) = ν ◦ϕ(x) hence End(W,+) ≤ (R(W, o),+, ◦). The other statements of
(5) are a consequence of (4).

Now let B be a b-ring of (W,+, <) and let λ ∈ B be the rotational extension of the
leftmultiplication λl : W → W;w 	→ λ · w (cf. (5.4)) hence λ· : E → E; x = x1 • |x| 	→
x1 • (λ · |x|) is called a B-quasidilatation. By [4]p.407 follows:

(5.9) LetB be a b-ring of (W,+, <) , letU be the set of units of (B,+, ·) and let F := {[x] |
x ∈ E∗}. Then (E,+,F, B, ·) is a structure where (E,+,F) is a loop with an incidence
fibration and · : B×E → E; (λ, x) 	→ λ ·x := λ·(x) is a map such that for all λ,µ ∈ B,
for all X ∈ F and for all a, b ∈ E the following hold:

(1) λ · a = o ⇔ λ = 0 or a = o.
(2) If λ ∈ U, then λ · E = E and λ ·X = X.
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(3) (λ · µ) · a = λ · (µ · a) , (λ+ µ) · a = λ · a+ µ · a.
(4) If a, b ∈ X then λ · (a+ b) = λ · a+ λ · b.

(5.10) For λ ∈ ZW \ {0, 1} the ZW -quasidilatation λ· is a collination of (E,G) if and only
if (E,G, α,≡) is singular.

Let B be a b-ring of our absolute plane , i.e. of (W,+, <). If a, b ∈ E and λ,µ ∈ B then
the expression λ · a + µ · b shall be called quasilinear B-combination or shortly q-linear
B-combination.

(5.11) If (W,+, <) possesses a transitive b-ring (i.e. by (5.5), W can be turned in an
ordered field (W,+, ·, <)) then for all a, b ∈ E∗ with [a] 
= [b] each element x ∈ [a] + [b]
can be written uniquely as a quasilinearW -combination of a and b, i.e. ∃1(α, β) ∈ W×W :
x = α · a+ β · b. �

6. Hyperbolic planes

Among the absolute planes the hyperbolic planes (E,G, α,≡) are characterized by the
following axiom (cf. [6]p.149):

(H) ∀G ∈ G, ∀p ∈ E \G ∃H ∈ G with p ∈ H ∧H ‖h G
where H ‖h G is defined by: Let P := (p ⊥ G) then: G ∩ H = ∅, P̃(H) 
= H,∀x ∈
E \ (H ∪ P̃(H)) with (H |x, P̃(x)) = 1 : p, x ∩G 
= ∅.

In [6] it is shown that there is a one-to-one correspondence between the hyperbolic planes
and the commutative Euclidean fields (K,+, ·). A commutative field is Euclidean ifK(2) :=
{x2 | x ∈ K∗ := K \ {o}} is a positive domain. For a ∈ K∗ let sgn a = 1 if a ∈ K(2) and
sgn a = −1 if a 
∈ K(2). Starting from a commutative Euclidean field (K,+, ·) one can
obtain the corresponding hyperbolic plane in the following way:

Let (M,+, ·) be the ring of all 2 × 2-matrices A = (aij) (with aij ∈ K) over the Euclidean
field , let E = (δij) be the identity matrix and let (K,+, ·) be imbedded in (M,+, ·) via
the map : K → M; u 	→ u · E. For A,B ∈ M let :

Â =
(
a22 −a12

−a21 a11

)
, AT =

(
a11 a21

a12 a22

)
,

A�(B) := A · B ·AT and f(A,B) := A · B̂+ B · Â. Then detA = A · Â = 1
2f(A,A) and

TrA = A+ Â.

We denote by S := {X ∈ M | XT = X} the set of all symmetric matrices of M and
consider the subset E := S1,+ := {S ∈ S | S · Ŝ = 1 ∧ S + Ŝ > 0} as point-set of the
hyperbolic plane.



Vol. 86, 2006 Vectorspacelike representation of absolute planes 95

For G ∈ S−1 := {S ∈ S | S · Ŝ = −1} let G := {X ∈ S1+ | f(X,G) = 0} and let
G := {G | G ∈ S−1} be the set of lines

NOTE: for G,H ∈ S−1 : G = H ⇐⇒ H ∈ {G,−G}.
The congruence ≡ is given by:

If A,B,C,D ∈ E then: (A,B) ≡ (C,D) :⇐⇒ f(A,B) = f(C,D)

And the order α is defined by:

If A,B ∈ E,G ∈ S−1 and A,B 
∈ G then: (G|A,B) := sgn(f(A,G) · f(B,G)).
In [6] and [5] it is shown that (E,G, α,≡) is a hyperbolic plane.

If A ∈ E = S1+ and G ∈ S−1 then the reflection in the point A and in the line G is given
by:

Ã : E → E; X 	→ A�(X̂) = A · X̂ · AT and

G̃ : E → E; X 	→ G�(X̂) = G · X̂ ·GT and the foot by

AG := (A ⊥ G) ∩G = (2 + f(A,G)2)− 1
2 (A+G · Â ·G).

Let (o, e1, e2) := (E, 1
2

(4 0
0 1

)
, 1

4

(5 3
3 5

)
) be our frame of reference and let “♦” denote the

K-loop operation corresponding to the pointE. Then [ei] = Gi whereG1 =
(

0 1
1 0

)
, G2 =(

1 0
0 −1

)
hence W := [e1] := {

(
x 0
0 x−1

)
| x ∈ K(2)} and W+ := {

(
x 0
0 x−1

)
| x ∈ K(2) : 1 <

x}. For A :=
(
a 0
0 a−1

)
, B :=

(
b 0
0 b−1

)
∈ W we have:

ẼA =
( √

a 0
0

√
a−1

)�

◦ ∧ hence A♦ = ẼA ◦ Ẽ =
( √

a 0
0

√
a−1

)�

and

A♦B =
( √

a 0
0

√
a−1

)(
b 0
0 b−1

)( √
a 0

0
√
a
−1

)
=
(
ab 0
0 (ab)−1

)
.

Therefore the map ϕ : (K(2), ·) → (W,♦); x 	→
(
x 0
0 x−1

)
is an isomorphism of the

multiplicative group of all squares of the Euclidean field (K,+, ·) onto the scalar domain
(W,♦) and so (W,♦) can be identified with the group (K(2), ·).
Then the absolute value | | : E → W+ ∪ {o} = {λ ∈ K(2) | 1 ≤ λ} is given by:
|X| = 1

2 (TrX+√
(TrX)2 − 4).

Now we can prove:

(6.1) The K-loop of a hyperbolic plane is vectorspacelike.
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Proof. By (4.8) we may consider the lineG1 and the point E. The lines passing through E
are given by the set of matrices

S−1(E) :=
{(

u v

v −u
)

| u, v ∈ K : u2 + v2 = 1

}
,

and for X =
(
x y

y x−1(1 + y2)

)
∈ E \G1 we have y 
= 0 and

D(G1, X) =
{(

λ2x y

y λ−2x−1(1 + y2)

)
| λ ∈ K∗

}
=
{(

λx y

y λ−1x−1(1 + y2)

)
| λ ∈ K(2)

}
. (6.1)

Now let U =
(
u v

v −u
)

∈ S−1(E) with U 
= G1 , i.e. v 
= 0. Then

U ∩D(G1, X) = {
(
λx y

y λ−1x−1(1 + y2)

)
| λ ∈ K(2) : (∗) λ2ux+2yv−ux−1(1+y2) =

0}.
The equation (*) has a solution if the discriminant d = u2(1+y2)+y2v2 ∈ K(2). But since
(K,+, ·) is an Euclidean field and since y, v 
= 0 we have d ∈ K(2). Thus the criterion
(4.8) is fulfilled and any hyperbolic plane is vectorspacelike. �

From (5.6),(5.11) and (6.1) we obtain the result of A. Greil [1]:

(6.2) Let (E,G, α,≡) be the classical hyperbolic plane (i.e. also the continuity axiom
is assumed), let o ∈ E be fixed, let (E,+) be the corresponding K-loop and let a, b ∈
E \ {o} with o, a 
= o, b then each point p ∈ E can be written uniquely as a quasilinear
R-combination of a and b, i.e.: ∀p ∈ E ∃1(α, β) ∈ R × R : p = α · a+ β · b.
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