

بسمإللهالر حمن الر حيم

پيكك و.ياضى

 تايِّ : زهرا اصدوعاملى

قـــل ا -

\qquad

 ازاهدأف (مجال) ا يـن مـقا لـه مئبـا شد .

 |

مفـيـد وا قع شود . .

 بـردرسى ما الز

- (1

-
- ه ا 1 (

 ريشهه هاى

 حا ل معا نلـهء حلال را بـرا بـر

 $\therefore \xrightarrow{4} \mathrm{x}_{4}, \mathrm{X}_{3}, \mathrm{X}_{2}, \mathrm{X}_{1}$

\qquad $1 x_{1} x_{2}+x_{3} x_{4}$ R($\left.x_{1}, x_{2}, x_{3}, x_{4}\right)$
شودارين نا بـع تـحت هركداماز

منـا بـع نـظر يـيهء گـروهها

 - resolation algebrique des equations

- با بـلمى ها خدود 1800 سا ل قبـل ا زميلادحل معادلات درجهء بـومر!

 است هكه
 نشا ن مید هدكه مزتْبهه هرعضضو

 كه p-1 ر ا بشما ردعضوى در

 u

 (范

 Disquisitiones Arethmeticae
 جديـى

\qquad

 زمينهـه ،كهدرحدود .

 مـرا جعد كنـيد .

پ) هندسه (كلايسن IAYY)

 گروههاى تـبديلات مختالـ بـود .درا يـنـجا گكروهها يـى ما نـندكروه تصويـرى ،كروه

 ($d, c, b, a) \quad z_{!}^{!}=\frac{a z+b}{c z+d}$ D

 a

د ربـخش 1 ما هـها

- الـف (

تـوسط تـبـديـلاتى بـهصورت

$$
x_{i}^{\prime}=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}, a_{1}, a_{2} \ldots, a_{n}\right), \quad i=1,2 \ldots, n
$$

$$
x^{\prime}=\frac{a x+b}{c x+d}
$$

 انـجا مدا دهه بـودنـد .كا ارا, أزتا مل درا يـن مطلا

 بـا زی كردد .

[^0]

معادلـهاى بـا

 L

\qquad

 -

 ن . .

 3

 رسا لـهء زردان مضمون بـيشـتـرTا

تشكيـل يك كـروه منيدهند . (مـركز بسا زيكـ عضو) .

 .

 " اعدادا يـدا

 مرا جعهكنـيـد .

ب)

\qquad

 (دو) اگر متعلـق بـج To وجوددا ردد.
\qquad
 بـه هما ول بـا شند ، θ_{3} (θ_{2} (

 كه اعضا ي
 برا بـرتـعدا دأعضاى T T مـجموعـها سـت .

فـرضن كــيـد

 | استفـلدها زعلامتت معمول هما
را بـه معنـى

وقتسهت: (حها ر) هنقا لـمء كر ونـكر) :

(v)

\qquad

 گـروههها ى ذـا متـنـا هي بـود .

 "T T T T T T " 1 | 1

 [191

 ال زتُبـد يلات
 نـا

 د

[r]:دمساس

 () (پ-F

(

بـه مجموعهه ای الزنـما دهاى

Sــــروهــوــــــد .

1

دست T وردن هما ن كِروها بست :

\qquad

 ا يـن مسا لـه نوجه بـها

$$
\left(\theta_{r} \theta_{S}\right) \theta_{t}=\theta_{r}\left(\theta_{s} \theta_{t}\right)=\theta_{r} \theta_{s} \theta_{t}
$$

$$
\begin{aligned}
& \text { دو. را بـطهء زيـرهموا وه درستا! استـ }
\end{aligned}
$$

 ازهند سبه وT نـا لـيـزنـيـز متتدا ول كشتـهـ بـود ..

دنـبـا ل خوا هيـمكرد .

مفهو مگـروه مجرددرطى سا لـهاى
 منتشرمىشدند .ا يـن ديـدكا هتجريـدى أزدوطريـق خودرا متـجلـي سا ختت :

 بـا يـدوارون آ ن يـعنـنى

 نـظريـه اعد إدى،وكروههتـبـديلات بـه كا ركـوفـت . كـریهد زطى

 جا يـگشت

كرددهـود) .

بود •(وسيـنـ3

100"Elements of the theory of Abstract Groups"

$[K T],[K A]$

 .

 . كـرو هـها ى

(ب) (ب (ب (

[0] كـرول - كميـت
(\%)

[V] ا
 [ro]. (19ro sacos Ligrosacos-
(ا (ا)

. موجودا سبت" "

 ن \qquad
 د Abstract Theory of Groups

 است .نكا هكنيدبه [

(IVYo)

 كرد كودر

We give references here to secondary sources. Extensive references to primary sources, including works referred to in this article, may be found in [25] and [33].
11 R. G. Ayoub, Paolo Ruffini's contributions to the quintic, Arch. Hist. Ex. Sc., 23 (1980) 253-277.
[2] E. T. Bell, The Development of Mathematics, McGraw Hill, 1945.
[3] G. Birkhoff Current rends in algebra, Amcr. Math. Monthly, 80 (1973) 760-782 and 81 (1974) 746.
\qquad The rise of modern a 1936 , in Men and Institutions in American Mathematics, eds. D Tarwater, J. T. White and I D. Miller, Texas Tech. Press, 1976, pp. 41-63.
[5] N. Bourbaki, Eléments d'Histoire des Mathématiques, Hermann, 1969.
$[6]$ J. E. Pums, The
[7) B. Chandier and W. Magnus, The History of Combinatorial Group Theory: A Case Study in the History of Ideas, Springer-Verlag, 1982.
181 A. Dahan, Les travaux de Cauchy sur les substitutions. Elude de son approche du concept de groupe, Arch Hist. Ex. Sc., 23 (1980) 279-319.
J. Diesudonné (ed.), Abrégẻ d'Histoire des Mathênatiques, 1700-1900, 2 vols., Hermann, 1978.
[10] P Dubreil, L'aigèbre, en France, de 1900 à 1935, Cahiers du seminaire d'histoire des mathématiques, 3 (1991) 69-81.
11) C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.
[11) C. H. Edwards, Galois Theory Springer-Veriag, 1984.
$[12]$ H. M. Bawards
[13] J. A. Gallian, The search for finite simple groups, this Aagazine, 49 (1976) 103-179.
$[14]$ D. Gorenstein, Finite Simple Groups. An le Groups, Plenum Press, 1983.
[16] R. R. Hambers The theory of equations in the 18 th century: The work of Joseph Lagrange, Arch. Hist. Ex. Sc., $16(1976 / 77)$ 17-36.
117] T. Hawkins, Hypercomplex numbers, Lie groups, and the creation of group representation theory, Arch. Hist.
\qquad Ex. Sc. 8 (1971/72) 243-287.
[18] Math., 11 (1984) 442-470.
of Galois theory from Lagrange to Artin, Arch. Hist. Ex. Sc., 8 (1971/72) 40-154.
[20] F. Kiein, Development of Mathematics in the 19 th Century (iransl. Irom the 1928 German ed. by M. Ackerman), in Lie Groups: History, Frontiers and Applications, vol. IX, ed. R. Hermann, Math. Sci. Press, 1979. pp. 1-361.
[21] M. Kline, Mathematical Thoughe from Ancient to Modern Times, Oxford Univ. Press, 1972.
[23]. D. R. Lichtenberg. The Emergence of Structure in Algebra, Doctoreibniz to Dedekind, Doctoral Dissertation, 23]. U. Merzbach, Develop
124] G. A. Miller, History of the theory of groups, Collected Works, 3 vols., pp. 427-467, pp. 1418, and pp. 1-15, Univ. of Illinois Press, 1935, 1938, and 1946.
[25] L. Novy, Origins of Modern Algebra, Noordholf, $1973 . \quad$. Co., 1966. (Translation by F. Holling and J. B.
[27] Roberts of the 1916 Russian edition.) Finis. Eléments de la Théorie des Groupes Abstraits, Gauthier Villars,
[27] J.-A. de Séguier, Théorie des Groupes Irnis. Elemens de
Paris, 1904.
[28] L. A. Shemetkov, Two directions in the development of the theory of non-simple finite groups, Russ. Mam. Surv:, 30 (1975) 185-206.
[29] R. Silvesiri, Simple groups of finite order in the nineteenth century, Arch. Hist. Ex. Sc., 20 (1979) 313-356.
[30] J. Tarwater, J. T. White, C. Hall, and M. E. Moore (eds.), American Mathematical Heritage: Algebra and Applied Matnematics, Texas Tech. Press, 1981. Has anticles by Feit, Fuchs, and MacLane on the wist finite groups, abelian groups, and abstract algebra, respectively.
[31] B. L. Van der Waerden, Die Algebra seit Galois, Jahresbericht der Dentsch. Math. Ver., 68 (1966) 155-165.
$[32]$ W. C. Waterhouse. The early proofs of Sylow's theorem, Arch. Hist. Ex. Sc., 21 (1979/80) 279-290.
[33] II. Wussing, The Genesis of the Abstract Group Concepf, M.I.T. Press, 1984. (Translation by A. Shenizer of the 1969 German edition.)

[r].0(19ro, iqro

Israel Kleiner, "the Evolution of Group theory:

A Brief Survey", Mathematics Magazine, vol.59. No. 4, october 1986.

[^0]:

