

Discrete Mathematics 255 (2002) 225-234

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

K-loops derived from Frobenius groups [☆]

H. Karzel^{a,*}, Silvia Pianta^b, Elena Zizioli^b

^aZentrum Mathematik, Technische Universität München, D-80290 München, Germany ^bUniversitá Cattolica, Via Trieste, 17, 25121 Brescia, Italy

Received 5 April 1999; received in revised form 20 March 2000; accepted 30 May 2000 Dedicated to Mario Marchi on the occasion of his 60th birthday

Abstract

We consider a generalization of the representation of the so-called co-Minkowski plane (due to H. and R. Struve) to an abelian group (V, +) and a commutative subgroup G of Aut(V, +). If $P = G \times V$ satisfies suitable conditions then an invariant reflection structure (in the sense of Karzel (Discrete Math. 208/209 (1999) 387–409)) can be introduced in P which carries the algebraic structure of K-loop on P (cf. Theorem 1). We investigate the properties of the K-loop (P, +) and its connection with the semi-direct product of V and G. If G is a fixed point free automorphism group then it is possible to introduce in (P, +) an incidence bundle in such a way that the K-loop (P, +) becomes an incidence fibered loop (in the sense of Zizioli (J. Geom. 30 (1987) 144–151)) (cf. Theorem 3). © 2002 Published by Elsevier Science B.V.

Keywords: K-loops; Invariant reflection structures; Co-Minkowski planes

0. Introduction

In [3] there was introduced the concept of an *invariant reflection structure* $(P, {}^{0}; 0)$, that is a set P with a fixed element 0 and a map ${}^{0}: P \to \text{Sym} P$; $x \to x^{0}$ such that $x^{0}(0) = x$, $x^{0} \circ x^{0} = id$ and $x^{0} \circ y^{0} \circ x^{0} = (x^{0}y^{0}(x))^{0}$ for all $x, y \in P$, and it was proved that (P, +) for $a + b := a^{0} \circ 0^{0}(b)$ becomes a K-loop.

0012-365X/02/\$ - see front matter O 2002 Published by Elsevier Science B.V. PII: S 0012-365X(01)00400-9

^{*} Research supported by M.U.R.S.T., by C.N.R. (G.N.S.A.G.A.) and by Vigoni programme 1998.

^{*} Corresponding author. Technische Universität München, FB Mathematik, Arcisstr. 21, 80333 München 2, Germany.

E-mail addresses: karzel@mathematik.tu-muenchen.de (H. Karzel), pianta@dmf.bs.unicatt.it (S. Pianta), zizioli@dmf.bs.unicatt.it (E. Zizioli).

If one takes a so-called co-Minkowski plane (cf. [8,9]) (M, \mathcal{L}, \equiv) then in the motion group Γ of (M, \mathcal{L}, \equiv) to each point $x \in M$ there exists exactly one reflection \tilde{x} in xand the point set M splits into two subsets P and P^- with the properties:

- 1. $M = P \dot{\cup} P^{-}$
- 2. $\forall \sigma \in \Gamma, \sigma(P) = P \text{ and } \sigma(P^-) = P^-$
- 3. any two points $a, b \in P$ (resp. P^-) have exactly one midpoint m in P (resp. in P^-), i.e. $\tilde{m}(a) = b$.

Therefore, after fixing a point $0 \in P$, denoting for any $x \in P$ the midpoint of 0 and x in P by x' and setting $x^0 := \tilde{x}'$ then $(P, {}^0; 0)$ is an invariant reflection structure. Since in the classical co-Minkowski plane the subset P has the analytical representation $P = \mathbf{R}_+ \times \mathbf{R}$ $(\mathbf{R}_+ := \{x \in \mathbf{R} \mid x > 0\})$ and the reflection in the point $(\alpha, a) \in P$ has the form

(*)
$$(\alpha, a): \begin{cases} P \to P \\ (\xi, x) \to (\alpha^2 \xi^{-1}, -x + (\alpha \xi^{-1} + \xi \alpha^{-1})a) \end{cases}$$

this procedure can be generalized. We replace $(\mathbf{R}, +)$ by an arbitrary abelian group (V, +) and (\mathbf{R}_+, \cdot) by a commutative subgroup (G, \cdot) of $\operatorname{Aut}(V, +)$. Then in the product set $P := G \times V$ we can associate by (*) to each element $(\alpha, a) \in P$ an involutory permutation (α, a) .

Here we discuss the following problems:

- 1. Under which conditions we derive from $G \times V$ an invariant reflection structure and so turn $P = G \times V$ in a K-loop (P, +) (cf. Theorem 1).
- 2. In the case that (P, +) is a K-loop what can be said of its structure (cf. Section 2).
- 3. In the co-Minkowski plane the intersections of P with lines, passing through the fixed point 0, form subgroups of the loop (P, +). In the general case, is there also a fibration of (P, +) in subgroups or in subloops?
- 4. The set *P* can be turned via the semi-direct product $G \bowtie V$ in a group (P, \cdot) (which can be considered as an affine permutation group of (V, +)) by setting: $(\alpha, a) : V \rightarrow V$; $x \rightarrow a + \alpha x$. What are the relations between (P, \cdot) and (P, +) in particular when (P, \cdot) is a subset of a kinematic stripe space (cf. [4,5])?

1. Basic definitions and preliminary results

Let (L, +) be a loop; for any $a \in L$ we denote by $-a \in L$ the element of L such that a + (-a) = 0; moreover let $a^+ : L \to L$; $x \to a + x$ and $L^+ := \{a^+ \mid a \in L\}$.

Since (L, +) is a loop, $L^+ \subseteq \text{Sym } L$, hence $\delta_{a,b} := ((a+b)^+)^{-1} \circ a^+ \circ b^+ \in \text{Sym } L$ and the *structure group* $\Delta := \langle \{\delta_{a,b} \mid a, b \in L\} \rangle$ is a subgroup of Sym L. For any $a \in L$ let $Z(a) := \{x \in L \mid a + x = x + a\}.$

According to Kerby and Wefelscheid, we say that a loop (L, +) is a *K*-loop if the following conditions hold:

for all $a, b \in L$: $-(a + b) = -a + (-b); \quad \delta_{a,b} = \delta_{a,b+a} \in Aut(L, +).$

By [3] one can derive a K-loop from a so-called *invariant reflection structure* $(P, {}^{0}; 0)$ that is a set $P \neq \emptyset$, a fixed element $0 \in P$ and a map ${}^{0}: P \rightarrow J := \{\sigma \in \text{Sym } P \mid \sigma^{2} = id\}; x \rightarrow x^{0}$ such that the following conditions hold:

(B1)
$$\forall x \in P, x^0(0) = x;$$

(B2) $\forall a \in P, a^0 \circ P^0 \circ a^0 = P^0$ (where $P^0 := \{a^0 \mid a \in P\}$).

Then we have (cf. [3], Section 6):

(1.1) For all $a, b \in P$ let $a^+ := a^0 \circ 0^0$, $a + b := a^+(b)$, $-a := 0^0(a)$ then

(i) (P,+) is a K-loop; (ii) $\forall a \in P : -a + a = a + (-a) = 0, \ \delta_{a,a} = id, \ \delta_{a,-a} = id;$ (iii) $\forall a, b \in P : a^+ \circ b^+ \circ a^+ = (a + (b + a))^+$ (Bol identity).

Given a loop (L, +), a set $\mathscr{F} \subseteq 2^L$ is called a *bundle with respect to* 0 or simply 0-*bundle* if:

(F1) $\forall X \in \mathscr{F}: |X| \ge 2;$ (F2) $\bigcup \mathscr{F} = L;$ (F3) $\forall A, B \in \mathscr{F}, A \neq B: A \cap B = \{0\}.$

If furthermore the following conditions (cf. [10]):

(F4) $\forall a \in L, \forall X \in \mathscr{F}: 0 \in a + X \Rightarrow a + X \in \mathscr{F};$ (F5) $\forall X \in \mathscr{F}, \forall \delta \in \varDelta: \delta(X) \in \mathscr{F};$

are satisfied then \mathscr{F} is called an *incidence* 0-bundle and $(L, +, \mathscr{F})$ a fibered loop if moreover all $X \in \mathscr{F}$ are subloops of (L, +).

Remark 1. We observe that if $(L, +, \mathscr{F})$ is a fibered loop then condition (F4) is trivially verified.

A triple $(P, \mathcal{L}, +)$ is an *incidence loop* (group) if (P, \mathcal{L}) is an incidence space, (P, +) is a loop (group) and for any $a \in P$, a^+ is a collineation of (P, \mathcal{L}) , i.e. $a^+ \in \operatorname{Aut}(P, \mathcal{L})$.

Incidence loops and loops with an incidence 0-bundle are the same by the following (see [10]):

(1.2) Let (L, +) be a loop then:

- (i) if $(L, \mathcal{L}, +)$ is an incidence loop then $\mathcal{L}(0) := \{X \in \mathcal{L} \mid 0 \in X\}$ is an incidence 0-bundle;
- (ii) if $\mathscr{F} \subseteq 2^L$ is an incidence 0-bundle then $(L, \mathscr{L}, +)$ with $\mathscr{L}:=\{a+X \mid a \in L, X \in \mathscr{F}\}$ is an incidence loop.

An incidence group $(P, \mathcal{L}, +)$ is said to be a *kinematic space* (cf. [2]) if for any $X \in \mathcal{L}(0) := \{A \in \mathcal{L} \mid 0 \in A\}$:

(i) X is a subgroup of (P, +),

(ii) for any $a \in P$, $a + X - a \in \mathcal{L}(0)$.

2. Derivation from a pair of groups

Let (V, +) be an abelian group and let $(G, \cdot) \leq \operatorname{Aut}(V, +)$ verifying the following conditions: (G, \cdot) is abelian and uniquely divisible by 2 (i.e. $\forall \gamma \in G \exists_1 \xi \in G$ such that $\xi^2 = \gamma$; we shall write $\sqrt{\gamma} := \xi$).

We explicitly note that since (V, +) is commutative, $(\text{End } V, +, \cdot)$ is a ring and since (G, \cdot) is abelian the subring $\langle G \rangle_+$ of End(V, +) generated by G is commutative.

Let us now consider the cartesian product

$$P := G \times V := \{(\alpha, a) \mid \alpha \in G, a \in V\}.$$

Our aim is to introduce a reflection structure on P, thus for any $(\alpha, a) \in P$ we define the map $(\alpha, a): P \to P$; $(\xi, x) \to (\alpha, a)(\xi, x):=(\alpha^2\xi^{-1}, (1 + \alpha\xi^{-1}))$ $(a) - \alpha\xi^{-1}(x))$ where $(1 + \alpha\xi^{-1}) \in \text{End } V$ (here 1 denotes, as usual, the identity of (G, \cdot)).

In the following, for any $\gamma \in \text{End } V$ and for any $x \in V$, we shall write γx instead of $\gamma(x)$ in order to simplify notations.

(2.1) For $(\alpha, a), (\beta, b) \in P$:

(i) $(\alpha, a) \in J^* := \{\sigma \in \operatorname{Sym} P \mid \sigma^2 = id\} \setminus \{id\};$ (ii) Fix $(\alpha, a) = \{(\alpha, x) \in P \mid x + x = a + a\};$ (iii) $(\alpha, a) \circ (\beta, b) \circ (\alpha, a) = (\alpha^2 \beta^{-1}, (1 + \alpha \beta^{-1})a - \alpha \beta^{-1}b).$

Proof. (ii) We have $(\xi, x) \in \text{Fix}(\alpha, a)$ if and only if $\alpha^2 \xi^{-1} = \xi$ and $(1 + \alpha \xi^{-1})a - (\alpha \xi^{-1})$ x = x. These equalities imply $\xi = \alpha$ and x + x = a + a. \Box

(2.2) For any $(\beta, b) \in P$ there exists exactly one $(\xi, x) \in P$ such that $(\widetilde{\xi, x})(1, 0) = (\beta, b)$ if and only if $1 + \sqrt{\beta} \in \operatorname{Aut}(V, +)$.

Proof. From $(\xi, x)(1, 0) = (\xi^2, (1 + \xi)x) = (\beta, b)$ we have $\xi^2 = \beta$ and $(1 + \xi)x = b$; thus, $\xi = \sqrt{\beta}$ and $(1 + \sqrt{\beta})x = b$. Hence our assumption is valid if and only if for any $\beta \in G$, $1 + \sqrt{\beta} \in \operatorname{Aut}(V, +)$. \Box

By (2.1) and (2.2) we are now able to define an invariant reflection structure on P and therefore, by (1.1), an addition + such that (P, +) becomes a K-loop.

228

Theorem 1. If the pair (G, V) satisfies the following conditions:

1. (G, \cdot) is uniquely divisible by 2; 2. $1 + G \subseteq \operatorname{Aut}(V, +)$

and if we set ${}^{0}: P \to J; (\alpha, a) \to (\alpha, a)^{0} := (\sqrt{\alpha}, (1 + \sqrt{\alpha})^{-1}a)$ then $(P, {}^{0}; (1, 0))$ is an invariant reflection structure and if we define:

$$(\alpha, a) + (\beta, b) := (\alpha, a)^0 \circ (1, 0)^0 (\beta, b) = (\alpha \beta, [(1 + \sqrt{\alpha}\beta)/(1 + \sqrt{\alpha})]a + \sqrt{\alpha}b)$$

then (P, +) is a K-loop with the properties:

- (i) $-(\alpha, a) = (\alpha^{-1}, -\alpha^{-1}a);$
- (ii) (1, V) and (G, 0), respectively, are abelian subgroups of the loop (P, +) isomorphic to (V, +) and (G, ·), respectively;
- (iii) for any $(\alpha, a), (\beta, b), (\gamma, c) \in P$,

$$\delta_{(\beta,b),(\gamma,c)}(\alpha,a) = (\alpha,(1-\alpha)d + a)$$

where

$$d := \frac{1}{1 + \sqrt{\beta\gamma}} \left(\frac{1 - \sqrt{\gamma}}{1 + \sqrt{\beta}} b - \frac{1 - \sqrt{\beta}}{1 + \sqrt{\gamma}} c \right).$$

Proof. By assumptions 1, 2 of theorem 1 and the proof of (2.2) it follows that for any (α, a) the map $(\alpha, a)^0 := (\sqrt{\alpha}, (1 + \sqrt{\alpha})^{-1}a)$ is the uniquely determined involution of \tilde{P} mapping (1,0) onto (α, a) . Consequently $(P, {}^0; (1,0))$ satisfies (B1) and by (2.1(iii)) also (B2), and so by (1.1), (P, +) is a K-loop.

(iii) The formula can be obtained by direct calculation. \Box

From now on we assume always that (G, V) satisfies conditions 1 and 2 of Theorem 1 and |G| > 1.

Now we study the action of the structure group Δ on P. For each $d \in V$ let $\vartheta_d : P \to P; (\xi, x) \to (\xi, (1 - \xi)d + x)$. Then ϑ_d is an automorphism of (P, +) and for $d_1, d_2 \in V$ we have

$$\vartheta_{d_1+d_2} = \vartheta_{d_1} \circ \vartheta_{d_2}.$$

If |G| > 1, ϑ_d is the identity if and only if d = 0, and then

$$\vartheta: \left\{ \begin{array}{l} V \to \operatorname{Aut}(P,+) \\ d \to \vartheta_d, \end{array} \right.$$

is a monomorphism of (V, +) in Aut(P, +) consequently $\overline{\Delta} := \vartheta(V)$ is a commutative subgroup of Aut(P, +) and $\vartheta' : V \to \overline{\Delta}$ with $\vartheta'(d) := \vartheta_d$ an isomorphism. By Theorem 1 (iii) the structure group Δ is a subgroup of $\overline{\Delta}$ and so $V' := \vartheta'^{-1}(\Delta)$ a subgroup of (V, +). Moreover by Theorem 1(iii), $(1 + \sqrt{\beta})(1 + \sqrt{\gamma})(1 + \sqrt{\beta\gamma})d = (1 - \gamma)b - (1 - \beta)c$, hence for any $\xi \in G$, $v \in V$ we set $\gamma = \xi$, c = 0, and any $\beta \in G$, $b = (1 + \sqrt{\beta})(1 + \sqrt{\gamma})$ $(1+\sqrt{\beta\gamma})v$ and get $d=(1-\gamma)v$. This shows $\vartheta((1-G)V) \subseteq \Delta$. Since $(1+G) \subseteq \operatorname{Aut}(P,+)$, $d = (1 + \sqrt{\beta})^{-1}(1 + \sqrt{\gamma})^{-1}(1 + \sqrt{\beta\gamma})^{-1}((1 - \gamma)b - (1 - \beta)c) \in \langle (1 - G)V \rangle$ for any $(\beta, b), (\gamma, c) \in P$ hence $\vartheta^{-1}(\Delta) = V' = \langle (1 - G)V \rangle$. Thus, we can state the following theorem.

Theorem 2. Let |G| > 1, $V' := \langle (1 - G)V \rangle$ and $\alpha \in G^* := G \setminus \{id\}$. Then Δ has the following properties:

- (i) $(V', +) \cong \Delta \leq \overline{\Delta} \cong (V, +);$ (ii) $\Delta(\alpha, V) = (\alpha, V) = \overline{\Delta}(\alpha, V) = (\alpha, V); \ \Delta(\alpha, V') = (\alpha, V');$ (iii) $\Delta_{|(\alpha,V)|} \cong ((1-\alpha)V', +) \cong V'/\ker(1-\alpha);$ (iv) $\overline{\Delta} \cong \overline{\Delta}_{|(\alpha,V)} \Leftrightarrow \operatorname{Fix} \alpha = \{0\} \Rightarrow \operatorname{Fix} \alpha_{|V'} = \{0\} \Leftrightarrow \Delta \cong \Delta_{|(\alpha,V)};$ $\operatorname{Fix} \alpha = \{0\} \Rightarrow V \cong (1-\alpha)V \leqslant V' \leqslant V;$
- (v) $\Delta_{|(\alpha,V)|}$ acts transitively on $(\alpha, V) \Leftrightarrow (1 \alpha)V = V \ (\Rightarrow V' = V);$
- (vi) $\Delta_{|(\alpha,V)|}$ acts regularly on $(\alpha, V) \Leftrightarrow (1 \alpha) \in \operatorname{Aut}(V, +) \Rightarrow V' = V$ and $\Delta = \overline{\Delta}$.

Proof. (iii) By (ii) $\phi: \Delta \to \Delta_{|(\alpha,V)|}$ is a homomorphism and if $\delta \in \Delta$, $d:=\vartheta'^{-1}(\delta) \in V'$ then for any $x \in V$: $\delta(\alpha, x) = (\alpha, (1 - \alpha)d + x)$ showing $\Delta_{|(\alpha, V)|} \cong ((1 - \alpha)V', +)$ and $\delta_{|(\alpha,V)|} = \mathrm{id}_{|(\alpha,V)|} \Leftrightarrow (1-\alpha)d = 0 \Leftrightarrow d \in \mathrm{ker}(1-\alpha).$

(iv) If Fix $\alpha = \{0\}$ then $(1 - \alpha)$ is a monomorphism of V hence $V \cong (1 - \alpha)V \leq$ $\langle (1-G)V \rangle = V' \leq V.$

(2.3) Let $(\alpha, a) \in P \setminus (1, V)$ be given and let

$$[(\alpha, a)] := \{ (\xi, x) \in P \mid (1 - \xi)a = (1 - \alpha)x \}.$$

Then:

- (i) $[(\alpha, a)] = [-(\alpha, a)]; [(\alpha, 0)] = (G, Fix \alpha);$
- (ii) $[(\alpha, a)]$ is a subloop of (P, +) such that for any $\delta \in \overline{A}$ and $d := \vartheta^{-1}(\delta)$:

$$\delta[(\alpha, a)] = [\delta(\alpha, a)] = [(\alpha, (1 - \alpha)d + a)];$$

- (iii) $(\alpha, a) + (\beta, b) = (\beta, b) + (\alpha, a) \Leftrightarrow (1 \sqrt{\alpha\beta})((1 \beta)a (1 \alpha)b) = 0;$
- (iv) $Z(\alpha, a) \supset [(\alpha, a)] \cup (\alpha^{-1}, V), Z(\alpha, a) \cap Z(-(\alpha, a)) \supset [(\alpha, a)];$
- (v) $[(\alpha, a)] \cap (\beta, V) \neq \emptyset \Leftrightarrow (1 \beta)a \in (1 \alpha)V;$
- (vi) $(\beta, b) \in [(\alpha, a)] \cap (\beta, V) \Rightarrow [(\alpha, a)] \cap (\beta, V) = (\beta, b + \text{Fix } \alpha);$
- (vii) $\forall a \in (1 \alpha)V$: $[(\alpha, a)] \cap (\beta, V) \neq \emptyset$.

Proof. (i) $(\xi, x) \in [-(\alpha, a)] = [(\alpha^{-1}, -\alpha^{-1}(a))]$ (by definition) $\Leftrightarrow (1 - \xi)(-\alpha^{-1}(a)) =$ $(1-\alpha^{-1})x \Leftrightarrow (1-\xi)a = (-\alpha+1)x = (1-\alpha)x \Leftrightarrow (\xi,x) \in [(\alpha,\alpha)].$ Hence $[-(\alpha,\alpha)] = [(\alpha,\alpha)].$ (ii) Let $(\xi, x), (\eta, y) \in [(\alpha, a)]$ i.e. $(1 - \xi)a = (1 - \alpha)x$ and $(1 - \eta)a = (1 - \alpha)y$, then $(\xi, x) + (\eta, y) = (\xi\eta, (1 + \sqrt{\xi}\eta)/(1 + \sqrt{\xi})x + \sqrt{\xi}y)$ and $(1 - \alpha)((1 + \sqrt{\xi}\eta)/(1 + \sqrt{\xi})x + \sqrt{\xi}y)$ $\sqrt{\xi}y = (1 + \sqrt{\xi}\eta)/(1 + \sqrt{\xi})(1 - \alpha)x + \sqrt{\xi}(1 - \alpha)y = (1 + \sqrt{\xi}\eta)/(1 + \sqrt{\xi})(1 - \xi)a + \sqrt{\xi}\eta$ $\sqrt{\xi}(1-\eta)a = (1-\xi\eta)a$ so $(\xi,x) + (\eta,y) \in [(\alpha,a)].$ Moreover $(\xi, x) \in [(\alpha, a)]$ implies $-(\xi, x) \in [(\alpha, a)]$.

Let us now consider the equations

 $(\xi, x)+(\alpha_1, a_1) = (\alpha_2, a_2), (\alpha_1, a_1)+(\eta, y) = (\alpha_2, a_2)$ with $(\alpha_i, a_i) \in [(\alpha, a)]$ and i = 1, 2. Since (P, +) is a K-loop we know (cf. [6]) that the solutions are given by $(\xi, x) = -(\alpha_1, a_1) + (((\alpha_1, a_1) + (\alpha_2, a_2)) - (\alpha_1, a_1)), (\eta, y) = -(\alpha_1, a_1) + (\alpha_2, a_2)$; thus, by our previous considerations, $(\xi, x), (\eta, y) \in [(\alpha, a)]$ and $([(\alpha, a)], +)$ is a subloop of (P, +). $\delta(\xi, x) = (\xi, (1 - \xi)d + x) \in [(\alpha, (1 - \alpha)d + a)] \Leftrightarrow (1 - \xi)((1 - \alpha)d + a) = (1 - \alpha)((1 - \xi)d + x) \Leftrightarrow (1 - \xi)a = (1 - \alpha)x \Leftrightarrow (\xi, x) \in [(\alpha, a)].$

(iii) $(\alpha, a) + (\beta, b) = (\beta, b) + (\alpha, a) \Leftrightarrow (1 + \sqrt{\alpha}\beta)/(1 + \sqrt{\alpha})a + \sqrt{\alpha}b = (1 + \sqrt{\beta}\alpha)/(1 + \sqrt{\beta})b + \sqrt{\beta}a \Leftrightarrow (1 - \sqrt{\alpha\beta})(1 - \sqrt{\beta})/(1 + \sqrt{\alpha})a = (1 - \sqrt{\alpha\beta})(1 - \sqrt{\alpha})/(1 + \sqrt{\beta})b \Leftrightarrow (1 - \sqrt{\alpha\beta})(1 + \sqrt{\alpha})(1 + \sqrt{\beta})((1 - \beta)a - (1 - \alpha)b) = 0;$ since $(1 + G) \subseteq \operatorname{Aut}(V, +)$, the last equation is equivalent to $(1 - \sqrt{\alpha\beta})((1 - \beta)a - (1 - \alpha)b) = 0.$

(iv) By (iii) $Z(\alpha, a) = \{(\xi, x) \in P \mid (1 - \sqrt{\alpha \xi})((1 - \xi)a - (1 - \alpha)x = 0\}$. Hence $[(\alpha, a)] \subseteq Z(\alpha, a)$ and also $\{(\alpha^{-1}, x) \mid x \in V\} \subseteq Z(\alpha, a)$.

Moreover, $Z(-(\alpha, a)) = Z(\alpha^{-1}, \alpha^{-1}(-a)) \supseteq [-(\alpha, a)] \cup (\alpha, V)$ and by (i) we have: $[(\alpha, a)] \subseteq Z(\alpha, a) \cap Z(-(\alpha, a)).$

(v)-(vi) Let $(\beta, b), (\beta, x) \in [(\alpha, a)] \cap (\beta, V)$, then $(1 - \alpha)b = (1 - \beta)a$ and $(1 - \alpha)x = (1 - \beta)a$, i.e. $(1 - \beta)a \in (1 - \alpha)V$ and $(1 - \alpha)x = (1 - \alpha)b$ that is $(1 - \alpha)(x - b) = 0$.

(vii) By assumption there is $b \in V$ such that $a = (1 - \alpha)b$ hence $(\alpha, a) = (\alpha, (1 - \alpha)b)$ and $(1 - \beta)a = (1 - \beta)(1 - \alpha)b = (1 - \alpha)(1 - \beta)b \in (1 - \alpha)V$; so by (v) we have $[(\alpha, a)] \cap (\beta, V) \neq \emptyset$. \Box

It follows from (2.3(vi)(vii)):

(2.4) Let $\alpha \in G^*$; then the following statements are equivalent:

(i) Fix $\alpha = \{0\}$; (ii) $\forall \beta \in G, \forall a \in V | [(\alpha, a)] \cap (\beta, V) | \leq 1$; (iii) $\forall \beta \in G, \forall a \in (1 - \alpha)V | [(\alpha, a)] \cap (\beta, V) | = 1$.

We introduce now the following:

Definition. An element $(\alpha, a) \in P \setminus \{(1, 0)\}$ is called *transversal* if $[(\alpha, a)] \cap (\beta, V) \neq \emptyset$ for any $\beta \in G$, or equivalently, by (2.3.v), $(1 - G)a \subseteq (1 - \alpha)V$. Then we say that $[(\alpha, a)]$ is transversal too.

From this definition it follows that any transversal $(\alpha, a) \in P$ must have $\alpha \neq 1$ and $(\alpha, 0)$ is transversal for any $\alpha \in G^*$.

(2.5) Let $\alpha \in G^*$ and $a \in V$ then

(i) if $a \in (1 - \alpha)V$ then (α, a) is transversal;

(ii) if $(1 - \alpha)$ is surjective then (α, a) is transversal.

(2.6) For any $\delta \in \overline{A}$ and for any transversal $(\alpha, a) \in P$, $\delta(\alpha, a)$ is transversal.

Proof. By (2.4(ii)) and Theorem 2(ii), for any $\beta \in G$ $[\delta(\alpha, a)] \cap (\beta, V) = \delta[(\alpha, a)] \cap \delta(\beta, V) = \delta([(\alpha, a)] \cap (\beta, V)) \neq \emptyset$. \Box

3. The K-loop (P, +) and the group $G \bowtie V$

232

By the assumption of Section 2 we can turn $P = G \times V$ also in a group (P, \cdot) via the semidirect product:

$$(\alpha, a) \cdot (\beta, b) := (\alpha \beta, a + \alpha b).$$

Then the reflection (α, a) defined in Section 2 is exactly the map:

$$\widetilde{(\alpha, a)}: \begin{cases} P \to P\\ (\xi, x) \to (\alpha, a) \cdot (\xi, x)^{-1} \cdot (\alpha, a) \end{cases}$$

and, if $\alpha \neq 1$, the centralizer of (α, a) in the group (P, \cdot) is exactly the set $[(\alpha, a)]$ (cf. (2.3)). Assumptions 1 and 2 of Theorem 1 are equivalent to requiring the group $(P, \cdot) = G \bowtie V$ to be uniquely divisible by 2.

Remark 2. It is well known that to any group *G* one can associate a discrete symmetric space (see e.g. [7]), namely the so-called *special reflection groupoid* in the sense of [1], by setting, for any $a \in G$, $\tilde{a}: G \to G$; $x \to ax^{-1}a$. If (and only if) *G* is uniquely divisible by 2, then we can define, for any $a \in G$, $a^0: G \to G$; $x \to \sqrt{a}(x)$, so that $(G, {}^0; 1)$ becomes an invariant reflection structure in the sense of Section 1. So we note that from any group *G* one can derive, in the sense of Section 2, a K-loop if *G* is uniquely divisible by 2.

The semidirect product $(P = G \bowtie V, \cdot)$ has a representation as an affine permutation group of V by:

$$(\alpha, a)^{\cdot}: \begin{cases} V \to V, \\ x \to \alpha x + a \end{cases}$$

Then, for each $a \in V$, the stabilizer $P_a := \{(\xi, x) \in P \mid (\xi, x) : (a) = a\}$ is a commutative subgroup of (P, \cdot) which intersects the normal subgroup (1, V) in the neutral element (1,0) of (P, \cdot) and (P, +). But we can say more:

(3.1) For any $a \in V$ we have $P_a = \{(\xi, (1 - \xi)a) \mid \xi \in G\}$ and:

- (i) $\forall \alpha \in G^*$, $P_a \subseteq [(\alpha, (1 \alpha)a)]$ and the equality holds if Fix $\alpha = \{0\}$.
- (ii) The operation "·" and the loop operation "+" coincide in P_a , and $(P_a, +)$ is a commutative subgroup of (P, +) (and of any transversal subloop $[(\alpha, (1 \alpha)a)]$ with $\alpha \in G^*$).

Proof. (i) Let $(\beta, b) \in [(\alpha, (1 - \alpha)a)]$, i.e. $(1 - \alpha)b = (1 - \beta)(1 - \alpha)a$, then $(1 - \alpha)(b - (1 - \beta)a) = 0$ and this gives $b = (1 - \beta)a$ if Fix $\alpha = \{0\}$. (ii) For $\xi, \xi' \in G$ we have $(\xi, (1 - \xi)a) \cdot (\xi', (1 - \xi')a) = (\xi\xi', (1 - \xi\xi')a)$ $(\xi, (1 - \xi)a) + (\xi', (1 - \xi')a) = (\xi\xi', (1 + \sqrt{\xi}\xi')(1 - \sqrt{\xi})a + \sqrt{x}(1 - \xi')a) = (\xi\xi', (1 - \xi\xi')a)$. \Box (3.2) Let $(\alpha, a) \in P \setminus (1, V)$, then

(i) $([(\alpha, a)], \cdot)$ is a subgroup of (P, \cdot) ;

(ii) the operations " \cdot " and "+" coincide on $[(\alpha, a)]$ if and only if $([(\alpha, a)], \cdot)$ is abelian;

(iii) if Fix $\alpha = \{0\}$ then $([(\alpha, a)], \cdot)$ is abelian.

Proof. Let $(\xi, x), (\eta, y) \in [(\alpha, a)]$, i.e.

(*) $(1 - \xi)a = (1 - \alpha)x$ and $(1 - \eta)a = (1 - \alpha)y$.

(ii) $x + \xi y = y + \eta x \Leftrightarrow (1 - \eta) x = (1 - \xi) y$. Moreover $(1 + \sqrt{\xi}\eta)/(1 + \sqrt{\xi})x + \sqrt{\xi}y - (x + \xi y) = (\sqrt{\xi}(\eta - 1))/(1 + \sqrt{\xi})x + \sqrt{\xi}(1 - \sqrt{\xi})y = 0 \Leftrightarrow \sqrt{\xi}(\eta - 1)x + \sqrt{\xi}(1 - \xi)y = 0 \Leftrightarrow (1 - \xi)y = (1 - \eta)x$. (iii) (*) implies $(1 - \alpha)(1 - \eta)x = (1 - \eta)(1 - \xi)a = (1 - \alpha)(1 - \xi)y$ and so, by Fix $\alpha = \{0\}$, $(1 - \eta)x = (1 - \xi)y$. \Box

4. A bundle of (P, +)

In this section, we assume that, in addition to conditions 1 and 2 of Theorem 1, the following condition is satisfied.

3. $\forall \alpha \in G^*$ Fix $\alpha = \{0\}$ (i.e. $(1 - \alpha)$ is a monomorphism of (V, +)).

Let

$$\mathscr{F} := \{ [(\alpha, a)] \mid (\alpha, a) \in P \setminus (1, V) \} \cup \{ (1, V) \}$$

then we have

(4.1) \mathscr{F} is a (1,0)-bundle of (P,+) consisting of abelian subgroups.

Proof. By Theorem 1(iii) and (3.2(ii)), the elements of \mathscr{F} are all abelian subgroups. Since conditions (F1,2) of Section 1 are trivially verified, we have only to check (F3). By (2.4(ii)), for any $(\alpha, a) \in P \setminus (1, V)$, $[(\alpha, a)] \cap (1, V) = \{(1, 0)\}$.

Let $(\beta, b) \in [(\alpha, a)]$ with $\beta \neq 1$ and let $(\xi, x) \in [(\beta, b)]$, i.e. $(1 - \beta)a = (1 - \alpha)b$ and $(1 - \xi)b = (1 - \beta)x$. Then $(\alpha, a) \in [(\beta, b)]$ and $(1 - \alpha)(1 - \beta)x = (1 - \xi)(1 - \beta)a$, and so, by Fix $\beta = \{0\}$, $(1 - \alpha)x = (1 - \xi)a$, i.e. $(\xi, x) \in [(\alpha, a)]$, i.e. $[(\beta, b)] \subseteq [(\alpha, a)]$. By $(\alpha, a) \in [(\beta, b)]$ we have $[(\beta, b)] = [(\alpha, a)]$. \Box

By Theorem 1(iii), we know that for any $\delta \in \overline{A}$, $\delta(1, V) = (1, V)$ and by (2.3(ii)) for any $[(\alpha, a)] \in \mathscr{F} \setminus \{(1, V)\}$ $\delta([(\alpha, a)]) = [(\alpha, (1 - \alpha)d + a)] \in \mathscr{F} \setminus \{(1, V)\}$. Thus condition (F5) is satisfied for the elements of \mathscr{F} and by (4.1), (1.2(ii)) and Theorem 1. we can state: **Theorem 3.** The set \mathscr{F} is an incidence (1,0)-bundle of the K-loop (P,+) consisting of abelian subgroups and $(P, \mathcal{L}, +)$, where $\mathscr{L} := \{(\alpha, a) + X \mid (\alpha, a) \in P, X \in \mathscr{F}\}$, is an incidence loop with $\Delta \leq \operatorname{Aut}(P, \mathcal{L}, +)$.

We observe that the elements of \mathcal{F} , that are the centralizers in the group (P, \cdot) , can be also characterized with respect to the loop operation in the following way:

(4.2) (i) For any $\alpha \in G^*$:

 $[(\alpha, a)] = Z(\alpha, a) \cap Z(-(\alpha, a)).$

(ii) For any $a \neq 0$ (1, *V*) = *Z*(1, *a*).

Proof. (i) By (2.3(iii)), we have that $(\xi, x) \in Z(\alpha, a)$ if and only if $(1 - \sqrt{\alpha\xi})$ $((1 - \xi)a - (1 - \alpha)x) = 0$. So two cases can occur:

(a) $\xi \neq \alpha^{-1}$ then $\sqrt{\alpha\xi} \neq 1$ and so, since Fix $\sqrt{\alpha\xi} = \{0\}$, we have $(1-\xi)a - (1-\alpha)x = 0$ i.e. $(\xi, x) \in [(\alpha, a)]$.

(b) $\xi = \alpha^{-1}$ then $(\alpha^{-1}, V) \subseteq Z(\alpha, a)$.

Thus, with (2.3(iv)) $Z(\alpha, a) = [(\alpha, a)] \cup (\alpha^{-1}, V)$ and so $[(\alpha, a)] = Z(\alpha, a) \cap Z(-(\alpha, a))$. (ii) $(\xi, x) \in Z(1, a) \Leftrightarrow (1 - \sqrt{\xi})(1 - \xi) = 0 \Leftrightarrow \xi = 1$ by condition 3. \Box

References

- H. Hotje, S. Pianta, E. Zizioli, Symmetric Incidence Groupoids, Preprintreihe des Instituts f
 ür Mat. Univ. Hannover, No. 271, 1996.
- [2] H. Karzel, Kinematic Spaces, Symp. Mat. Ist. Naz. di Alta Matem. 11 (1973) 413-439.
- [3] H. Karzel, Recent developments on absolute geometries and algebraization by K-loops, Discrete Math. 208/209 (1999) 387–409.
- [4] H. Karzel, Porous double spaces, J. Geom. 34 (1989) 80-104.
- [5] H. Karzel, Kinematische Algebren und ihre geometrischen Ableitungen, Abh. Math. Sem. Univ. Hamburg 41 (1974) 158–171.
- [6] A. Kreuzer, H. Wefelscheid, On K-loops of finite order, Result. Math. 25 (1994) 79-102.
- [7] O. Loos, Symmetric Spaces, Benjamin, New York, 1969.
- [8] H. Struve, R. Endliche Cayley-Kleinsche geometrien, Arch. Math. 48 (1987) 178-184.
- [9] H. Struve, R. Zum Begriff der projektiv-metrischen Ebene, Z. Math., Logik Grundlagen Math. 34 (1988) 79–88.
- [10] E. Zizioli, Fibered incidence loops and kinematic loops. J. Geom. 30 (1987) 144-151.

234