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Some K-Loops with Fixed Point Free Precession-MapsHubert KiechleIntroductionLet (L;�) be a loop, i.e., L is a set with a binary operation � such that for all a; b 2 Lthe equations a � x = b and y � a = b have unique solutions x; y 2 L, and such thatthere exists 0 2 L with a� 0 = 0� a = a. The condition a� (b� x) = (a� b)� �a;b(x)for a; b; x 2 L then clearly de�nes a bijective map �a;b : L ! L. Following [13] we usethe phrase precession-maps to denote these maps.L is called a K-loop if the precession-maps are automorphisms of the loop, if the au-tomorphic inverse property is satis�ed, and the Bol identity holds. To be precise, werequire that for all a; b; c; d 2 L�a;b(c� d) = �a;b(c)� �a;b(d)a� (b� (a� c)) = (a� (b� a))� c (Bol identity),	(a� b) = (	a)� (	b) (automorphic inverse property)where 	a is de�ned by a� (	a) = 0. The Bol identity implies the equality of left andright inverse, i.e., (	a) � a = 0 as well. Thus we use the term \automorphic inverseproperty" in the standard way. It should be noted that in the de�nition of K-loops theBol identity is usually replaced by conditions on the precession-maps. Using [7] oneeasily deduces that the two de�nitions are equivalent.The notion of a K-loop evolved from the study of neardomains (F;�; �), where in partic-ular (F;�) is a K-loop with �xed point free precession-maps. Since every automorphism�xes 0, the phrase \�xed point free" refers to the situation, where only the identity has�xed points other that 0. Presently, there seem to be no examples of proper neardo-mains known. \Proper" here means \not a near�eld". A near�eld is a neardomainwhere all precession-maps are 1. See [14; V x1] for de�nitions and more informationconcerning near�elds and neardomains, and their connection with sharply 2-transitivegroups.The set of admissible velocities R3c := fv 2 R3; jvj < cg together with the relativisticvelocity addition forms a K-loop. This has been proved by Ungar (cf. [12, 13]). En-couraged by Ungar's discovery, many K-loops have been constructed in recent years(cf. [1, 2, 4, 5, 6, 7, 8, 9]). In case of Ungar's example R3c , the precession-maps are the\Thomas-precessions" or \Thomas-rotations" of special relativity, hence the name.Here we give a variation of a construction due to Karzel, which evolved from his attemptto give an \elegant representation of [Ungar's] results" (cf. [4; p. 339]). While Karzelused positive de�nite, hermitian 2 � 2-matrices over euclidian �elds, we will considersymmetric matrices of determinant 1 over pythagorean �elds.



30 KiechleIn a forthcoming paper, we will give a generalization of our construction, to includeKarzel/Ungar's examples, and Im's work [1, 2]. This will involve n � n-matrices overpythagorean �elds. There we will try to present conceptual arguments. Here we con�neourselves with direct calculations.Basic to both papers is the work of Kreuzer and Wefelscheid [9]. They describe a verygeneral, yet powerful method to construct K-loops from groups in the following way:Given a group G with a subgroup 
 and a set L of representatives for the cosets of 
in G. This means in particular G = L
. For A;B 2 L let A�B be the unique elementin L such that AB 2 (A�B)
. De�ne dA;B 2 
 by AB = (A� B)dA;B. Assume thatthe following conditions are satis�ed for all g 2 
 and for all A;B 2 L:1 2 L; gLg�1 � L; ABd�1A;B = dA;BAB; ALA � L;then (L;�) is a K-loop. Note that 1 becomes the 0-element of the loop. The precession-maps are given by �A;B(X) = dA;BXd�1A;B. This is the content of [9; (3.8),(3.7)].The most striking feature of the examples presented here is the fact that all non-identityprecession-maps are �xed point free. To my knowledge there is only one other examplewith this property in the literature [5]. Examples of this kind might open the road to aproper neardomain.According to [9; (7.2)] one can construct a Frobenius group from a K-loop with �xedpoint free precession-maps. This generalizes the construction of sharply 2-transitivegroups from neardomains. We will not go into this further and refer the reader to theliterature.1. The ConstructionLet R be an ordered, pythagorean �eld and let L be the set of symmetric, positivede�nit 2� 2-matrices of determinant 1. Write 
 := SO(2; R). To be preciseL = n�� ��  � 2 R2�2;� > 0; � � �2 = 1o;
 = n�u �vv u � 2 R2�2;u2 + v2 = 1o:For two elements A = �� ��  � ; B = ��0 �0�0 0 � from L we let� a bc d� := AB = ���0 + ��0 ��0 + 0��0� + �0 0 + ��0 �and �2 := (a+ d)2 + (b� c)2 = a2 + b2 + c2 + d2 + 2:



K-loops with �xed point free precession-maps 31The last equality follows from detAB = ad� bc = 1. Since R is pythagorean, � 2 R.Hence we can de�ne A�B := 1� � a2 + b2 + 1 ac+ bdac+ bd c2 + d2 + 1�and dA;B := 1� � a+ d b� cc� b a+ d� 2 
:We show �rst(1.1) A�B = ABd�1A;B 2 L.Proof. We have to prove that �2AB = �2(A�B)dA;B =� (a2 + b2 + 1)(a+ d) + (ac+ bd)(c� b) (a2 + b2 + 1)(b� c) + (ac+ bd)(a+ d)(ac+ bd)(a+ d) + (c2 + d2 + 1)(c� b) (ac+ bd)(b� c) + (c2 + d2 + 1)(a+ d)� :Using ad � bc = 1, we can compute (a2 + b2 + 1)(a + d) + (ac + bd)(c � b) = a(a2 +b2 + 1 + ad + c2 � bc) + d(b2 + 1 + bc � b2) = a(a2 + b2 + c2 + d2 + 2) = a�2, hencethe (1,1)-entry behaves as claimed. In a very similar way, one can verify three moreequalities for the other three entries to obtain the �rst assertion.This �rst assertion implies detA � B = 1. By construction, A � B is symmetric andpositive de�nit, hence it is an element of L.We record the main claim in aTheorem. (L;�) is a K-loop with �xed point free precession-maps. More precisely, 
acts on L by conjugation as a �xed point free automorphism group, which contains allprecession-maps.2. The ProofWe will show a series of lemmas, aiming at the hypothesis of [9; (3.8)], described in theintroduction.As a preparation, we prove that any A 2 L can be diagonalized over R.(2.1) The eigenvalues of A = �� ��  � 2 L are� := 12(�+  +p(�� )2 + 4�2) and ��1:These are elements of R. There exits D 2 
 such that A = D�� 00 ��1 �D�1.Proof. The roots of the characteristic polynomial are12��+  �p(�+ )2 � 4(� � �2)� = 12��+  �p(�� )2 + (2�)2� 2 R;



32 Kiechlesince the radiant is a sum of squares. The \+" sign yields �. Since detA = 1, theother eigenvalue is ��1. An eigenvector (u; v) can be normalized in R. The othereigenvector is necessarily orthogonal and can be normalized as well. If the matrix withthese eigenvectors as columns happens to have negative determinant, simply replace oneeigenvector by its negative to obtain D.Remark. In fact, the ground �eld is pythagorean if and only if every symmetric,positive de�nit 2� 2-matrix is diagonalizable, cf. [11; Lemma 1]. Thus there seems tobe no hope to enlarge the class of ground �elds without new methods.The preceding lemma allows us in quite a few cases to assume without loss of generalitythat one element from L is diagonalized. This simpli�es some calculations considerably.We shall use this lemma in the sequel without speci�c reference.(2.2) E := � 1 00 1� 2 L, L�1 = L and gLg�1 = L for all g 2 
.Proof. The �rst two assertions are obvious. For the third, note that conjugating asymmetric matrix by an orthogonal matrix yields a symmetric matrix with the sameeigenvalues, hence the result.(2.3) Let A;B 2 L, then the cosets A
 and B
 are equal if and only if A = B.Proof. Let B�1A 2 
. Looking at gB�1Ag�1 = (gBg�1)�1gAg�1 for appropriateg 2 
, we can assume without loss of generality by (2.1) thatA = �� ��  � and B = �� 00 ��1 � :So B�1A = ���1� ��1��� � � 2 
 implies ��1� = ���, hence �(� + ��1) = 0. Now,�+��1 = 0 would imply �2+1 = 0, contradicting � 2 R. Thus � = 0 and B�1A 2 
 isdiagonal, hence equal �E. Since � > 0 and � > 0, we conclude ��1� = 1 and � = 1,which implies A = B.The above lemmas entail(2.4) L
 is a subgroup of SL(2; R).Proof. Let A;B 2 L and g; h 2 
. Using (2.2) and (1.1), we �nd AgBh = AgBg�1gh =AgBg�1d�1A;gBg�1dA;gBg�1gh 2 L
, and using (2.2) again (Ag)�1 = g�1A�1gg�1 2L
.Remark. Employing polar decomposition of matrices [10; p. 155/56], one can showthat in fact L
 = SL(2; R).(2.5) For allA;B 2 L and g 2 
 the condition ABg 2 L implies g = d�1A;B. Furthermore,ABd�1A;B = dA;BBA.Proof. ABg 2 L puts AB in the uniquely determined coset ABg
. But AB is also inABd�1A;B
 by. From (1.1) and (2.3) we conclude ABg = ABd�1A;B, which in turn impliesg = d�1A;B.



K-loops with �xed point free precession-maps 33From (1.1) follows ABd�1A;B = (ABd�1A;B)T = dA;BBA. Here we use gT = g�1 for allg 2 
.(2.6) ABA 2 L for all A;B 2 L.Proof. Assuming A = �� 00 ��1 � and B = �� ��  �, we �nd ABA = ��2� �� ��2 �,which is clearly in L.By (2.4), (2.3), (2.2), (2.5) and (2.6) the hypothesis of [9; (3.8)] are ful�lled, hence(L;�) is a K-loop. Before we complete the proof of our theorem we will show(2.7) For all g 2 
 the map bg : L ! L;X 7! gXg�1 is an automorphism of (L;�).Moreover, the following conditions are equivalent.(I) bg has a �xed point 6= E;(II) bg = 1;(III) g = �E.Proof. We have bg(A� B)bg(dA;B) = bg(AB) = bg(A)bg(B) = (bg(A)� bg(B))dbg(A);bg(B). Byuniqueness of the decomposition (2.3) we must have bg(A�B) = bg(A)� bg(B).The implications \(III) =) (II) =) (I)" are obvious.To show \(I) =) (III)", we considerC := �u �vv u ��� 00 ��1 �� u v�v u� = ��u2 + ��1v2 (�� ��1)uv(�� ��1)uv �v2 + ��1u2�with � 6= 1; � > 0 and g = �u �vv u � 2 
, i.e., u2 + v2 = 1. In particular, � 6= ��1.The condition C = �� 00 ��1 � implies (�� ��1)uv = 0, hence uv = 0.The case u = 0 leads to v = �1. It follows that C = ���1 00 ��, a contradiction. Thusv = 0 and u = �1, as was to be shown.So our theorem will be proved if we can show(2.8) For all A;B 2 L, the map �A;B : L ! L;X 7! dA;BXd�1A;B is a �xed point freeautomorphism of (L;�), with the property A� (B �X) = (A� B)� �A;B(X).Proof. The �A;B 's are the precession-maps by [9; (3.7)]. We have just shown that theyare �xed point free automorphisms.We remark that our construction can be carried over to GL(2; R) by choosing all sym-metric, positive de�nite matrices for L and O(2; R) for 
. However, the precession-mapsare not �xed point free anymore, since there are diagonal matrices di�erent from E inL. Our future paper mentioned in the introduction provides a better frame to discussthis matter.
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