On isomorphisms of Grassmann spaces

Alexander Kreuzer

Summary. In this paper an embedding $\phi: P \rightarrow P^{\prime}$ of a projective space (P, \mathfrak{L}) into a projective plane $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ is constructed which satisfies $|L \cap \phi(P)| \geq 2$ for every line $L \in \mathfrak{L}^{\prime}$. Such an embedding induces a bijection $\beta: \mathfrak{L} \rightarrow \mathfrak{L}^{\prime}$ which maps intersecting lines onto intersecting lines, but not vice versa. This answers an open question about Grassmann spaces.

Mathematics Subject Classification (1991). Primary 51A10, 51M35, 51A45.

1. Introduction

Let (P, \mathfrak{L}) denote a projective space with points P and lines \mathfrak{L}, and with $\operatorname{dim} P \geq 3$. Then \mathfrak{L} is the point set of the corresponding Grassmann space (of index 1). A line of the Grassmann space is the set of all lines of (P, \mathfrak{L}) which are contained in a plane of P and containing a common point of P. Hence two points $L, G \in \mathfrak{L}$ of the corresponding Grassmann space lie on a line, if the following binary relation

$$
\begin{equation*}
L \sim G \Leftrightarrow L \cap G \neq \emptyset \tag{1}
\end{equation*}
$$

is satisfied. See [4] or [7] for an axiomatic approach for Grassmann spaces and [1] for the Plücker space, the classical example of a Grassmann space. Any collineation and, if $\operatorname{dim} P=3$, any duality of (P, \mathfrak{L}) induces an isomorphism of the corresponding Grassmann space, i.e., a bijection which preserves \sim in both directions. W. L. Chow [3] has shown that conversely any isomorphism of the Grassmann space \mathfrak{L} is induced by a collineation or a duality of (P, \mathfrak{L}) for $\operatorname{dim} P \in \mathbb{N}$. W. Huang has generalized in [7] Chow's Theorem for Grassmann spaces of an arbitrary index: Any bijection β of \mathfrak{L} for which " $L \sim G$ " implies " $\beta(L) \sim \beta(G)$ " is an isomorphism of \mathfrak{L}. With that result W. Huang answers partly the following question: Let (\mathfrak{L}, \sim) and $\left(\mathfrak{L}^{\prime}, \sim^{\prime}\right)$ be two Grassmann spaces. The question is, if a bijection

$$
\begin{equation*}
\beta: \mathfrak{L} \rightarrow \mathfrak{L}^{\prime} \quad \text { with " } L \sim G \Rightarrow \beta(L) \sim^{\prime} \beta(G) " \tag{2}
\end{equation*}
$$

is an isomorphism, i.e., $\beta(L) \sim^{\prime} \beta(G)$ implies $L \sim G$. In a paper of Brauner [2, Satz 2] this property is claimed, but H. Havlicek [6] pointed out a gap in the proof of that
result. He proves in Theorem 1 of $[6]$ that for projective spaces $(P, \mathfrak{L}),\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$, a bijection $\beta: \mathfrak{L} \rightarrow \mathfrak{L}^{\prime}$ which maps intersecting lines onto intersecting lines is for $\operatorname{dim} P \geq 4$ induced by an embedding $\phi: P \rightarrow P^{\prime}$ or for $\operatorname{dim} P=3$ by an embedding of P in P^{\prime} or in the dual space of P^{\prime}.

An embedding $\phi: P \rightarrow P^{\prime}$ of a linear space (P, \mathfrak{L}) into a linear space $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ is an injective mapping which maps lines of \mathfrak{L} exactly into subsets of lines of \mathfrak{L}^{\prime}, i.e., ϕ maps collinear points into collinear points and non collinear points into non collinear points. An embedding $\phi: P \rightarrow P^{\prime}$ of two projective spaces $(P, \mathfrak{L}),\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ which induces a bijection $\beta: \mathfrak{L} \rightarrow \mathfrak{L}^{\prime}$ must have the property that every line $L \in \mathfrak{L}^{\prime}$ contains the images $\phi(G)$ of a line $G \in \mathfrak{L}$, i.e.,

$$
\begin{equation*}
|L \cap \phi(P)| \geq 2 \quad \text { for every line } \quad L \in \mathfrak{L} \tag{3}
\end{equation*}
$$

If ϕ is surjective, then ϕ is a collineation and hence $\operatorname{dim} P=\operatorname{dim} P^{\prime}$. Therefore if $\operatorname{dim} P>\operatorname{dim} P^{\prime}$, then ϕ is not surjective.

In this paper we construct an embedding $\phi: P \rightarrow P^{\prime}$ of a projective space (P, \mathfrak{L}) with $\operatorname{dim} P \geq 3$ into a projective plane $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ with the property (3). Clearly (3) implies $|L \cap \phi(P)| \neq 1$ (property (G) of [9]). By Theorem (2.6) of [9], for every embedding $\phi: M \rightarrow M^{\prime}$ of linear spaces $(M, \mathfrak{M}),\left(M^{\prime}, \mathfrak{M}^{\prime}\right)$ satisfying $\operatorname{dim} M>\operatorname{dim} M^{\prime}$ and property (G), there exist subspaces $P \subset M$ and $P^{\prime} \subset M^{\prime}$ satisfying $\operatorname{dim} P>\operatorname{dim} P^{\prime}=2$ such that $\left.\phi\right|_{P}$ is an embedding of P in the plane P^{\prime}. Hence we may restrict ourselves to construct an embedding into a projective plane $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$.

The embedding $\phi: P \rightarrow P^{\prime}$ is induced by an embedding f of a vector space (V, K) in a 3 -dimensional vector space $\left(L^{3}, L\right)$. We construct f in the following way:

We start with a trivial embedding f_{0} of a 3 -dimensional vector space $\left(L_{0}^{3}, L_{0}\right)$ for a proper field extension L_{0} of the field K. Step by step for $i=0,1, \ldots$ we extend the vector space V_{i} to V_{i+1} with $\operatorname{dim} V_{i+1}>\operatorname{dim} V_{i}$ and simultaneous the field L_{i} to L_{i+1} which is also a field extension of K with $L_{i} \subset L_{i+1}$. Also $f_{i}: V_{i} \rightarrow L_{i}^{3}$ is extended to the embedding $f_{i+1}: V_{i+1} \rightarrow L_{i+1}^{3}$. With $V:=\bigcup_{i \in \mathbb{N}} V_{i}$ and $L:=\bigcup_{i \in \mathbb{N}} L_{i}$ we obtain the wanted embedding $f: V \rightarrow L^{3}$. In step I of section 2 the basic construction for one induction step is given and in step II the whole induction step is explained. In step III then $f: V \rightarrow L^{3}$ is defined.

2. Embedding

In this section we give an example of an embedding $\phi: P \rightarrow P^{\prime}$ of a Pappian projective space (P, \mathfrak{L}) into a Pappian projective plane $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ satisfying that $|G \cap \phi(P)| \geq 2$ for every line $G \in \mathfrak{L}^{\prime}$. For that we construct a mapping f of a vector space (V, K) into a vector space $\left(L^{3}, L\right)$ for a suitable extension field L of a commutative field K.

We recall that the subspaces of the vector spaces (V, K) with dimension 1 and 2 , respectively, define the points P and lines \mathfrak{L}, respectively, of the projective spaces $(P, \mathfrak{L})=P G(V, K)$, and that points $x_{0}=K \mathfrak{x}_{0}, \ldots, x_{n}=K \mathfrak{x}_{n}$ are independent in (P, \mathfrak{L}) if and only if the vectors $\mathfrak{x}_{0}, \ldots, \mathfrak{x}_{n}$ are linearly independent in (V, K) (cf. [8]). Hence three points $a=K \mathfrak{a}, b=K \mathfrak{b}, c=K \mathfrak{c}$ are non collinear if and only if $\operatorname{rank}(\mathfrak{a}, \mathfrak{b}, \mathfrak{c})=3$.

Let L_{i} denote a field. For any 2-dimensional subspace E of $\left(L_{i}^{3}, L_{i}\right)$ and any subset $W \subset L_{i}^{3}$ we denote with

$$
\begin{equation*}
\operatorname{dim}^{\prime}(E \cap W) \tag{4}
\end{equation*}
$$

the dimension of the subspace of $\left(L_{i}^{3}, L_{i}\right)$, which is generated by $E \cap W$. (We mean the dimension relative to the vector space in which E is a subspace.)

First we mention some easy properties of vector spaces $\left(L_{i}^{3}, L_{i}\right)$ and $\left(F^{3}, F\right)$ for a field extension F of the field L_{i}, which we use in the following frequently.

Lemma 2.1. 1. For any vectors $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in L_{i}^{3}$ it holds that $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are linearly independent in $\left(L_{i}^{3}, L_{i}\right)$ if and only if $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are linearly independent in $\left(F^{3}, F\right)$.
2. For a 2-dimensional subspace E of $\left(L_{i}^{3}, L_{i}\right), E^{\prime}:=F E+F E$ is the unique determined 2-dimensional vector subspace of $\left(F^{3}, F\right)$ which is generated by E.

Proof. 1. If $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are linearly dependent in $\left(L_{i}^{3}, L_{i}\right)$, then clearly also in $\left(F^{3}, F\right)$. If $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are linearly dependent in $\left(F^{3}, F\right)$, then also in $\left(L_{i}^{3}, L_{i}\right)$, since else it would follow that $L_{i}^{3} \subset U$ for a proper at most 2-dimensional vector subspace U of F^{3} which is generated by $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$.
2. For $\mathfrak{a}, \mathfrak{b} \in E$ with $E=L_{i} \mathfrak{a}+L_{i} \mathfrak{b}$ it follows that $F E+F E=F L_{i} \mathfrak{a}+F L_{i} \mathfrak{b}=$ $F \mathfrak{a}+F \mathfrak{b}$.

In the following for any $i \in \mathbb{N}, L_{i}$ is a field extension of a given field $K,\left(L_{i}^{3}, L_{i}\right)$ the 3-dimensional vector space over L_{i} and let $\left(V_{i}, K\right)$ be a vector space with a basis \mathfrak{B}_{i}. Assume that

$$
\begin{equation*}
f_{i}: V_{i} \rightarrow L_{i}^{3} \tag{5}
\end{equation*}
$$

is an injective mapping satisfying the following two properties:
(α) For $\lambda, \mu \in K$ and $\mathfrak{a}, \mathfrak{b} \in V_{i}, f_{i}(\lambda \mathfrak{a}+\mu \mathfrak{b})=\lambda f_{i}(\mathfrak{a})+\mu f_{i}(\mathfrak{b})$.
(β) For $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in V_{i}, \mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are linearly independent in $\left(V_{i}, K\right)$ only if $f_{i}(\mathfrak{a}), f_{i}(\mathfrak{b})$, $f_{i}(\mathfrak{c})$ are linearly independent in $\left(L_{i}^{3}, L_{i}\right)$.
Havlicek calls a mapping f satisfying (α) a weak semilinear mapping (cf. [5]). We denote by

$$
\begin{align*}
& \mathfrak{E}_{i}:=\left\{E \subset L_{i}^{3}: \operatorname{dim} E=2 \text { and } \operatorname{dim}^{\prime}\left(E \cap f_{i}\left(V_{i}\right)\right)=1\right\} \quad \text { and } \tag{6}\\
& \mathfrak{F}_{i}:=\left\{E \subset L_{i}^{3}: \operatorname{dim} E=2 \text { and } \operatorname{dim}^{\prime}\left(E \cap f_{i}\left(V_{i}\right)\right)=0\right\} \tag{7}
\end{align*}
$$

the set of all two-dimensional subspaces E of $\left(L_{i}^{3}, L_{i}\right)$ for which the line E of the projective space $P G\left(L_{i}^{3}, L_{i}\right)$ contains only one point of the via f_{i} embedded
projective space $P G\left(V_{i}, K\right)$, or for which the line E contains no point of the embedded projective space $P G\left(V_{i}, K\right)$, respectively. Furthermore let

$$
\begin{equation*}
\mathfrak{G}_{i}:=\mathfrak{E}_{i} \cup \mathfrak{F}_{i} \tag{8}
\end{equation*}
$$

Now let $i \in \mathbb{N}$ for the next two steps be fixed.
I. In a first step we choose and define for some fixed $E \in \mathfrak{G}_{i}$:

- $\begin{cases}\mathfrak{x} \in\left(E \cap f_{i}\left(V_{i}\right)\right)^{*}, \text { i.e., } K \mathfrak{x}=E \cap f_{i}\left(V_{i}\right) & \text { for } E \in \mathfrak{E}_{i} \\ \text { any } \mathfrak{x} \in E^{*} & \text { for } E \in \mathfrak{F}_{i}\end{cases}$
- $\mathfrak{y} \in E \backslash L_{i} \mathfrak{x}$, i.e., $\mathfrak{y} \notin f_{i}\left(V_{i}\right)$ and $E=L_{i} \mathfrak{x}+L_{i} \mathfrak{y}$.
- $L_{i}^{\prime}:=L_{i}(t)$, the extension field of L_{i} for a transcendental or algebraic element t over L_{i}, with degree at least three, i.e., L_{i}^{3} is a subset of $\left(L_{i}^{\prime}\right)^{3}$.
- $\left(V_{i}^{\prime}, K\right)$, a vector space with the basis $\mathfrak{B}_{i}^{\prime}:=\mathfrak{B}_{i} \cup\{\mathfrak{b}\}$ with $\mathfrak{b} \notin V_{i}$, i.e. $V_{i} \subset V_{i}^{\prime}$ is a proper subspace.
For the subspace E of $\left(L_{i}^{3}, L_{i}\right)$ we denote by

$$
\begin{equation*}
E^{\prime}:=L_{i}^{\prime} E+L_{i}^{\prime} E \quad \text { the subspace of }\left(\left(L_{i}^{\prime}\right)^{3}, L_{i}^{\prime}\right) \text { generated by } E . \tag{9}
\end{equation*}
$$

Every vector $\mathfrak{a} \in V_{i}^{\prime}$ has the unique representation $\mathfrak{a}=\mathfrak{v}+\lambda \mathfrak{b}$ with $\mathfrak{v} \in V_{i}$ and $\lambda \in K$. We map \mathfrak{b} to $t \mathfrak{x}+t^{2} \mathfrak{y}$ and define the following mapping:

$$
\begin{equation*}
f_{i}^{\prime}: V_{i}^{\prime} \rightarrow\left(L_{i}^{\prime}\right)^{3}, \quad \mathfrak{a}=\mathfrak{v}+\lambda \mathfrak{b} \mapsto f_{i}^{\prime}(\mathfrak{a}):=f_{i}(\mathfrak{v})+\lambda\left(t \mathfrak{x}+t^{2} \mathfrak{y}\right) \tag{10}
\end{equation*}
$$

Lemma 2.2. The mapping f_{i}^{\prime} satisfies the properties (α) and (β) and it holds that $\operatorname{dim}^{\prime}\left(E^{\prime} \cap f_{i}^{\prime}\left(V_{i}^{\prime}\right)\right)=2$ for $E \in \mathfrak{E}_{i}$ and $\operatorname{dim}^{\prime}\left(E^{\prime} \cap f_{i}^{\prime}\left(V_{i}^{\prime}\right)\right) \geq 1$ for $E \in \mathfrak{F}_{i}$.

Proof. (i). Since f_{i} satisfies (α), by definition also f_{i}^{\prime} satisfies (α).
Let $\mathfrak{u}, \mathfrak{v}, \mathfrak{w} \in V_{i}$. First we show that $\mathfrak{u}+\mathfrak{b}, \mathfrak{v}, \mathfrak{w}$ are linearly independent in $\left(V_{i}, K\right)$ if and only if $f_{i}^{\prime}(\mathfrak{u}+\mathfrak{b}), f_{i}^{\prime}(\mathfrak{v}), f_{i}^{\prime}(\mathfrak{w})$ are linearly independent in $\left(\left(L_{i}^{\prime}\right)^{3}, L_{i}^{\prime}\right)$.
(ii). Since $\mathfrak{b} \notin V_{i}$ and $\mathfrak{u}, \mathfrak{v}, \mathfrak{w} \in V_{i}, \mathfrak{u}+\mathfrak{b}, \mathfrak{v}, \mathfrak{w}$ are linearly independent iff $\mathfrak{v}, \mathfrak{w}$ are linearly independent, i.e, iff $\mathfrak{v}^{\prime}:=f_{i}^{\prime}(\mathfrak{v})=f_{i}(\mathfrak{v}), \mathfrak{w}^{\prime}:=f_{i}^{\prime}(\mathfrak{w})=f_{i}(\mathfrak{w})$ are linearly independent in $\left(L_{i}^{3}, L_{i}\right)$, since f_{i} satisfies (β).
(iii). Clearly $f_{i}^{\prime}(\mathfrak{u}+\mathfrak{b})=\mathfrak{u}^{\prime}+t \mathfrak{x}+t^{2} \mathfrak{y}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}$ are linearly dependent in $\left(\left(L_{i}^{\prime}\right)^{3}, L_{i}^{\prime}\right)$ iff $\operatorname{det}\left(\mathfrak{u}^{\prime}+t \mathfrak{x}+t^{2} \mathfrak{y}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}\right)=\operatorname{det}\left(\mathfrak{u}^{\prime}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}\right)+t \operatorname{det}\left(\mathfrak{x}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}\right)+t^{2} \operatorname{det}\left(\mathfrak{y}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}\right)=0$. Since $\mathfrak{u}^{\prime}, \mathfrak{x}, \mathfrak{y}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime} \in L_{i}^{3}$ and since t has degree at least 3 over L_{i}, the last equation is equivalent to $\operatorname{det}\left(\mathfrak{u}^{\prime}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}\right)=0$, $\operatorname{det}\left(\mathfrak{x}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}\right)=0$, and $\operatorname{det}\left(\mathfrak{y}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}\right)=0$, i.e., $\mathfrak{u}^{\prime}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}$, and $\mathfrak{x}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}$, and $\mathfrak{y}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}$, respectively, are linearly dependent in $\left(L_{i}^{3}, L_{i}\right)$.

Assume that $\mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}$ are linearly independent, then $\mathfrak{x}, \mathfrak{y} \in L_{i} \mathfrak{v}^{\prime}+L_{i} \mathfrak{w}^{\prime}$, i.e., $E=L_{i} \mathfrak{x}+L_{i} \mathfrak{y}=L_{i} \mathfrak{v}^{\prime}+L_{i} \mathfrak{w}^{\prime}$ and $\mathfrak{v}^{\prime}, \mathfrak{w}^{\prime} \in E \cap f_{i}\left(V_{i}\right)$, a contradiction to $\operatorname{dim}^{\prime}(E \cap$ $\left.f_{i}\left(V_{i}\right)\right) \leq 1$. Hence $\operatorname{det}\left(\mathfrak{u}^{\prime}+t \mathfrak{x}+t^{2} \mathfrak{y}, \mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}\right)=0$ iff $\mathfrak{v}^{\prime}, \mathfrak{w}^{\prime}$ are linearly dependent, i.e. by (ii), iff $\mathfrak{u}+\mathfrak{b}, \mathfrak{v}, \mathfrak{w}$ are linearly dependent in $\left(V_{i}, K\right)$.

Now let $\mathfrak{a}=\mathfrak{u}+\lambda \mathfrak{b}, \mathfrak{b}=\mathfrak{v}+\mu \mathfrak{b}, \mathfrak{c}=\mathfrak{w}+\nu \mathfrak{b} \in V_{i}^{\prime}$ with $\mathfrak{u}, \mathfrak{v}, \mathfrak{w} \in V_{i}$ and $\lambda, \mu, \nu \in K$. Let $\mathfrak{b}^{\prime}:=f_{i}^{\prime}(\mathfrak{b}), \mathfrak{u}^{\prime}:=f_{i}^{\prime}(\mathfrak{u}), \mathfrak{v}^{\prime}:=f_{i}^{\prime}(\mathfrak{v}), \mathfrak{w}^{\prime}:=f_{i}^{\prime}(\mathfrak{w})$. We have to show
that $f_{i}^{\prime}(\mathfrak{a})=\mathfrak{u}^{\prime}+\lambda \mathfrak{b}^{\prime}, f_{i}^{\prime}(\mathfrak{b})=\mathfrak{v}^{\prime}+\mu \mathfrak{b}^{\prime}, f_{i}^{\prime}(\mathfrak{c})=\mathfrak{w}^{\prime}+\nu \mathfrak{b}^{\prime}$ are linearly independent in $\left(\left(L_{i}^{\prime}\right)^{3}, L_{i}^{\prime}\right)$ if and only if $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are linearly independent in $\left(V_{i}, K\right)$:
(iv). Since f_{i} satisfies (β), we can assume that $\lambda \neq 0$ or $\mu \neq 0$ or $\nu \neq 0$. Let $\lambda \neq 0$. Then $\operatorname{rank}\left(\mathfrak{u}^{\prime}+\lambda \mathfrak{b}^{\prime}, \mathfrak{v}^{\prime}+\mu \mathfrak{b}^{\prime}, \mathfrak{w}^{\prime}+\nu \mathfrak{b}^{\prime}\right)=\operatorname{rank}\left(\lambda^{-1} \mathfrak{u}^{\prime}+\mathfrak{b}^{\prime}, \lambda \mathfrak{v}^{\prime}-\right.$ $\left.\mu \mathfrak{u}^{\prime}, \lambda \mathfrak{w}^{\prime}-\nu \mathfrak{u}^{\prime}\right) \quad$ with $\quad \lambda \mathfrak{v}^{\prime}-\mu \mathfrak{u}^{\prime}=f_{i}(\lambda \mathfrak{v}-\mu \mathfrak{u}), \lambda \mathfrak{w}^{\prime}-\nu \mathfrak{u}^{\prime}=f_{i}(\lambda \mathfrak{w}-\nu \mathfrak{u}) \in f_{i}\left(V_{i}\right)$. By (iii) it follows that $\lambda^{-1} \mathfrak{u}^{\prime}+\mathfrak{b}^{\prime}, \lambda \mathfrak{v}^{\prime}-\mu \mathfrak{u}^{\prime}, \lambda \mathfrak{w}^{\prime}-\nu \mathfrak{u}^{\prime}$ are linearly independent in $\left(\left(L_{i}^{\prime}\right)^{3}, L_{i}^{\prime}\right)$ iff $\lambda^{-1} \mathfrak{u}+\mathfrak{b}, \lambda \mathfrak{v}-\mu \mathfrak{u}, \lambda \mathfrak{w}-\nu \mathfrak{u}$ are linearly independent in $\left(V_{i}, K\right)$. Since $\operatorname{rank}\left(\lambda^{-1} \mathfrak{u}+\mathfrak{b}, \lambda \mathfrak{v}-\mu \mathfrak{u}, \lambda \mathfrak{w}-\nu \mathfrak{u}\right)=\operatorname{rank}(\mathfrak{u}+\lambda \mathfrak{b}, \mathfrak{v}+\mu \mathfrak{b}, \mathfrak{w}+\nu \mathfrak{b})=\operatorname{rank}(\mathfrak{a}, \mathfrak{b}, \mathfrak{c})$, the assertion follows.
(v). Because $E^{\prime}=L_{i}^{\prime} \mathfrak{x}+L_{i}^{\prime} \mathfrak{y}$, it follows $f_{i}^{\prime}(\mathfrak{b})=t \mathfrak{x}+t^{2} \mathfrak{y} \in\left(E^{\prime} \cap f_{i}^{\prime}\left(V_{i}^{\prime}\right)\right)$, hence $\operatorname{dim}^{\prime}\left(E^{\prime} \cap f_{i}^{\prime}\left(V_{i}^{\prime}\right)\right) \geq 1$. Since $\mathfrak{x}, \mathfrak{y}$ are linearly independent in $\left(L_{i}^{3}, L_{i}\right)$ and by 2.1 also in $\left(\left(L_{i}^{\prime}\right)^{3}, L_{i}^{\prime}\right)$, $\operatorname{rank}\left(t \mathfrak{x}+t^{2} \mathfrak{y}, \mathfrak{x}\right)=\operatorname{rank}(\mathfrak{y}, \mathfrak{x})=2$. If $E \in \mathfrak{E}_{i}$, then $\mathfrak{x}, \mathfrak{x}+t^{2} \mathfrak{y} \in E^{\prime} \cap f_{i}^{\prime}\left(V_{i}\right)$ and hence $\operatorname{dim}^{\prime}\left(E^{\prime} \cap f_{i}^{\prime}\left(V_{i}^{\prime}\right)\right)=2$.
II. In a second step we choose and define for every $E \in \mathfrak{G}_{i}$:

- $\begin{cases}\mathfrak{x}_{E} \in\left(E \cap f_{i}\left(V_{i}\right)\right)^{*} \text {, i.e., } K \mathfrak{x}_{E}=E \cap f_{i}\left(V_{i}\right) & \text { for } E \in \mathfrak{E}_{i} \\ \text { any } \mathfrak{x}_{E} \in E^{*} & \text { for } E \in \mathfrak{F}_{i}\end{cases}$
- $\mathfrak{y}_{E} \in E \backslash L_{i} \mathfrak{x}_{E}$, i.e., $\mathfrak{y}_{E} \notin f_{i}\left(V_{i}\right)$ and $E=L_{i} \mathfrak{x}_{E}+L_{i} \mathfrak{y}_{E}$.
- $L_{i+1}:=L_{i}(T)$ the extension field of L_{i} with an independent set $T=\left\{t_{E}: E \in\right.$ $\left.\mathfrak{G}_{i}\right\}$ of transcendental or algebraic elements t_{E} over L_{i} such that degree s over $L_{i}(T \backslash\{s\})$ is at least three for every $s \in T$.
- $\left(V_{i+1}, K\right)$, a vector space with a basis $\mathfrak{B}_{i+1}:=\mathfrak{B}_{i} \cup\left\{\mathfrak{b}_{E}: E \in \mathfrak{G}_{i}\right\}$ with $\mathfrak{b}_{E} \notin V_{i}$, i.e. $V_{i} \subset V_{i+1}$ is a proper subspace.
For every subspace $E \in \mathfrak{G}_{i}$ of $\left(L_{i}^{3}, L_{i}\right)$ we denote with

$$
\begin{equation*}
\widehat{E}:=L_{i+1} E \quad \text { the by } E \text { generated subspace of } \quad\left(\left(L_{i+1}\right)^{3}, L_{i+1}\right) \tag{11}
\end{equation*}
$$

Every vector $\mathfrak{a} \in V_{i+1}$ has the unique representation $\mathfrak{a}=\mathfrak{v}+\sum_{E \in \mathfrak{G}_{i}} \lambda_{E} \mathfrak{b}_{E}$ with $\mathfrak{v} \in V_{i}, \lambda_{E} \in K$ and $\lambda_{E} \neq 0$ only for finitely many $E \in \mathfrak{G}_{i}$. We map \mathfrak{b}_{E} to $t_{E} \mathfrak{x}_{E}+t_{E}^{2} \mathfrak{y}_{E}$ and define the following mapping:

$$
f_{i+1}: \begin{cases}V_{i+1} & \rightarrow\left(L_{i+1}\right)^{3} \tag{12}\\ \mathfrak{a}=\mathfrak{v}+\sum_{E \in \mathfrak{G}_{i}} \lambda_{E} \mathfrak{b}_{E} & \mapsto f_{i+1}(\mathfrak{a}):=f_{i}(\mathfrak{v})+\sum_{E \in \mathfrak{G}_{i}} \lambda_{E}\left(t_{E} \mathfrak{x}_{E}+t_{E}^{2} \mathfrak{y}_{E}\right)\end{cases}
$$

Lemma 2.3. The mapping f_{i+1} satisfies the properties (α) and (β). It holds that $\operatorname{dim}^{\prime}\left(\widehat{E} \cap f_{i+1}\left(V_{i+1}\right)\right)=2$ for every $E \in \mathfrak{E}_{i}$ and $\operatorname{dim}^{\prime}\left(\widehat{E} \cap f_{i+1}\left(V_{i+1}\right)\right) \geq 1$ for every $E \in \mathfrak{F}_{i}$. Furthermore $\left.f_{i+1}\right|_{V_{i}}=f_{i}$.

Proof. (i). Since f_{i} satisfies (α), by definition also f_{i+1} satisfies (α).
(ii). Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in V_{i+1}$. Then there exist a finite number $n \in \mathbb{N}$ and vectors
$\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n} \in \mathfrak{B}_{i+1} \backslash \mathfrak{B}_{i}$ with

$$
\mathfrak{a}=\mathfrak{u}+\sum_{j=1}^{n} \lambda_{j} \mathfrak{b}_{j}, \quad \mathfrak{b}=\mathfrak{v}+\sum_{j=1}^{n} \mu_{j} \mathfrak{b}_{j}, \quad \mathfrak{c}=\mathfrak{w}+\sum_{j=1}^{n} \nu_{j} \mathfrak{b}_{j}
$$

for $\mathfrak{u}, \mathfrak{v}, \mathfrak{w} \in V_{i}$ and $\lambda_{j}, \mu_{j}, \nu_{j} \in K$. Since f_{i} satisfies $(\beta), \mathfrak{u}, \mathfrak{v}, \mathfrak{w}$ are linearly independent in $\left(V_{i}, K\right)$ iff $\mathfrak{u}^{\prime}:=f_{i+1}(\mathfrak{u})=f_{i}(\mathfrak{u}), \mathfrak{v}^{\prime}:=f_{i+1}(\mathfrak{v}), \mathfrak{w}^{\prime}:=f_{i+1}(\mathfrak{w})$ are linearly independent in $\left(L_{i+1}^{3}, L_{i+1}\right)$. Let denote $\mathfrak{b}_{j}^{\prime}:=f_{i+1}\left(\mathfrak{b}_{j}\right)$. Now by induction for $k=1, \ldots, n$, we obtain by 2.2 that

$$
\begin{array}{ll}
\mathfrak{u}+\sum_{j=1}^{k} \lambda_{j} \mathfrak{b}_{j}, & \mathfrak{v}+\sum_{j=1}^{k} \mu_{j} \mathfrak{b}_{j}, \\
\mathfrak{w}+\sum_{j=1}^{k} \nu_{j} \mathfrak{b}_{j} \quad \text { are linearly independent iff } \\
\mathfrak{u}^{\prime}+\sum_{j=1}^{k} \lambda_{j} \mathfrak{b}_{j}^{\prime}, & \mathfrak{v}^{\prime}+\sum_{j=1}^{k} \mu_{j} \mathfrak{b}_{j}^{\prime}, \\
\mathfrak{w}^{\prime}+\sum_{j=1}^{k} \nu_{j} \mathfrak{b}_{j}^{\prime} \quad \text { are linearly independent. }
\end{array}
$$

Hence we summarize that $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are linearly independent if and only if $f_{i+1}(\mathfrak{a})$, $f_{i+1}(\mathfrak{b}), f_{i+1}(\mathfrak{c})$ are linearly independent, i.e., (β) is satisfied.
(iii). Because $\widehat{E}=L_{i+1} \mathfrak{x}+L_{i+1} \mathfrak{y}$, it follows $f_{i+1}\left(\mathfrak{b}_{E}\right)=t_{E} \mathfrak{x}_{E}+t_{E}^{2} \mathfrak{y}_{E} \in(\widehat{E} \cap$ $\left.f_{i+1}\left(V_{i+1}\right)\right)$, hence $\operatorname{dim}^{\prime}\left(\widehat{E} \cap f_{i+1}\left(V_{i+1}\right)\right) \geq 1$. If $E \in \mathfrak{E}_{i}$, then $\mathfrak{x}_{E}, t_{E} \mathfrak{x}_{E}+t_{E}^{2} \mathfrak{y}_{E} \in$ $\left(\widehat{E} \cap f_{i+1}\left(V_{i+1}\right)\right)$ and hence $\operatorname{dim}^{\prime}\left(\widehat{E} \cap f_{i+1}\left(V_{i+1}\right)\right)=2$ (cf. Lemma 2.2).
(iv). By definition of f_{i+1}, it follows that $\left.f_{i+1}\right|_{V_{i}}=f_{i}$.
III. Now in a third step we obtain the wanted result with the following induction.

Let L_{0} be a proper extension field of $K, V_{0}:=K^{3}$ and

$$
\begin{equation*}
f_{0}: V_{0} \rightarrow L_{0}^{3}, \mathfrak{x}=\left(x_{0}, x_{1}, x_{2}\right) \mapsto f_{0}(\mathfrak{x}):=\mathfrak{x}=\left(x_{0}, x_{1}, x_{2}\right) \tag{13}
\end{equation*}
$$

Obviously f_{0} satisfies $(\alpha),(\beta)$ and since $K \subset L_{0}, \mathfrak{E}_{0}:=\left\{E \subset L_{0}^{3}: \operatorname{dim} E=2\right.$ and $\left.\operatorname{dim}^{\prime}\left(E \cap f_{0}\left(V_{0}\right)\right) \leq 1\right\} \neq \emptyset$.

Using the second step (cf. Lemma 2.3), we construct for $i=0,1,2, \ldots$, :

- an extension field L_{i+1} of L_{i},
- a vector space $\left(V_{i+1}, K\right)$ with the proper subspace $V_{i} \subset V_{i+1}$
- and a mapping $f_{i+1}: V_{i+1} \rightarrow L_{i+1}^{3}$ satisfying (α) and (β) with $\operatorname{dim}^{\prime}(\widehat{E} \cap$ $\left.f_{i+1}\left(V_{i+1}\right)\right)=2$ for every $E \in \mathfrak{E}_{i}$ and $\operatorname{dim}^{\prime}\left(\widehat{E} \cap f_{i+1}\left(V_{i+1}\right)\right) \geq 1$ for every $E \in \mathfrak{F}_{i}$.
We define

$$
\begin{equation*}
V:=\bigcup_{i \in \mathbb{N}} V_{i}, \quad L:=\bigcup_{i \in \mathbb{N}} L_{i} \tag{14}
\end{equation*}
$$

Let for every $\mathfrak{a} \in V, n_{\mathfrak{a}}:=\min \left\{i \in \mathbb{N}: \mathfrak{a} \in V_{i}\right\}$. Then

$$
\begin{equation*}
f: V \rightarrow L^{3}, \mathfrak{a} \mapsto f(\mathfrak{a}):=f_{n_{\mathfrak{a}}}(\mathfrak{a}) \tag{15}
\end{equation*}
$$

is a mapping with the following properties:
Lemma 2.4. f is a mapping from the at least 4-dimensional vector space (V, K) into the 3-dimensional vector space $\left(L^{3}, L\right)$ satisfying the properties (α) and (β). For every subspace $E \subset V$ with $\operatorname{dim} E=2$ it holds that $\operatorname{dim}^{\prime}(E \cap f(V))=2$.

Proof. It is easy to see that (V, K) is a vector space and L a field extension of K. By the construction of V, clearly $\operatorname{dim} V \geq 4$. For any $\mathfrak{a} \in V$ and every $j \in \mathbb{N}$ with $j \geq n_{\mathfrak{a}}$ we have by 2.3, $f(\mathfrak{a}):=f_{n_{\mathfrak{a}}}(\mathfrak{a})=f_{j}(\mathfrak{a})$.

For $\lambda, \mu \in K$ and $\mathfrak{a}, \mathfrak{b} \in V$, there is a $n=\max \left\{n_{\mathfrak{a}}, n_{\mathfrak{b}}\right\} \in \mathbb{N}$ with $\lambda \mathfrak{a}+\mu \mathfrak{b} \in V_{n}$, hence $f(\lambda \mathfrak{a}+\mu \mathfrak{b})=f_{n}(\lambda \mathfrak{a}+\mu \mathfrak{b})$ and (α) is satisfied by Lemma 2.3.

Also for $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in V$, there is a $k \in \mathbb{N}$ with $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in V_{k}$. Again by Lemma 2.3, $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are linearly independent iff $f(\mathfrak{a})=f_{k}(\mathfrak{a}), f(\mathfrak{b}), f(\mathfrak{c})$ are linearly independent. Hence (β) is satisfied for f.

Now let $E \subset L^{3}$ be a 2 -dimensional subspace and $\mathfrak{p}, \mathfrak{q} \in E$ linearly independent. Then there exists an $i \in \mathbb{N}$ with $\mathfrak{p}, \mathfrak{q} \in L_{i}^{3}$, hence $\mathfrak{p}, \mathfrak{q} \in E_{i}:=E \cap L_{i}^{3}$ and E_{i} is a subspace of L_{i}^{3} with $\operatorname{dim} E_{i}=2$. If $\operatorname{dim}^{\prime}\left(E_{i} \cap f_{i}\left(V_{i}\right)\right)=2$, then also $\operatorname{dim}^{\prime}(E \cap f(V))=2$. If $\operatorname{dim}^{\prime}\left(E_{i} \cap f_{i}\left(V_{i}\right)\right)=1$, then $E_{i} \in \mathfrak{E}_{i}$, and by Lemma 2.3 it follows for $\widehat{E}_{i}=L_{i+1} E_{i}=E \cap L_{i+1}^{3}$ that $\operatorname{dim}^{\prime}\left(\widehat{E}_{i} \cap f_{i+1}\left(V_{i+1}\right)\right)=2$, hence also $\operatorname{dim}^{\prime}(E \cap f(V))=2$. If $\operatorname{dim}^{\prime}\left(E_{i} \cap f_{i}\left(V_{i}\right)\right)=0$, then $E_{i} \in \mathfrak{F}_{i}$ and by Lemma $2.3 \operatorname{dim}^{\prime}\left(\widehat{E}_{i} \cap f_{i+1}\left(V_{i+1}\right)\right) \geq 1$. But then in the next induction step $\operatorname{dim}^{\prime}\left(\widehat{\widehat{E}_{i}} \cap f_{i+2}\left(V_{i+2}\right)\right)=2$ with $\widehat{\widehat{E}_{i}}=L_{i+1} \widehat{E_{i}}=L_{i+2} E_{i}=E \cap L_{i+2}^{3}$, hence also $\operatorname{dim}^{\prime}(E \cap f(V))=2$ (cf. 2.1).

Now Lemma 2.4 implies:
Theorem 2.5. For every commutative field K there exist a field extension L of K, a projective space $(P, \mathfrak{L})=P G(V, K)$ and a Pappian projective plane $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)=$ $P G\left(L^{3}, L\right)$ with an embedding $\phi: P \rightarrow P^{\prime}$ satisfying $|G \cap \phi(P)| \geq 2$ for every $G \in \mathfrak{L}^{\prime} . \quad \phi$ is not surjective.

Proof. We define with the above constructed field extension L of K

$$
\begin{equation*}
\phi: P \rightarrow P^{\prime}, K \mathfrak{a} \mapsto \phi(K \mathfrak{a}):=L f(\mathfrak{a}), \tag{16}
\end{equation*}
$$

then by (α) and since $K \subset L, \phi$ is well defined and maps collinear points into collinear points. By $(\beta), \phi$ maps non collinear points on non collinear points, hence ϕ is an embedding. For every 2-dimensional subspace E of L^{3}, we have $\operatorname{dim}^{\prime}(E \cap f(V))=2$ by Lemma 2.4, and by $(\beta), F:=f^{-1}(E \cap f(V))$ is a 2dimensional subspace of V. That means that the intersection of every line of P^{\prime} with $\phi(P)$ contains at least two distinct points, hence it is the image of a line of P. Since $\operatorname{dim} V \geq 4$ it follows that $\operatorname{dim} P \geq 3$ and hence that ϕ is not a collineation, i.e., ϕ is not surjective.

Theorem 2.6. For every commutative field K there exist a field extension L of K, a projective space $(P, \mathfrak{L})=P G(V, K)$ and a Pappian projective plane $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)=$ $P G\left(L^{3}, L\right)$ with a bijection $\beta: \mathfrak{L} \rightarrow \mathfrak{L}^{\prime}$ which maps any two distinct lines onto intersecting lines. There exist in particular lines with an empty intersection which are mapped under β into intersecting lines.

Proof. Let $\phi: P \rightarrow P^{\prime}$ be the embedding of Theorem 2.5, and let for a line $G \in \mathfrak{L}$, \widehat{G} denote the line of \mathfrak{L}^{\prime} which is generated by $\phi(G)$. We define

$$
\begin{equation*}
\beta: \mathfrak{L} \rightarrow \mathfrak{L}^{\prime}, G \mapsto \widehat{G} \tag{17}
\end{equation*}
$$

Since ϕ is an embedding, β is injective, and since $|L \cap \phi(P)| \geq 2$, i.e., $L \cap \phi(P) \in$ $\{\phi(G): G \in \mathfrak{L}\}$ for every $L \in \mathfrak{L}^{\prime}, \beta$ is surjective. Because $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ is a projective plane, for $G_{1}, G_{2} \in \mathfrak{L}$ every two lines $\widehat{G}_{1}, \widehat{G}_{2}$ have a non empty intersection, and because $\operatorname{dim} P^{\prime} \geq 3$ there are lines $G_{1}, G_{2} \in \mathfrak{L}$ with an empty intersection.

References

[1] W. Benz, Geometrische Transformationen, BI-Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1992.
[2] H. Brauner, Über die von Kollineationen projektiver Räume induzierten Geradenabbildungen, Österreich. Akad. Wiss. Math. -Natur. Kl. Sitzungsber. II 197 (1988), 327-332.
[3] W.-L. Chow, On the geometry of algebraic homogeneous spaces, Ann. of Math. 50 (1949), 32-67.
[4] A. Cohen, On a theorem of Cooperstein, European J. Combin. 4 (1983), 107-126.
[5] H. Havlicek, A generalization of Brauner's Theorem on linear mappings, Mitt. Math. Sem. Univ. Giessen 215 (1994), 27-41.
[6] H. Havlicek, On isomorphisms of Grassmann spaces, Mitt. Math. Gesellsch. Hamburg 14 (1995), 117-120.
[7] W. Huang, Adjacency preserving transformations of Grassmann spaces, to appear in Abh. Math. Sem. Univ. Hamburg.
[8] H. Karzel, K. Sörensen and D. Windelberg, Einführung in die Geometrie, UTB Vandenhoeck, Göttingen, 1973.
[9] A. Kreuzer, Projective embeddings of projective spaces, Bull. Belg. Math. Soc. 5 (1998), 363-372.

Alexander Kreuzer

Mathematisches Seminar
Universität Hamburg
Bundesstraße 55
D-20146 Hamburg

Manuscript received: December 31, 1997 and, in final form, June 15, 1998.

