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On isomorphisms of Grassmann spaces
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Summary. In this paper an embedding φ : P → P ′ of a projective space (P,L) into a projective
plane (P ′,L′) is constructed which satisfies |L ∩ φ (P )| ≥ 2 for every line L ∈ L′. Such an
embedding induces a bijection β : L→ L′ which maps intersecting lines onto intersecting lines,
but not vice versa. This answers an open question about Grassmann spaces.
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1. Introduction

Let (P,L) denote a projective space with points P and lines L, and with dimP ≥ 3.
Then L is the point set of the corresponding Grassmann space (of index 1). A line
of the Grassmann space is the set of all lines of (P,L) which are contained in a
plane of P and containing a common point of P . Hence two points L,G ∈ L of
the corresponding Grassmann space lie on a line, if the following binary relation

L ∼ G⇔ L ∩G 6= ∅ (1)

is satisfied. See [4] or [7] for an axiomatic approach for Grassmann spaces and [1]
for the Plücker space, the classical example of a Grassmann space. Any collineation
and, if dimP = 3, any duality of (P,L) induces an isomorphism of the correspond-
ing Grassmann space, i.e., a bijection which preserves ∼ in both directions. W. L.
Chow [3] has shown that conversely any isomorphism of the Grassmann space L

is induced by a collineation or a duality of (P,L) for dimP ∈ N. W. Huang has
generalized in [7] Chow’s Theorem for Grassmann spaces of an arbitrary index:
Any bijection β of L for which ”L ∼ G” implies ”β (L) ∼ β (G)” is an isomorphism
of L. With that result W. Huang answers partly the following question: Let (L,∼)
and (L′,∼′) be two Grassmann spaces. The question is, if a bijection

β : L→ L′ with “L ∼ G⇒ β(L) ∼′ β(G)” (2)

is an isomorphism, i.e., β(L) ∼′ β(G) implies L ∼ G. In a paper of Brauner [2, Satz
2] this property is claimed, but H. Havlicek [6] pointed out a gap in the proof of that
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result. He proves in Theorem 1 of [6] that for projective spaces (P,L), (P ′,L′),
a bijection β : L → L′ which maps intersecting lines onto intersecting lines is
for dim P ≥ 4 induced by an embedding φ : P → P ′ or for dim P = 3 by an
embedding of P in P ′ or in the dual space of P ′.

An embedding φ : P → P ′ of a linear space (P,L) into a linear space (P ′,L′)
is an injective mapping which maps lines of L exactly into subsets of lines of L′,
i.e., φ maps collinear points into collinear points and non collinear points into non
collinear points. An embedding φ : P → P ′ of two projective spaces (P,L),(P ′,L′)
which induces a bijection β : L→ L′ must have the property that every line L ∈ L′

contains the images φ(G) of a line G ∈ L, i.e.,

|L ∩ φ(P )| ≥ 2 for every line L ∈ L. (3)

If φ is surjective, then φ is a collineation and hence dim P = dim P ′. Therefore if
dim P > dim P ′, then φ is not surjective.

In this paper we construct an embedding φ : P → P ′ of a projective space
(P,L) with dim P ≥ 3 into a projective plane (P ′,L′) with the property (3).
Clearly (3) implies |L ∩ φ(P )| 6= 1 (property (G) of [9]). By Theorem (2.6) of
[9], for every embedding φ : M →M ′ of linear spaces (M,M), (M ′,M′) satisfying
dim M > dim M ′ and property (G), there exist subspaces P ⊂ M and P ′ ⊂ M ′

satisfying dimP > dimP ′ = 2 such that φ|P is an embedding of P in the plane
P ′. Hence we may restrict ourselves to construct an embedding into a projective
plane (P ′,L′).

The embedding φ : P → P ′ is induced by an embedding f of a vector space
(V,K) in a 3–dimensional vector space (L3, L). We construct f in the following
way:

We start with a trivial embedding f0 of a 3–dimensional vector space (L3
0, L0)

for a proper field extension L0 of the field K. Step by step for i = 0, 1, . . . we
extend the vector space Vi to Vi+1 with dim Vi+1 > dimVi and simultaneous
the field Li to Li+1 which is also a field extension of K with Li ⊂ Li+1. Also
fi : Vi → L3

i is extended to the embedding fi+1 : Vi+1 → L3
i+1. With V :=

⋃
i∈N

Vi

and L :=
⋃
i∈N

Li we obtain the wanted embedding f : V → L3. In step I of

section 2 the basic construction for one induction step is given and in step II the
whole induction step is explained. In step III then f : V → L3 is defined.

2. Embedding

In this section we give an example of an embedding φ : P → P ′ of a Pappian
projective space (P,L) into a Pappian projective plane (P ′,L′) satisfying that
|G ∩ φ(P )| ≥ 2 for every line G ∈ L′. For that we construct a mapping f of a
vector space (V,K) into a vector space (L3, L) for a suitable extension field L of
a commutative field K.
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We recall that the subspaces of the vector spaces (V,K) with dimension 1 and 2,
respectively, define the points P and lines L, respectively, of the projective spaces
(P,L) = PG(V,K), and that points x0 = Kx0, . . . , xn = Kxn are independent in
(P,L) if and only if the vectors x0, . . . , xn are linearly independent in (V,K) (cf.
[8]). Hence three points a = Ka, b = Kb, c = Kc are non collinear if and only if
rank (a, b, c) = 3.

Let Li denote a field. For any 2-dimensional subspace E of (L3
i , Li) and any

subset W ⊂ L3
i we denote with

dim′
(
E ∩W

)
(4)

the dimension of the subspace of (L3
i , Li), which is generated by E∩W. (We mean

the dimension relative to the vector space in which E is a subspace.)
First we mention some easy properties of vector spaces (L3

i , Li) and (F 3, F )
for a field extension F of the field Li, which we use in the following frequently.

Lemma 2.1. 1. For any vectors a, b, c ∈ L3
i it holds that a, b, c are linearly

independent in (L3
i , Li) if and only if a, b, c are linearly independent in (F 3, F ).

2. For a 2-dimensional subspace E of (L3
i , Li), E

′ := FE + FE is the unique
determined 2-dimensional vector subspace of (F 3, F ) which is generated by E.

Proof. 1. If a, b, c are linearly dependent in (L3
i , Li), then clearly also in (F 3, F ).

If a, b, c are linearly dependent in (F 3, F ), then also in (L3
i , Li), since else it would

follow that L3
i ⊂ U for a proper at most 2-dimensional vector subspace U of F 3

which is generated by a, b, c .
2. For a, b ∈ E with E = Lia+Lib it follows that FE+FE = FLia+FLib =

Fa + Fb. �

In the following for any i ∈ N, Li is a field extension of a given field K, (L3
i , Li)

the 3–dimensional vector space over Li and let (Vi,K) be a vector space with a
basis Bi. Assume that

fi : Vi → L3
i (5)

is an injective mapping satisfying the following two properties:
(α) For λ, µ ∈ K and a, b ∈ Vi, fi(λa + µb) = λfi(a) + µfi(b).
(β) For a, b, c ∈ Vi, a, b, c are linearly independent in (Vi,K) only if fi(a), fi(b),

fi(c) are linearly independent in (L3
i , Li).

Havlicek calls a mapping f satisfying (α) a weak semilinear mapping (cf. [5]).
We denote by

Ei := {E ⊂ L3
i : dim E = 2 and dim′

(
E ∩ fi(Vi)

)
= 1} and (6)

Fi := {E ⊂ L3
i : dim E = 2 and dim′

(
E ∩ fi(Vi)

)
= 0} (7)

the set of all two-dimensional subspaces E of (L3
i , Li) for which the line E of

the projective space PG(L3
i , Li) contains only one point of the via fi embedded
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projective space PG(Vi,K), or for which the line E contains no point of the
embedded projective space PG(Vi,K), respectively. Furthermore let

Gi := Ei ∪ Fi. (8)

Now let i ∈ N for the next two steps be fixed.
I. In a first step we choose and define for some fixed E ∈ Gi:

•
{

x ∈
(
E ∩ fi(Vi)

)∗
, i.e., Kx = E ∩ fi(Vi) for E ∈ Ei

any x ∈ E∗ for E ∈ Fi
• y ∈ E \ Lix, i.e., y 6∈ fi(Vi) and E = Lix + Liy.
• L′i := Li(t) , the extension field of Li for a transcendental or algebraic element
t over Li, with degree at least three, i.e., L3

i is a subset of (L′i)
3.

• (V ′i ,K), a vector space with the basis B′i := Bi∪{b} with b 6∈ Vi, i.e. Vi ⊂ V ′i
is a proper subspace.
For the subspace E of (L3

i , Li) we denote by

E′ := L′iE + L′iE the subspace of
(
(L′i)

3, L′i
)

generated by E. (9)

Every vector a ∈ V ′i has the unique representation a = v + λb with v ∈ Vi and
λ ∈ K. We map b to tx + t2y and define the following mapping:

f ′i : V ′i → (L′i)
3, a = v + λb 7→ f ′i(a) := fi(v) + λ

(
tx + t2y

)
(10)

Lemma 2.2. The mapping f ′i satisfies the properties (α) and (β) and it holds
that dim′

(
E′ ∩ f ′i(V ′i )

)
= 2 for E ∈ Ei and dim′

(
E′ ∩ f ′i(V ′i )

)
≥ 1 for E ∈ Fi.

Proof. (i). Since fi satisfies (α), by definition also f ′i satisfies (α).
Let u, v,w ∈ Vi. First we show that u + b, v,w are linearly independent in

(Vi,K) if and only if f ′i(u+b), f ′i(v), f ′i(w) are linearly independent in
(
(L′i)

3, L′i
)
.

(ii). Since b 6∈ Vi and u, v,w ∈ Vi, u + b, v,w are linearly independent iff v,w
are linearly independent, i.e, iff v′ := f ′i(v) = fi(v),w′ := f ′i(w) = fi(w) are
linearly independent in (L3

i , Li), since fi satisfies (β).
(iii). Clearly f ′i(u + b) = u′+tx+t2y, v′,w′ are linearly dependent in

(
(L′i)

3, L′i
)

iff det(u′ + tx + t2y, v′,w′) = det(u′, v′,w′) + t det(x, v′,w′) + t2det(y, v′,w′) = 0.
Since u′, x, y, v′,w′ ∈ L3

i and since t has degree at least 3 over Li, the last equation
is equivalent to det(u′, v′,w′) = 0, det(x, v′,w′) = 0, and det(y, v′,w′) = 0, i.e.,
u′, v′,w′, and x, v′,w′, and y, v′,w′, respectively, are linearly dependent in (L3

i , Li).
Assume that v′,w′ are linearly independent, then x, y ∈ Liv

′ + Liw
′, i.e.,

E = Lix +Liy = Liv
′+Liw

′ and v′,w′ ∈ E ∩ fi(Vi), a contradiction to dim′
(
E ∩

fi(Vi)
)
≤ 1. Hence det(u′ + tx + t2y, v′,w′) = 0 iff v′,w′ are linearly dependent,

i.e. by (ii), iff u + b, v,w are linearly dependent in (Vi,K).
Now let a = u + λb, b = v + µb, c = w + νb ∈ V ′i with u, v,w ∈ Vi and

λ, µ, ν ∈ K. Let b′ := f ′i(b), u′ := f ′i(u), v′ := f ′i(v),w′ := f ′i(w). We have to show
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that f ′i(a) = u′+λb′, f ′i(b) = v′ +µb′, f ′i(c) = w′+ νb′ are linearly independent in(
(L′i)

3, L′i
)

if and only if a, b, c are linearly independent in (Vi,K):
(iv). Since fi satisfies (β), we can assume that λ 6= 0 or µ 6= 0 or ν 6= 0.

Let λ 6= 0. Then rank (u′ + λb′, v′ + µb′,w′ + νb′) = rank (λ−1u′ + b′, λv′ −
µu′, λw′ − νu′) with λv′ −µu′ = fi(λv−µu), λw′− νu′ = fi(λw− νu) ∈ fi(Vi).
By (iii) it follows that λ−1u′ + b′, λv′ − µu′, λw′ − νu′ are linearly independent in(
(L′i)

3, L′i
)

iff λ−1u+b, λv−µu, λw−νu are linearly independent in (Vi,K). Since
rank (λ−1u + b, λv− µu, λw− νu) = rank (u +λb, v + µb,w + νb) = rank (a, b, c),
the assertion follows.

(v). Because E′ = L′ix + L′iy, it follows f ′i(b) = tx + t2y ∈
(
E′ ∩ f ′i(V ′i )

)
,

hence dim′
(
E′ ∩ f ′i(V ′i )

)
≥ 1. Since x, y are linearly independent in (L3

i , Li) and
by 2.1 also in

(
(L′i)

3, L′i
)
, rank (tx + t2y, x) = rank (y, x) = 2. If E ∈ Ei, then

x, tx + t2y ∈ E′ ∩ f ′i(Vi) and hence dim′
(
E′ ∩ f ′i(V ′i )

)
= 2. �

II. In a second step we choose and define for every E ∈ Gi:

•
{

xE ∈
(
E ∩ fi(Vi)

)∗
, i.e., KxE = E ∩ fi(Vi) for E ∈ Ei

any xE ∈ E∗ for E ∈ Fi
• yE ∈ E \ LixE , i.e., yE 6∈ fi(Vi) and E = LixE + LiyE .
• Li+1 := Li(T ) the extension field of Li with an independent set T = {tE : E ∈

Gi} of transcendental or algebraic elements tE over Li such that degree s over
Li(T \ {s}) is at least three for every s ∈ T .
• (Vi+1,K), a vector space with a basis Bi+1 := Bi ∪ {bE : E ∈ Gi} with

bE 6∈ Vi, i.e. Vi ⊂ Vi+1 is a proper subspace.

For every subspace E ∈ Gi of (L3
i , Li) we denote with

Ê := Li+1E the by E generated subspace of
(
(Li+1)3, Li+1

)
. (11)

Every vector a ∈ Vi+1 has the unique representation a = v +
∑
E∈Gi

λEbE with

v ∈ Vi , λE ∈ K and λE 6= 0 only for finitely many E ∈ Gi. We map bE to
tE xE + t2E yE and define the following mapping:

fi+1 :

{
Vi+1 → (Li+1)3

a = v +
∑
E∈Gi

λEbE 7→ fi+1(a) := fi(v) +
∑
E∈Gi

λE
(
tE xE + t2E yE

)
(12)

Lemma 2.3. The mapping fi+1 satisfies the properties (α) and (β). It holds that
dim′

(
Ê ∩ fi+1(Vi+1)

)
= 2 for every E ∈ Ei and dim′

(
Ê ∩ fi+1(Vi+1)

)
≥ 1 for

every E ∈ Fi. Furthermore fi+1|Vi = fi.

Proof. (i). Since fi satisfies (α), by definition also fi+1 satisfies (α).
(ii). Let a, b, c ∈ Vi+1. Then there exist a finite number n ∈ N and vectors
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b1, . . . , bn ∈ Bi+1 \Bi with

a = u +
n∑
j=1

λjbj , b = v +
n∑
j=1

µjbj , c = w +
n∑
j=1

νjbj

for u, v,w ∈ Vi and λj , µj, νj ∈ K. Since fi satisfies (β) , u, v,w are linearly
independent in (Vi,K) iff u′ := fi+1(u) = fi(u), v′ := fi+1(v),w′ := fi+1(w) are
linearly independent in (L3

i+1, Li+1). Let denote b′j := fi+1(bj). Now by induction
for k = 1, . . . , n, we obtain by 2.2 that

u +
k∑
j=1

λjbj, v +
k∑
j=1

µjbj , w +
k∑
j=1

νjbj are linearly independent iff

u
′ +

k∑
j=1

λjb
′
j , v

′ +
k∑
j=1

µjb
′
j, w

′ +
k∑
j=1

νjb
′
j are linearly independent.

Hence we summarize that a, b, c are linearly independent if and only if fi+1(a),
fi+1(b), fi+1(c) are linearly independent, i.e., (β) is satisfied.

(iii). Because Ê = Li+1x + Li+1y, it follows fi+1(bE) = tE xE + t2E yE ∈
(
Ê ∩

fi+1(Vi+1)
)
, hence dim′

(
Ê∩fi+1(Vi+1)

)
≥ 1. If E ∈ Ei, then xE , tE xE + t2E yE ∈(

Ê ∩ fi+1(Vi+1)
)

and hence dim′
(
Ê ∩ fi+1(Vi+1)

)
= 2 (cf. Lemma 2.2).

(iv). By definition of fi+1, it follows that fi+1|Vi = fi. �

III. Now in a third step we obtain the wanted result with the following
induction.

Let L0 be a proper extension field of K, V0 := K3 and

f0 : V0 → L3
0, x = (x0, x1, x2) 7→ f0(x) := x = (x0, x1, x2). (13)

Obviously f0 satisfies (α), (β) and since K ⊂ L0, E0 := {E ⊂ L3
0 : dim E = 2 and

dim′
(
E ∩ f0(V0)

)
≤ 1} 6= ∅.

Using the second step (cf. Lemma 2.3), we construct for i = 0, 1, 2, . . . ,:
• an extension field Li+1 of Li,
• a vector space (Vi+1,K) with the proper subspace Vi ⊂ Vi+1
• and a mapping fi+1 : Vi+1 → L3

i+1 satisfying (α) and (β) with dim′
(
Ê ∩

fi+1(Vi+1)
)

= 2 for every E ∈ Ei and dim′
(
Ê ∩ fi+1(Vi+1)

)
≥ 1 for every

E ∈ Fi.
We define

V :=
⋃
i ∈ N

Vi, L :=
⋃
i ∈ N

Li. (14)

Let for every a ∈ V , na := min{i ∈ N : a ∈ Vi}. Then

f : V → L3, a 7→ f(a) := fna
(a) (15)
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is a mapping with the following properties:

Lemma 2.4. f is a mapping from the at least 4-dimensional vector space (V,K)
into the 3-dimensional vector space (L3, L) satisfying the properties (α) and (β).
For every subspace E ⊂ V with dim E = 2 it holds that dim′

(
E ∩ f(V )

)
= 2.

Proof. It is easy to see that (V,K) is a vector space and L a field extension of K.
By the construction of V , clearly dim V ≥ 4. For any a ∈ V and every j ∈ N with
j ≥ na we have by 2.3, f(a) := fna

(a) = fj(a).
For λ, µ ∈ K and a, b ∈ V , there is a n = max{na, nb} ∈ N with λa +µb ∈ Vn,

hence f(λa + µb) = fn(λa + µb) and (α) is satisfied by Lemma 2.3.
Also for a, b, c ∈ V , there is a k ∈ N with a, b, c ∈ Vk. Again by Lemma 2.3,

a, b, c are linearly independent iff f(a) = fk(a), f(b), f(c) are linearly independent.
Hence (β) is satisfied for f .

Now let E ⊂ L3 be a 2-dimensional subspace and p, q ∈ E linearly independent.
Then there exists an i ∈ N with p, q ∈ L3

i , hence p, q ∈ Ei := E ∩ L3
i and

Ei is a subspace of L3
i with dim Ei = 2. If dim′

(
Ei ∩ fi(Vi)

)
= 2, then also

dim′
(
E ∩ f(V )

)
= 2. If dim′

(
Ei ∩ fi(Vi)

)
= 1, then Ei ∈ Ei, and by Lemma

2.3 it follows for Êi = Li+1Ei = E ∩ L3
i+1 that dim′

(
Êi ∩ fi+1(Vi+1)

)
= 2,

hence also dim′
(
E ∩ f(V )

)
= 2. If dim′

(
Ei ∩ fi(Vi)

)
= 0, then Ei ∈ Fi and

by Lemma 2.3 dim′
(
Êi ∩ fi+1(Vi+1)

)
≥ 1. But then in the next induction step

dim′
(̂̂
Ei ∩ fi+2(Vi+2)

)
= 2 with ̂̂Ei = Li+1Êi = Li+2Ei = E ∩ L3

i+2, hence also
dim′

(
E ∩ f(V )

)
= 2 (cf. 2.1). �

Now Lemma 2.4 implies:

Theorem 2.5. For every commutative field K there exist a field extension L of K,
a projective space (P,L) = PG(V,K) and a Pappian projective plane (P ′,L′) =
PG(L3, L) with an embedding φ : P → P ′ satisfying |G ∩ φ(P )| ≥ 2 for every
G ∈ L′. φ is not surjective.

Proof. We define with the above constructed field extension L of K

φ : P → P ′, Ka 7→ φ(Ka) := Lf(a), (16)

then by (α) and since K ⊂ L, φ is well defined and maps collinear points into
collinear points. By (β), φ maps non collinear points on non collinear points,
hence φ is an embedding. For every 2-dimensional subspace E of L3, we have
dim′

(
E ∩ f(V )

)
= 2 by Lemma 2.4, and by (β), F := f−1(E ∩ f(V )) is a 2-

dimensional subspace of V . That means that the intersection of every line of P ′

with φ(P ) contains at least two distinct points, hence it is the image of a line of P .
Since dim V ≥ 4 it follows that dim P ≥ 3 and hence that φ is not a collineation,
i.e., φ is not surjective. �
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Theorem 2.6. For every commutative field K there exist a field extension L of K,
a projective space (P,L) = PG(V,K) and a Pappian projective plane (P ′,L′) =
PG(L3, L) with a bijection β : L → L′ which maps any two distinct lines onto
intersecting lines. There exist in particular lines with an empty intersection which
are mapped under β into intersecting lines.

Proof. Let φ : P → P ′ be the embedding of Theorem 2.5, and let for a line G ∈ L,
Ĝ denote the line of L′ which is generated by φ(G). We define

β : L→ L′, G 7→ Ĝ. (17)

Since φ is an embedding, β is injective, and since |L ∩ φ(P )| ≥ 2, i.e., L ∩ φ(P ) ∈
{φ(G) : G ∈ L} for every L ∈ L′, β is surjective. Because (P ′,L′) is a projective
plane, for G1, G2 ∈ L every two lines Ĝ1, Ĝ2 have a non empty intersection, and
because dim P ′ ≥ 3 there are lines G1, G2 ∈ L with an empty intersection. �
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