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Abstract. In this paper the axiomatic basis will be a general absolute plane
A = (P ,L, α,≡) in the sense of [6], where P and L denote respectively the
set of points and the set of lines, α the order structure and ≡ the congruence,
and where furthermore the word “general” means that no claim is made on
any kind of continuity assumptions. Starting from the classification of general
absolute geometries introduced in [5] by means of the notion of congruence,
singular or hyperbolic or elliptic, we get now a complete characterization of
the different possibilities which can occur in a general absolute plane study-
ing the value of the angle δ defined in any Lambert–Saccheri quadrangle or,
equivalently, the sum of the angles of any triangle. This yelds, in particular, a
Archimedes-free proof of a statement generalizing the classical “first Legendre
theorem” for absolute planes.
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1. Introduction

In the classical absolute geometry, hence under the assumption of Hilbert’s axioms
including the continuity or the Archimedes’ axiom (cf., [2], p. 154 or [6], p. 104),
if one considers the sum of the angles of a triangle (for an explicit definition of
these notions see the following Sections 2, 4), denoting by R the right angle, the
following result is well known:

(1.1) In an absolute plane A fulfilling the continuity and the Archimedes’ axiom,
let σ be the sum of the angles of a triangle then:
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1. σ = 2R if and only if A is the Euclidean plane, i.e., the parallel axiom is
valid.

2. σ < 2R if and only if A is the hyperbolic plane, i.e., the parallel axiom is not
valid.

So the value of the sum of the angles of any triangle characterizes the two
types of continuous and Archimedean absolute geometries. Such a characterization
can be pursued in the absolute plane also by means of another peculiar configura-
tion, the so called Lambert–Saccheri quadrangle, i.e., a quadrangle (a, b, c, d) with
d, a ⊥ a, b ⊥ b, c ⊥ c, d. If we denote by δ := ∠(c, d, a) then the following result is
true in the classical absolute plane (see e.g., [1], § 9.6 and [2], p. 166):

(1.2) In an absolute plane A fulfilling the continuity and the Archimedes’ axiom,
let (a, b, c, d) be a Lambert–Saccheri quadrangle with δ := ∠(c, d, a) and σ be the
sum of the angles of any triangle, then:

1. δ = R if and only if A is the Euclidean plane and so σ = 2R.
2. δ < R if and only if A is the hyperbolic plane and so σ < 2R.

In this paper the axiomatic basis will be, as in the previous papers [3], [4]
and [5], a general absolute plane A = (P ,L, α,≡) in the sense of [6], where P and L
denote respectively the set of points and the set of lines, α the order structure and ≡
the congruence, and where furthermore the word “general” means that no claim
is made on any kind of continuity assumptions.

Note that within this frame, the hyperbolic geometry is not anymore the
unique alternative to the Euclidean one when the Euclid’s parallel axiom is re-
moved, but it has to be characterized by the validity of the hyperbolic parallel
axiom H (see Section 5).

Given any Lambert–Saccheri quadrangle (a, b, c, d) in the general absolute
plane A, denote by a′ := (a ⊥ c, d)∩ c, d; then the set LS of all Lambert–Saccheri
quadrangles splits into the three classes: the rectangles LSr, the hyperbolic LSh

and the elliptic quadrangles LSe characterized respectively by a′ = d, by a′ ∈ ]c, d[
and by d ∈ ]a′, c[.

In [5] the wellknown statement (the so called “second Legendre theorem”)
“LSr �= ∅ implies LS = LSr” (cf., e.g., [6], (21.3)) was supplemented by “LSh �= ∅
implies LS = LSh” and “LSe �= ∅ implies LS = LSe”. In the first case the
absolute plane A is called singular, otherwise A is an ordinary absolute plane
([2], p. 162). Therefore, the congruence ≡ of A was defined there singular (or
Euclidean), hyperbolic or elliptic if, respectively, LSr �= ∅, LSh �= ∅, or LSe �= ∅.

Starting from the classification of general absolute geometries introduced
in [5] by means of the notion of congruence, singular or hyperbolic or elliptic,
we get now a complete characterization of the different possibilities which can
occur in a general absolute plane studying the value of the angle δ defined in any
Lambert–Saccheri quadrangle or, equivalently, the sum of the angles of a triangle.
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First of all, in order to have a clear and complete formal basis for the following
rational deductions, in Section 2 we give a definition of sum and of an order relation
for angles, valid in a general (not necessarily continuous nor Archimedean) absolute
geometry with the aim to give sense also to the case that the sum of angles could
be greater than 2R (the straight angle). By means of these tools, in Sections 3,
4, 5 we prove the following results which, besides supplementing the classification
of general absolute planes (Theorem 1), also entail a Archimedes-free proof of a
statement (Theorem 2) extending the classical “first Legendre theorem”1 to any
general absolute plane with singular or hyperbolic congruence. Actually we will
prove the following theorems:

1. (see Theorem 1, Section 3) In any Lambert–Saccheri quadrangle (a, b, c, d),
denoting by δ the angle ∠(c, d, a), it holds:

δ = R if and only if the congruence ≡ is singular ;

δ < R if and only if the congruence ≡ is hyperbolic ;
δ > R if and only if the congruence ≡ is elliptic .

2. (see Theorem 2, Section 4) If σ is the sum of the angles of any triangle then:

σ = 2R if and only if the congruence ≡ is singular ;

σ < 2R if and only if the congruence ≡ is hyperbolic ;
σ > 2R if and only if the congruence ≡ is elliptic .

3. (see Theorem 3, Section 5) The congruence of a general hyperbolic plane is
hyperbolic.
In particular, Theorem 3, together with the second statements of Theorems 1

and 2, yields a proof for general hyperbolic planes just of the sufficient condition
of the classical statements (1.1) (1.2), provided that the notion of hyperbolic plane
is characterized among general absolute planes by the axiom H (see Section 5).

2. Basic notions, order and sum of angles

In this paper we shall consider an absolute plane in the sense of Hilbert, where
however we make no claim concerning continuity or the Archimedes’ axiom.

So, let A = (P ,L, α,≡) be an absolute plane. For this notion and the basic
definitions and properties of order α and congruence ≡ we refer to [6], § 16. Here
we just recall some notation.

The order structure α is defined through the so called order function (L |
a, b) ∈ {−1, +1}, for L ∈ L and a, b ∈ P \ L as in [6], § 13.

Given any two distinct points a, b ∈ P and any line G ∈ L, denote by a, b ∈ L
the uniquely determined line through a and b, by ]a, b[:= {x ∈ a, b | (x | a, b) = −1}
the open segment of extremes a and b, by (a ⊥ G) the uniquely determined line
through a and perpendicular to G.

1See, e.g., M. Dehn, Die Legendre’schen Sätze über die Winkelsumme im Dreieck. Math. Ann.
Vol. 53 (1900), 404–439.
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Denote by ã : P → P ; x 	→ x′ := ã(x) such that a is the midpoint of (x, x′)
for x �= a and x′ = a if x = a, the reflection in the point a.

Furthermore, let ˜G denote the reflection in the line G, i.e., the permutation
of P which maps any point x ∈ P to the point x′ := ˜G(x) such that G is the
midline of (x, x′) if x /∈ G, and x′ = x if and only if x ∈ G.

Both point- and line-reflections are indeed motions of the absolute plane,
namely permutations of the point set P that preserve the line structure L, the
order α and the congruence ≡ of A. Set ˜P := {ã | a ∈ P} and ˜L := { ˜G | G ∈ L}.

A set b of lines is called pencil (= Büschel in [6], § 19) if
⋃

b = P , ∀A, B, C ∈ b : ˜A ◦ ˜B ◦ ˜C ∈ ˜L and ∀A, B ∈ b with A �= B :

b =
{

X ∈ L | ˜A ◦ ˜B ◦ ˜X ∈ ˜L}

.

By an angle β we understand an ordered pair of halflines (
−→
b, a;

−→
b, c) having the

initial point b in common and we shall denote it by β := ∠(
−→
b, a;

−→
b, c) = ∠(a, b, c).

If a, b, c are not collinear β will be called proper.
If a′ := (a ⊥ b, c) ∩ b, c and c′ := (c ⊥ b, a) ∩ b, a, we call β acute or right

or obtuse depending whether b �= a′ and (b | c, a′) = 1 or b = a′ = c′ or b �= a′ and
(b | c, a′) = −1 and we write respectively β < R or β = R or β > R.

Let β be proper: the set of points β̂ := {x ∈ P | (b, a | c, x) = (b, c | a, x) = 1}
is called the interior of β. The complement β̌ := P \ (β̂ ∪ −→

b, a ∪ −→
b, c) is called the

exterior of β. We call the pair (β, β̂) the interior angle and (β, β̌) the exterior
angle.

If 2R denotes the straight angle, for any proper angle β we shall write:

(β, β̂) < 2R , (β, β̌) > 2R .

Two angles α and β are called congruent if there is a motion μ such that
μ(α) = β and properly congruent if μ is a proper motion.

If α, β are congruent we shall write α ≡ β.
If β := ∠(a, b, c) and β′ := ∠(a′, b′, c′) are two proper angles such that

−→
b, c =−−→

b′, c′ and either a′ ∈ β̂, or ˜b, c(a′) ∈ β̂ then we shall write β′ < β.

In the general case
−→
b, c �= −−→

b′, c′, let μ be the proper motion (which is uniquely
determined, see [6], (17.15)) with μ(

−−→
b′, c′) =

−→
b, c then we define β′ < β if μ(β′) < β.

Proposition 2.1. Let β := ∠(a, b, c), β′ := ∠(a′, b′, c′), β′′ := ∠(a′′, b′′, c′′) be
distinct proper angles such that

−→
b, c =

−−→
b′, c′ =

−−−→
b′′, c′′ and β > β′, β′ > β′′. Then we

have β > β′′.

Proof. We may assume w.l.o.g. (b, c | a, a′) = (b, c | a, a′′) = 1 hence also (b, c |
a′, a′′) = 1. The assumption β > β′ implies (b, a | a′, c) = (b, c | a′, a) = 1, hence
by [6], (13.12.2), we have (b, a′ | a, c) = −1. Thus by Axiom (V1) (cf., [6], § 16):
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i) there is a point m′ := b, a′ ∩ ]a, c[, so (a | c, m′) = 1 and, since β is proper,
b �= m′ and (b | a′, m′) = (b, a | a′, m′) = (b, a | a′, c) · (b, a | c, m′) =
1 · (a | c, m′) = 1 which implies

−−→
b, a′ =

−−→
b, m′. By β′ > β′′ we have also

−1 = (b, a′′ | c, a′) = (b, a′′ | c, m′) · (b, a′′ | m′, a′) = (b, a′′ | c, m′) · (b |
m′, a′) = (b, a′′ | c, m′). Thus:

ii) there exists an m′′ := b, a′′ ∩ ]m′, c[ and we have (b | a′′, m′′) = (b, a′ |
a′′, m′′) = (b, a′ | a′′, c) · (b, a′ | c, m′′) = 1 · (m′ | c, m′′) = 1 which implies−−→
b, a′′ =

−−−→
b, m′′ and also (m′′ | m′, c) = −1.

iii) By i) and ii) we get (m′ | a, m′′) = (m′ | a, c) · (m′ | c, m′′) = −1 · 1 = −1
hence (m′′ | a, m′) = 1, thus:

iv) (m′′ | a, c) = (m′′ | a, m′) · (m′′ | m′, c) = 1 · (−1) = −1 hence (a | m′′, c) = 1.
Finally we get (b, a | a′′, c) = (b, a | a′′, m′′) · (b, a | m′′, c) = (b | a′′, m′′) · (a |
m′′, c) = 1 · 1 = 1. Hence β > β′′. �

Proposition 2.2. For any two distinct proper angles β := ∠(a, b, c), β′ := ∠(a′, b′, c′)
with

−→
b, c =

−−→
b′, c′ it holds:

β′ < β if and only if , either β̂′ ∪ −−→
b, a′ ⊂ β̂ or ˜b, c(β̂′ ∪−−→

b, a′) ⊂ β̂ .

Proof. First suppose a′ ∈ β̂: this implies directly
−−→
b, a′ ⊂ β̂. Furthermore, if we take

any x ∈ β̂′ then, for ξ := ∠(x, b, c), by definition ξ < β′ and so by (2.1) ξ < β.
Thus by definition x ∈ β̂. The converse is obvious.

To complete the proof it is enough to observe that ˜b, c is a motion of the
absolute plane A and that motions preserve the order function and then the order
relation for angles. �

Let now β := ∠(a, b, c) and β′ := ∠(a′, b′, c′) such that
−→
b, c =

−−→
b′, a′ and

(b, c | a, c′) = −1. Then
−→
b, a,

−→
b, c,

−−→
b, c′ are three distinct halflines and we define the

following sums :

β + β′ := ∠(a, b, c′) =: σ

(β, β̂) + (β′, β̂′) := (σ, σ̂) if b, a �= b, c′ and c ∈ σ̂,
(β, β̂) + (β′, β̂′) := (σ, σ̌) if b, a �= b, c′ and c �∈ σ̂,
(β, β̂) + (β′, β̂′) := (σ, [ a, b ; c ]) if b, a = b, c′, where [ a, b; c ] denotes the
halfplane with edge the line a, b and containing the point c .

If 2R denotes two right angles, i.e., the straight angle, we shall write:

(β, β̂) + (β′, β̂′) < 2R if (β, β̂) + (β′, β̂′) = (σ, σ̂),
(β, β̂) + (β′, β̂′) > 2R if (β, β̂) + (β′, β̂′) = (σ, σ̌),
(β, β̂) + (β′, β̂′) = 2R if b, a = b, c′.
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3. Lambert–Saccheri quadrangles

Consider, in the absolute plane A = (P ,L, α,≡), a Lambert–Saccheri quadrangle
(shortly L-S quadrangle) (a, b, c, d) with δ := ∠(c, d, a).

Denoting by a′ := (a ⊥ c, d) ∩ c, d, we remember that the congruence ≡ is
called singular if a′ = d, hyperbolic if a′ ∈ ]c, d[ (i.e., (a′ | c, d) = −1) and elliptic
if d ∈ ]a′, c[ (i.e., (a′ | c, d) = 1).

For the following it will be useful to recall the well known result which is a
consequence of [6], (16.9):

Proposition 3.1. For any line A ∈ L and any two distinct points b, c ∈ P \A, if A
and b, c have a common perpendicular G ∈ L then (A | b, c) = 1.

The value of the angle δ is related to the congruence ≡ defined in A by the
following:

Theorem 1. In any Lambert–Saccheri quadrangle (a, b, c, d), denoting by δ the angle
∠(c, d, a), it holds:

δ = R if and only if the congruence ≡ is singular ;

δ < R if and only if the congruence ≡ is hyperbolic ;

δ > R if and only if the congruence ≡ is elliptic .

Proof. Given the L-S quadrangle (a, b, c, d), let A := a, d, D := (d ⊥ c, d), a′ :=
c, d ∩ (a ⊥ c, d) and a′′ := D ∩ (a ⊥ D), so ε := ∠(c, d, a′′) = R. Then by (3.1)
(d, c | a, a′′) = 1 and if a′ �= d also (d, a′′ | a, a′) = 1.

If a′ ∈ ]c, d[ then (d, a′′ | a′, c) = (d | a′, c) = 1 and so (d, a′′ | a, c) = (d, a′′ |
a, a′) · (d, a′′ | a′, c) = 1 · 1 = 1, that means a ∈ ε̂, i.e., δ < ε = R.

If d ∈ ]a′, c[ then (A | a′, c) = (d | a′, c) = −1. Moreover (again by (3.1))
(a′, d | a, a′′) = (a′′, d | a, a′) = 1, hence (by (13.12.2) of [6]) (A | a′, a′′) = −1 and
so we get (A | a′′, c) = (A | a′, a′′) · (A | a′, c) = −1 · (−1) = 1 and this means that
δ > R.

Since by [2], p. 162 and [5] the congruence is singular if and only if δ = R,
the theorem is proved. �

4. Triangles

By an oriented triangle � we understand (up to cyclic order) a tripel (a, b, c) of
non collinear points – the vertices – together with the segments ]a, b[, ]b, c[, ]c, a[
– the sides – and with the angles α := ∠(c, a, b), β := ∠(a, b, c), γ := ∠(b, c, a).

Let a′, b′, c′ be respectively the midpoints of (b, c), (c, a), (a, b). Then α =
∠(b′, a, c′), β = ∠(c′, b, a′), γ = ∠(a′, c, b′), and, if ˜b′, ˜c′ are the point-reflections in
the points b′, c′ respectively, we have

γ′ := ˜b′(γ) = ∠
(

˜b′(a′), a, b′
)

= ∠
(

˜b′(b), a, c
)
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and
β′ := ˜c′(β) = ∠

(

c′, a, ˜c′(a′)
)

= ∠
(

b, a, ˜c′(c)
)

.

Since ˜b′ and ˜c′ are proper motions the angles γ and γ′ = ˜b′(γ) are properly con-

gruent and so are β and β′ = ˜c′(β). Since γ′ = ∠(
−−−−→
a, ˜b′(b);−→a, c) , α = ∠(−→a, c;

−→
a, b)

and (a, c | ˜b′(b), b) = (b′ | ˜b′(b), b) = −1, we can define:

σγ := γ′ + α = ∠
(

−−−−→
a, ˜b′(b);

−→
a, b

)

= ∠
(

˜b′(a′), a, b
)

.

Moreover, from (b′ | ˜b′(b), b) = −1, it follows (˜b′(b) | b, b′) = (b | b′, ˜b′(b)) = 1 and
from ˜b′(a) = c it follows (b′ | a, c) = −1 and so (a | b′, c) = (c | b′, a) = 1. Therefore
(

a, ˜b′(b) | b, c
)

=
(

a, ˜b′(b) | b′, c
)·(a, ˜b′(b) | b′, b

)

= (a | c, b′)·(˜b′(b) | b′, b
)

= 1·1 = 1 ,

and
(

a, b | c, ˜b′(b)
)

= (a, b | c, b′) · (a, b | b′, ˜b′(b)
)

= (a | c, b′) · (b | b′, ˜b′(b)
)

= 1 · 1 = 1 .

Consequently:
(γ′, ̂γ′) + (α, α̂) = (σγ , σ̂γ) .

In the same way, for

σβ := α + β′ = ∠
(−→a, c;

−−−−→
a, ˜c′(c)

)

= ∠
(

b, a, ˜c′(c)
)

it holds
(α, α̂) + (β′, ̂β′) = (σβ , σ̂β) .

Moreover:
(

a, b | ˜b′(b), ˜c′(c)
)

=
(

a, b | ˜b′(b), b′
) · (a, b | b′, c) · (a, b | c, ˜c′(c)

)

=
(

b | ˜b′(b), b′
) · (a | b′, c) · (c′ | c, ˜c′(c)

)

= 1 · 1 · (−1) = −1

and in the same way
(

a, c | ˜b′(b), ˜c′(c)
)

= −1 .

Therefore we can form σγ + β′ and γ′ + σβ and obtain

σ�,a := σγ + β′ = γ′ + σβ = ∠
(

−−−−→
a, ˜b′(b);

−−−−→
a, ˜c′(c)

)

= ∠
(

˜b′(b), a, ˜c′(c)
)

.

We call σ�,a the sum of the angles of the triangle � in the vertex a. In the same
way we have ˜b′(σ�,a) = σ�,c and ˜c′(σ�,a) = σ�,b and so the sums in the three
vertices are properly congruent.

Now we are ready to show that the sum of the angles of � is equal, smaller
or greater than 2R according to the properties of the congruence of the general
absolute plane A. Namely we prove the following theorem which, since a Euclidean
plane is singular, can be considered as an extension to a general absolute plane of
the classical results recalled in (1.1) and stated by the “first Legendre theorem”:
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Theorem 2. For a general absolute plane A let � = (a, b, c) be any oriented trian-
gle, a′, b′, c′ be respectively the midpoints of (b, c), (c, a), (a, b) and σ�,a be the sum
of the interior angles (γ′, ̂γ′), (α, α̂) and (β′, ̂β′). Then exactly one of the following
statements is fulfilled:

1. A is singular if and only if a is the midpoint of ˜b′(b) and ˜c′(c), i.e.,

σ�,a = 2R, i.e., σ�,a is a straight angle ;

2. A has a hyperbolic congruence if and only if the sum of the interior angles is
the interior angle (σ�,a, σ̂�,a), i.e.,

(

γ′, γ̂′) + (α, α̂) +
(

β′, β̂′) = (σ�,a, σ̂�,a) < 2R ;

3. A has an elliptic congruence if and only if the sum of the interior angles is
the exterior angle (σ�,a, σ̌�,a), i.e.,

(

γ′, γ̂′) + (α, α̂) +
(

β′, β̂′) = (σ�,a, σ̌�,a) > 2R .

Proof. In the oriented triangle � = (a, b, c) let A := b, c , M := b′, c′ , b̄ := (b ⊥
M) ∩ M, c̄ := (c ⊥ M) ∩ M , ā := (a ⊥ M) ∩ M, m := (a′ ⊥ M) ∩ M , A′ the
midline of b, c and A” := (a ⊥ M). By [6], (18.10) we know :

(i) M ⊥ A′ ⊥ A, hence m ∈ A′, (b̄, m, a′, b) and (c̄, m, a′, c) are L-S quad-
rangles and ˜A′(b) = c implying m̃(b̄) = ˜A′(b̄) = c̄, i.e., the line reflection ˜A′
interchanges the two L-S quadrangles .

From (i) and ˜b′(a) = c, ˜c′(a) = b follows:
(ii) ˜b′(ā) = c̄, ˜c′(ā) = b̄ hence ˜b′ ◦ m̃ ◦ ˜c′(ā) = ā .
Since m, b′, c′, ā ∈ M , by [6], (17.13.2), the product of the point reflections

˜b′ ◦ m̃ ◦ ˜c′ is again a point reflection fixing the point ā (by (ii)) and therefore:
(iii) ˜b′◦m̃◦˜c′ = ˜ā = ˜c′◦m̃◦˜b′ hence ˜ā◦˜b′ = ˜c′◦m̃ and so ˜ā(˜b′(m)) = ˜c′(m̃(m)) =

˜c′(m). Moreover by A” ⊥ M and ā = A”∩M , ˜A”(˜b′(m)) = ˜ā(˜b′(m)) = ˜c′(m) and
so (A” | ˜b′(m), ˜c′(m)) = −1.

From (i) follows
(iv) A = a′, c ⊥ A′ = a′, m ⊥ M implies

X := ˜b′(A) = ˜b′(a′),˜b′(c) = ˜b′(a′), a ⊥ ˜b′(A′) = ˜b′(a′),˜b′(m) ⊥ M

and A = a′, b ⊥ A′ = a′, m ⊥ M implies

Y := c̃′(A) = c̃′(a′), c̃′(b) = c̃′(a′), a ⊥ c̃′(A′) = c̃′(a′), c̃′(m) ⊥ M .

Now we apply the point reflections ˜b′ and ˜c′ firstly on the L-S quadrangles
(c̄, m, a′, c) and (b̄, m, a′, b) resp. (cf., (i)) and obtain by (ii) and (iii),

(v) (ā, ˜b′(m), ˜b′(a′), a) and (ā, ˜c′(m), ˜c′(a′), a) are congruent L-S quadran-
gles with A” = a, ā and ˜A”(ā, ˜b′(m), ˜b′(a′), a) = (ā, ˜c′(m), ˜c′(a′), a) hence (A” |
˜b′(a′), ˜c′(a′)) = −1. Applying now ˜b′ and ˜c′ on the points b, a′, c ( a′ is the mid-
point of b and c) we obtain:
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(vi) ˜b′(a′) is the midpoint of a and ˜b′(b), ˜c′(a′) is the midpoint of a and
˜c′(c) implying

−−−−−→
a, ˜b′(a′) =

−−−−→
a, ˜b′(b) and

−−−−−→
a, ˜c′(a′) =

−−−−→
a, ˜c′(c) and so σ�,a := σγ + β′ =

γ′ + σβ = ∠(˜b′(b), a, ˜c′(c)) = ∠(˜b′(a′), a, ˜c′(a′)).
By (v) and (vi) we have:
(vii) ˜A”(˜b′(b)) = ˜c′(c)).

(viii) Denoting by L := ˜b′(a′), ˜c′(a′) we have L ⊥ A” hence there exists a
point l := L ∩ A” with (l | ˜b′(a′), ˜c′(a′)) = (A” | ˜b′(a′), ˜c′(a′)) = −1 (cf., (v)).

Thus we obtain the following:
1. A is singular if and only if l = a (i.e., the two congruent L-S quadrangles

in (v) are rectangles); this means that a is the midpoint of ˜b′(a′) and c̃′(a′),
or equivalently a is the midpoint of ˜b′(b) and c̃′(c) (cf., (vii)), i.e., σ�,a is a
straight angle.

2. A is ordinary if and only if l �= a and, by [5], the congruence ≡ is hyperbolic
if and ony if l ∈ ]a, ā[ , i.e., (l | a, ā) = −1 and so (a | ā, l) = (ā | l, a) = 1.
Since c′ ∈ M , by (i) and (iv) we have (X | ā, c′) = (Y | ā, c′) = 1, (X |
l, ˜c′(a′)) = (˜b′(a′) | l, ˜c′(a′)) = 1 = (Y | l, ˜b′(a′)) and so

(

X | c′, ˜c′(a′)
)

= (X | c′, ā) · (X | ā, l) · (X | l, ˜c′(a′)
)

= 1 · (a | ā, l) · 1 = (a | ā, l) ,

but the same holds for (Y | c′, ˜b′(a′)), so we have obtained:
(

X | c′, ˜c′(a′)
)

= (a | ā, l) =
(

Y | c′, ˜b′(a′)
)

.

Since γ′ := ∠
(

˜b′(a′), a, b′
)

and β′ := ∠
(

c′, a, ˜c′(a′)
)

we have

γ′ + α + β′ = σ�,a = ∠
(

˜b′(a′), a, ˜c′(a′)
)

thus, by the definition of Section 2, it follows
(

(γ′, γ̂′) + (α, α̂)
)

+
(

β′, β̂′) = (σ�,a, σ̂�,a) < 2R

if and only if c′ ∈ σ̂�,a (hence also b′ ∈ σ̂�,a), i.e., (X | c′, ˜c′(a′)) = (Y |
c′, ˜b′(a′)) = 1 (or respectively (X | b′, ˜c′(a′)) = (Y | b′, ˜b′(a′)) = 1). This is
the case if and only if the congruence ≡ is hyperbolic.

Finally, the characterization 3. of the elliptic congruence follows directly from 1.
and 2. �

5. Hyperbolic planes

Now we assume that A is a general hyperbolic plane, i.e., the following hyperbolic
parallel axiom H holds true (cf., [6], p. 149):
H – For any line G and any point a not on G, there exists at least one line H

through a which is hyperbolic parallel (shortly h-parallel) to G, namely such
that the following conditions are fulfilled:

H1 – H ∩ G = ∅.
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H2 – The line A through the point a and perpendicular to G, is not perpendicular
to H .

H3 – Denoting by ˜A the reflection in the line A, for any x not on (H ∪ ˜A(H)), if
(H | x, ˜A(x)) = +1 then a, x ∩ G �= ∅.

In a hyperbolic plane A, an end e is defined as a pencil of lines such that any two
distinct lines of the pencil are mutually h-parallel (cf., [6], § 27). By [6], (27.2) any
line is contained in exactly two ends.

Theorem 3. The congruence of a general hyperbolic plane is hyperbolic.

Proof. Let A ∈ L, a ∈ A and let a be one of the ends containing the line A. Let
B := (a ⊥ A), b ∈ B \ {a}, C := (b ⊥ B) and let D := a ∩ C̃(a) (cf., [6], (27.3.1)
and (27.8)). Then D ⊥ C and c := D ∩ C exists. Now let A′ := (c ⊥ A), a′ :=
A′ ∩A, A′′ := (a′ ⊥ C) and a′′ := A′′ ∩C. Then (a′, a, b, c) is a Lambert–Saccheri
quadrangle and we have: (c | a′′, b) = (D | a′′, b) = (D | a′′, a′)·(D | a′, a)·(D | a, b).
Since D and A′′ and also D and B have the common perpendicular C , by (3.1)
we have (D | a′′, a′) = (D | a, b) = 1 and by A ∩ D = ∅ (since A and D are
hyperbolic parallel) also (D | a′, a) = 1 thus (c | a′′, b) = 1. In the same way,
(b | a′′, c) = (B | a′′, c) = (B | a′′, a′) · (B | a′, c) = 1 · 1 = 1, since B and A′′ have
the common perpendicular C and B and A′ have the common perpendicular A.
Now (c | a′′, b) = (b | a′′, c) = 1 implies (a′′ | c, b) = −1. Therefore the congruence
is hyperbolic. �
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Göttingen, 1973.

Helmut Karzel
Zentrum Mathematik
T.U. München
D-80290 München
Germany

e-mail: karzel@ma.tum.de



Vol. 51 (2007) Legendre-like Theorems 71

Mario Marchi
Dipartimento di Matematica e Fisica
Università Cattolica
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