K-loops derived from Frobenius groups ${ }^{2}$

H. Karzel ${ }^{\mathrm{a}, *}$, Silvia Pianta ${ }^{\mathrm{b}}$, Elena Zizioli ${ }^{\text {b }}$
${ }^{\text {a }}$ Zentrum Mathematik, Technische Universität München, D-80290 München, Germany
${ }^{\text {b }}$ Universitá Cattolica, Via Trieste, 17, 25121 Brescia, Italy

Received 5 April 1999; received in revised form 20 March 2000; accepted 30 May 2000
Dedicated to Mario Marchi on the occasion of his 60th birthday

Abstract

We consider a generalization of the representation of the so-called co-Minkowski plane (due to H . and R. Struve) to an abelian group ($V,+$) and a commutative subgroup G of $\operatorname{Aut}(V,+)$. If $P=G \times V$ satisfies suitable conditions then an invariant reflection structure (in the sense of Karzel (Discrete Math. 208/209 (1999) 387-409)) can be introduced in P which carries the algebraic structure of K-loop on P (cf. Theorem 1). We investigate the properties of the K-loop $(P,+)$ and its connection with the semi-direct product of V and G. If G is a fixed point free automorphism group then it is possible to introduce in $(P,+)$ an incidence bundle in such a way that the K-loop $(P,+)$ becomes an incidence fibered loop (in the sense of Zizioli (J. Geom. 30 (1987) 144-151)) (cf. Theorem 3).

(C) 2002 Published by Elsevier Science B.V.

Keywords: K-loops; Invariant reflection structures; Co-Minkowski planes

0. Introduction

In [3] there was introduced the concept of an invariant reflection structure $\left(P,{ }^{0} ; 0\right)$, that is a set P with a fixed element 0 and a map ${ }^{0}: P \rightarrow \operatorname{Sym} P ; x \rightarrow x^{0}$ such that $x^{0}(0)=x, x^{0} \circ x^{0}=i d$ and $x^{0} \circ y^{0} \circ x^{0}=\left(x^{0} y^{0}(x)\right)^{0}$ for all $x, y \in P$, and it was proved that $(P,+)$ for $a+b:=a^{0} \circ 0^{0}(b)$ becomes a K-loop.

[^0]If one takes a so-called co-Minkowski plane (cf. [8,9]) (M, \mathscr{L}, \equiv) then in the motion group Γ of (M, \mathscr{L}, \equiv) to each point $x \in M$ there exists exactly one reflection \tilde{x} in x and the point set M splits into two subsets P and P^{-}with the properties:

1. $M=P \dot{\cup} P^{-}$
2. $\forall \sigma \in \Gamma, \sigma(P)=P$ and $\sigma\left(P^{-}\right)=P^{-}$
3. any two points $a, b \in P$ (resp. P^{-}) have exactly one midpoint m in P (resp. in P^{-}), i.e. $\tilde{m}(a)=b$.

Therefore, after fixing a point $0 \in P$, denoting for any $x \in P$ the midpoint of 0 and x in P by x^{\prime} and setting $x^{0}:=\tilde{x}^{\prime}$ then $\left(P,{ }^{0} ; 0\right)$ is an invariant reflection structure. Since in the classical co-Minkowski plane the subset P has the analytical representation $P=\mathbf{R}_{+} \times \mathbf{R}$ ($\mathbf{R}_{+}:=\{x \in \mathbf{R} \mid x>0\}$) and the reflection in the point $(\alpha, a) \in P$ has the form
$(*) \quad \widetilde{(\alpha, a)}:\left\{\begin{aligned} P & \rightarrow P \\ (\xi, x) & \rightarrow\left(\alpha^{2} \xi^{-1},-x+\left(\alpha \xi^{-1}+\xi \alpha^{-1}\right) a\right)\end{aligned}\right.$
this procedure can be generalized. We replace $(\mathbf{R},+$) by an arbitrary abelian group $(V,+)$ and $\left(\mathbf{R}_{+}, \cdot\right)$ by a commutative subgroup (G, \cdot) of $\operatorname{Aut}(V,+)$. Then in the product set $P:=G \times V$ we can associate by $(*)$ to each element $(\alpha, a) \in P$ an involutory permutation $(\widetilde{\alpha, a})$.

Here we discuss the following problems:

1. Under which conditions we derive from $G \times V$ an invariant reflection structure and so turn $P=G \times V$ in a K-loop $(P,+)(c f$. Theorem 1).
2. In the case that $(P,+)$ is a K-loop what can be said of its structure (cf. Section 2).
3. In the co-Minkowski plane the intersections of P with lines, passing through the fixed point 0 , form subgroups of the loop $(P,+)$. In the general case, is there also a fibration of $(P,+)$ in subgroups or in subloops?
4. The set P can be turned via the semi-direct product $G \ltimes V$ in a group (P, \cdot) (which can be considered as an affine permutation group of $(V,+)$) by setting: $(\alpha, a)^{\prime}: V \rightarrow V ; x \rightarrow a+\alpha x$. What are the relations between (P, \cdot) and $(P,+)$ in particular when (P, \cdot) is a subset of a kinematic stripe space (cf. $[4,5]$)?

1. Basic definitions and preliminary results

Let $(L,+)$ be a loop; for any $a \in L$ we denote by $-a \in L$ the element of L such that $a+(-a)=0$; moreover let $a^{+}: L \rightarrow L ; x \rightarrow a+x$ and $L^{+}:=\left\{a^{+} \mid a \in L\right\}$.

Since $(L,+)$ is a loop, $L^{+} \subseteq \operatorname{Sym} L$, hence $\delta_{a, b}:=\left((a+b)^{+}\right)^{-1} \circ a^{+} \circ b^{+} \in \operatorname{Sym} L$ and the structure group $\Delta:=\left\langle\left\{\delta_{a, b} \mid a, b \in L\right\}\right\rangle$ is a subgroup of $\operatorname{Sym} L$. For any $a \in L$ let $Z(a):=\{x \in L \mid a+x=x+a\}$.

According to Kerby and Wefelscheid, we say that a loop $(L,+)$ is a K-loop if the following conditions hold:

$$
\text { for all } a, b \in L:-(a+b)=-a+(-b) ; \quad \delta_{a, b}=\delta_{a, b+a} \in \operatorname{Aut}(L,+)
$$

By [3] one can derive a K-loop from a so-called invariant reflection structure $\left(P,{ }^{0} ; 0\right)$ that is a set $P \neq \emptyset$, a fixed element $0 \in P$ and a map ${ }^{0}: P \rightarrow J:=$ $\left\{\sigma \in \operatorname{Sym} P \mid \sigma^{2}=i d\right\} ; x \rightarrow x^{0}$ such that the following conditions hold:
(B1) $\forall x \in P, x^{0}(0)=x$;
(B2) $\forall a \in P, a^{0} \circ P^{0} \circ a^{0}=P^{0}\left(\right.$ where $\left.P^{0}:=\left\{a^{0} \mid a \in P\right\}\right)$.
Then we have (cf. [3], Section 6):
(1.1) For all $a, b \in P$ let $a^{+}:=a^{0} \circ 0^{0}, a+b:=a^{+}(b),-a:=0^{0}(a)$ then
(i) $(P,+)$ is a K-loop;
(ii) $\forall a \in P:-a+a=a+(-a)=0, \delta_{a, a}=i d, \delta_{a,-a}=i d$;
(iii) $\forall a, b \in P: a^{+} \circ b^{+} \circ a^{+}=(a+(b+a))^{+}$(Bol identity).

Given a loop $(L,+)$, a set $\mathscr{F} \subseteq 2^{L}$ is called a bundle with respect to 0 or simply 0 -bundle if:
(F1) $\forall X \in \mathscr{F}:|X| \geqslant 2$;
(F2) $\bigcup \mathscr{F}=L$;
(F3) $\forall A, B \in \mathscr{F}, A \neq B: A \cap B=\{0\}$.
If furthermore the following conditions (cf. [10]):
(F4) $\forall a \in L, \forall X \in \mathscr{F}: 0 \in a+X \Rightarrow a+X \in \mathscr{F}$;
(F5) $\forall X \in \mathscr{F}, \forall \delta \in \Delta: \delta(X) \in \mathscr{F}$;
are satisfied then \mathscr{F} is called an incidence 0 -bundle and $(L,+, \mathscr{F})$ a fibered loop if moreover all $X \in \mathscr{F}$ are subloops of $(L,+)$.

Remark 1. We observe that if $(L,+, \mathscr{F})$ is a fibered loop then condition (F4) is trivially verified.

A triple $(P, \mathscr{L},+)$ is an incidence loop (group) if (P, \mathscr{L}) is an incidence space, $(P,+)$ is a loop (group) and for any $a \in P, a^{+}$is a collineation of (P, \mathscr{L}), i.e. $a^{+} \in \operatorname{Aut}(P, \mathscr{L})$.

Incidence loops and loops with an incidence 0 -bundle are the same by the following (see [10]):
(1.2) Let $(L,+)$ be a loop then:
(i) if $(L, \mathscr{L},+)$ is an incidence loop then $\mathscr{L}(0):=\{X \in \mathscr{L} \mid 0 \in X\}$ is an incidence 0 -bundle;
(ii) if $\mathscr{F} \subseteq 2^{L}$ is an incidence 0 -bundle then $(L, \mathscr{L},+)$ with $\mathscr{L}:=\{a+X \mid a \in L, X \in \mathscr{F}\}$ is an incidence loop.

An incidence group $(P, \mathscr{L},+$) is said to be a kinematic space (cf. [2]) if for any $X \in \mathscr{L}(0):=\{A \in \mathscr{L} \mid 0 \in A\}:$
(i) X is a subgroup of $(P,+)$,
(ii) for any $a \in P, a+X-a \in \mathscr{L}(0)$.

2. Derivation from a pair of groups

Let $(V,+)$ be an abelian group and let $(G, \cdot) \leqslant \operatorname{Aut}(V,+)$ verifying the following conditions: (G, \cdot) is abelian and uniquely divisible by 2 (i.e. $\forall \gamma \in G \quad \exists_{1} \xi \in G$ such that $\xi^{2}=\gamma$; we shall write $\sqrt{\gamma}:=\xi$).

We explicitly note that since $(V,+)$ is commutative, (End $V,+, \cdot)$ is a ring and since (G, \cdot) is abelian the subring $\langle G\rangle_{+}$of $\operatorname{End}(V,+)$ generated by G is commutative.

Let us now consider the cartesian product

$$
P:=G \times V:=\{(\alpha, a) \mid \alpha \in G, a \in V\} .
$$

Our aim is to introduce a reflection structure on P, thus for any $(\alpha, a) \in P$ we define the map $(\widetilde{\alpha, a}): P \rightarrow P ; \quad(\xi, x) \rightarrow \widetilde{\alpha, a})(\xi, x):=\left(\alpha^{2} \xi^{-1},\left(1+\alpha \xi^{-1}\right)\right.$ (a) $\left.-\alpha \xi^{-1}(x)\right)$ where $\left(1+\alpha \xi^{-1}\right) \in \operatorname{End} V$ (here 1 denotes, as usual, the identity of $(G, \cdot))$.

In the following, for any $\gamma \in \operatorname{End} V$ and for any $x \in V$, we shall write γx instead of $\gamma(x)$ in order to simplify notations.
(2.1) For $(\alpha, a),(\beta, b) \in P$:
(i) $\widetilde{(\alpha, a)} \in J^{*}:=\left\{\sigma \in \operatorname{Sym} P \mid \sigma^{2}=i d\right\} \backslash\{i d\}$;
(ii) $\operatorname{Fix}(\widetilde{\alpha, a})=\{(\alpha, x) \in P \mid x+x=a+a\}$;
(iii) $(\widetilde{\alpha, a}) \circ(\widetilde{\beta, b}) \circ(\widetilde{\alpha, a})=\left(\alpha^{2} \beta^{-1},\left(1+\widetilde{\alpha \beta^{-1}}\right) a-\alpha \beta^{-1} b\right)$.

Proof. (ii) We have $(\xi, x) \in \operatorname{Fix}(\widetilde{\alpha, a})$ if and only if $\alpha^{2} \xi^{-1}=\xi$ and $\left(1+\alpha \xi^{-1}\right) a-\left(\alpha \xi^{-1}\right)$ $x=x$. These equalities imply $\xi=\alpha$ and $x+x=a+a$.
(2.2) For any $(\beta, b) \in P$ there exists exactly one $(\xi, x) \in P$ such that $(\widetilde{\xi, x})(1,0)=(\beta, b)$ if and only if $1+\sqrt{\beta} \in \operatorname{Aut}(V,+)$.

Proof. From $(\widetilde{\xi, x})(1,0)=\left(\xi^{2},(1+\xi) x\right)=(\beta, b)$ we have $\xi^{2}=\beta$ and $(1+\xi) x=b$; thus, $\xi=\sqrt{\beta}$ and $(1+\sqrt{\beta}) x=b$. Hence our assumption is valid if and only if for any $\beta \in G, 1+\sqrt{\beta} \in \operatorname{Aut}(V,+)$.

By (2.1) and (2.2) we are now able to define an invariant reflection structure on P and therefore, by (1.1), an addition + such that $(P,+)$ becomes a K-loop.

Theorem 1. If the pair (G, V) satisfies the following conditions:

1. (G, \cdot) is uniquely divisible by 2 ;
2. $1+G \subseteq \operatorname{Aut}(V,+)$
and if we set ${ }^{0}: P \rightarrow J ;(\alpha, a) \rightarrow(\alpha, a)^{0}:=\left(\sqrt{\alpha},(1 \widetilde{+} \sqrt{\alpha})^{-1} a\right)$ then $\left(P,{ }^{0} ;(1,0)\right)$ is an invariant reflection structure and if we define:

$$
(\alpha, a)+(\beta, b):=(\alpha, a)^{0} \circ(1,0)^{0}(\beta, b)=(\alpha \beta,[(1+\sqrt{\alpha} \beta) /(1+\sqrt{\alpha})] a+\sqrt{\alpha} b)
$$

then $(P,+)$ is a K -loop with the properties:
(i) $-(\alpha, a)=\left(\alpha^{-1},-\alpha^{-1} a\right)$;
(ii) $(1, V)$ and $(G, 0)$, respectively, are abelian subgroups of the loop $(P,+)$ isomorphic to $(V,+)$ and (G, \cdot), respectively;
(iii) for any $(\alpha, a),(\beta, b),(\gamma, c) \in P$,

$$
\delta_{(\beta, b),(\gamma, c)}(\alpha, a)=(\alpha,(1-\alpha) d+a)
$$

where

$$
d:=\frac{1}{1+\sqrt{\beta \gamma}}\left(\frac{1-\sqrt{\gamma}}{1+\sqrt{\beta}} b-\frac{1-\sqrt{\beta}}{1+\sqrt{\gamma}} c\right) .
$$

Proof. By assumptions 1,2 of theorem 1 and the proof of (2.2) it follows that for any (α, a) the map $(\alpha, a)^{0}:=\left(\sqrt{\alpha},(1 \widetilde{+})^{-1} a\right)$ is the uniquely determined involution of \tilde{P} mapping $(1,0)$ onto (α, a). Consequently ($P{ }^{0} ;(1,0)$) satisfies (B1) and by (2.1(iii)) also (B2), and so by (1.1), $(P,+$) is a K-loop.
(iii) The formula can be obtained by direct calculation.

From now on we assume always that (G, V) satisfies conditions 1 and 2 of Theorem 1 and $|G|>1$.
Now we study the action of the structure group Δ on P.
For each $d \in V$ let $\vartheta_{d}: P \rightarrow P ;(\xi, x) \rightarrow(\xi,(1-\xi) d+x)$.
Then ϑ_{d} is an automorphism of $(P,+)$ and for $d_{1}, d_{2} \in V$ we have

$$
\vartheta_{d_{1}+d_{2}}=\vartheta_{d_{1}} \circ \vartheta_{d_{2}} .
$$

If $|G|>1, \vartheta_{d}$ is the identity if and only if $d=0$, and then

$$
\vartheta:\left\{\begin{aligned}
V & \rightarrow \operatorname{Aut}(P,+), \\
d & \rightarrow \vartheta_{d},
\end{aligned}\right.
$$

is a monomorphism of $(V,+)$ in $\operatorname{Aut}(P,+)$ consequently $\bar{\Delta}:=\vartheta(V)$ is a commutative subgroup of $\operatorname{Aut}(P,+)$ and $\vartheta^{\prime}: V \rightarrow \bar{\Delta}$ with $\vartheta^{\prime}(d):=\vartheta_{d}$ an isomorphism. By Theorem 1 (iii) the structure group Δ is a subgroup of $\bar{\Delta}$ and so $V^{\prime}:=\vartheta^{\prime-1}(\Delta)$ a subgroup of $(V,+)$. Moreover by Theorem $1($ iii $),(1+\sqrt{\beta})(1+\sqrt{\gamma})(1+\sqrt{\beta \gamma}) d=(1-\gamma) b-(1-\beta) c$, hence for any $\xi \in G, v \in V$ we set $\gamma=\xi, c=0$, and any $\beta \in G, b=(1+\sqrt{\beta})(1+\sqrt{\gamma})$
$(1+\sqrt{\beta \gamma}) v$ and get $d=(1-\gamma) v$. This shows $\vartheta((1-G) V) \subseteq \Delta$. Since $(1+G) \subseteq \operatorname{Aut}(P,+)$, $d=(1+\sqrt{\beta})^{-1}(1+\sqrt{\gamma})^{-1}(1+\sqrt{\beta \gamma})^{-1}((1-\gamma) b-(1-\beta) c) \in\langle(1-G) V\rangle$ for any $(\beta, b),(\gamma, c) \in P$ hence $\vartheta^{-1}(\Delta)=V^{\prime}=\langle(1-G) V\rangle$. Thus, we can state the following theorem.

Theorem 2. Let $|G|>1, V^{\prime}:=\langle(1-G) V\rangle$ and $\alpha \in G^{*}:=G \backslash\{i d\}$. Then Δ has the following properties:
(i) $\left(V^{\prime},+\right) \cong \Delta \leqslant \bar{\Delta} \cong(V,+)$;
(ii) $\Delta(\alpha, V)=(\alpha, V)=\bar{\Delta}(\alpha, V)=(\alpha, V) ; \Delta\left(\alpha, V^{\prime}\right)=\left(\alpha, V^{\prime}\right)$;
(iii) $\Delta_{\mid(\alpha, V)} \cong\left((1-\alpha) V^{\prime},+\right) \cong V^{\prime} / \operatorname{ker}(1-\alpha)$;
(iv) $\bar{\Delta} \cong \bar{\Lambda}_{\mid(\alpha, V)} \Leftrightarrow \operatorname{Fix} \alpha=\{0\} \Rightarrow \operatorname{Fix} \alpha_{\mid V^{\prime}}=\{0\} \Leftrightarrow \Delta \cong \Delta_{\mid(\alpha, V)}$;

Fix $\alpha=\{0\} \Rightarrow V \cong(1-\alpha) V \leqslant V^{\prime} \leqslant V ;$
(v) $\Delta_{\mid(\alpha, V)}$ acts transitively on $(\alpha, V) \Leftrightarrow(1-\alpha) V=V\left(\Rightarrow V^{\prime}=V\right)$;
(vi) $\Delta_{\mid(\alpha, V)}$ acts regularly on $(\alpha, V) \Leftrightarrow(1-\alpha) \in \operatorname{Aut}(V,+) \Rightarrow V^{\prime}=V$ and $\Delta=\bar{\Delta}$.

Proof. (iii) By (ii) $\phi: \Delta \rightarrow \Delta_{\mid(\alpha, V)}$ is a homomorphism and if $\delta \in \Delta, d:=\vartheta^{\prime-1}(\delta) \in V^{\prime}$ then for any $x \in V: \delta(\alpha, x)=(\alpha,(1-\alpha) d+x)$ showing $\Delta_{\mid(\alpha, V)} \cong\left((1-\alpha) V^{\prime},+\right)$ and $\delta_{\mid(\alpha, V)}=\operatorname{id}_{\mid(\alpha, V)} \Leftrightarrow(1-\alpha) d=0 \Leftrightarrow d \in \operatorname{ker}(1-\alpha)$.
(iv) If Fix $\alpha=\{0\}$ then $(1-\alpha)$ is a monomorphism of V hence $V \cong(1-\alpha) V \leqslant$ $\langle(1-G) V\rangle=V^{\prime} \leqslant V$.
(2.3) Let $(\alpha, a) \in P \backslash(1, V)$ be given and let

$$
[(\alpha, a)]:=\{(\xi, x) \in P \mid(1-\xi) a=(1-\alpha) x\} .
$$

Then:
(i) $[(\alpha, a)]=[-(\alpha, a)] ;[(\alpha, 0)]=(G$, Fix $\alpha)$;
(ii) $[(\alpha, a)]$ is a subloop of $(P,+)$ such that for any $\delta \in \bar{\Delta}$ and $d:=\vartheta^{-1}(\delta)$:

$$
\delta[(\alpha, a)]=[\delta(\alpha, a)]=[(\alpha,(1-\alpha) d+a)] ;
$$

(iii) $(\alpha, a)+(\beta, b)=(\beta, b)+(\alpha, a) \Leftrightarrow(1-\sqrt{\alpha \beta})((1-\beta) a-(1-\alpha) b)=0$;
(iv) $Z(\alpha, a) \supseteq[(\alpha, a)] \cup\left(\alpha^{-1}, V\right), Z(\alpha, a) \cap Z(-(\alpha, a)) \supseteq[(\alpha, a)]$;
(v) $[(\alpha, a)] \cap(\beta, V) \neq \emptyset \Leftrightarrow(1-\beta) a \in(1-\alpha) V$;
(vi) $(\beta, b) \in[(\alpha, a)] \cap(\beta, V) \Rightarrow[(\alpha, a)] \cap(\beta, V)=(\beta, b+\operatorname{Fix} \alpha)$;
(vii) $\forall a \in(1-\alpha) V:[(\alpha, a)] \cap(\beta, V) \neq \emptyset$.

Proof. (i) $(\xi, x) \in[-(\alpha, a)]=\left[\left(\alpha^{-1},-\alpha^{-1}(a)\right)\right]$ (by definition) $\Leftrightarrow(1-\xi)\left(-\alpha^{-1}(a)\right)=$ $\left(1-\alpha^{-1}\right) x \Leftrightarrow(1-\xi) a=(-\alpha+1) x=(1-\alpha) x \Leftrightarrow(\xi, x) \in[(\alpha, a)]$. Hence $[-(\alpha, a)]=[(\alpha, a)]$.
(ii) Let $(\xi, x),(\eta, y) \in[(\alpha, a)]$ i.e. $(1-\xi) a=(1-\alpha) x$ and $(1-\eta) a=(1-\alpha) y$, then $(\xi, x)+(\eta, y)=(\xi \eta,(1+\sqrt{\xi} \eta) /(1+\sqrt{\xi}) x+\sqrt{\xi} y)$ and $(1-\alpha)((1+\sqrt{\xi} \eta) /(1+\sqrt{\xi}) x+$ $\sqrt{\xi} y)=(1+\sqrt{\xi} \eta) /(1+\sqrt{\xi})(1-\alpha) x+\sqrt{\xi}(1-\alpha) y=(1+\sqrt{\xi} \eta) /(1+\sqrt{\xi})(1-\xi) a+$ $\sqrt{\xi}(1-\eta) a=(1-\xi \eta) a$ so $(\xi, x)+(\eta, y) \in[(\alpha, a)]$.

Moreover $(\xi, x) \in[(\alpha, a)]$ implies $-(\xi, x) \in[(\alpha, a)]$.

Let us now consider the equations
$(\xi, x)+\left(\alpha_{1}, a_{1}\right)=\left(\alpha_{2}, a_{2}\right),\left(\alpha_{1}, a_{1}\right)+(\eta, y)=\left(\alpha_{2}, a_{2}\right)$ with $\left(\alpha_{i}, a_{i}\right) \in[(\alpha, a)]$ and $i=1,2$.
Since $(P,+)$ is a K-loop we know (cf. [6]) that the solutions are given by $(\xi, x)=-\left(\alpha_{1}, a_{1}\right)+\left(\left(\left(\alpha_{1}, a_{1}\right)+\left(\alpha_{2}, a_{2}\right)\right)-\left(\alpha_{1}, a_{1}\right)\right),(\eta, y)=-\left(\alpha_{1}, a_{1}\right)+\left(\alpha_{2}, a_{2}\right) ;$ thus, by our previous considerations, $(\xi, x),(\eta, y) \in[(\alpha, a)]$ and $([(\alpha, a)],+)$ is a subloop of $(P,+) . \delta(\xi, x)=(\xi,(1-\xi) d+x) \in[(\alpha,(1-\alpha) d+a)] \Leftrightarrow(1-\xi)((1-\alpha) d+a)=$ $(1-\alpha)((1-\xi) d+x) \Leftrightarrow(1-\xi) a=(1-\alpha) x \Leftrightarrow(\xi, x) \in[(\alpha, a)]$.
(iii) $(\alpha, a)+(\beta, b)=(\beta, b)+(\alpha, a) \Leftrightarrow(1+\sqrt{\alpha} \beta) /(1+\sqrt{\alpha}) a+\sqrt{\alpha} b=(1+\sqrt{\beta} \alpha) /$ $(1+\sqrt{\beta}) b+\sqrt{\beta} a \Leftrightarrow(1-\sqrt{\alpha \beta})(1-\sqrt{\beta}) /(1+\sqrt{\alpha}) a=(1-\sqrt{\alpha \beta})(1-\sqrt{\alpha}) /(1+\sqrt{\beta}) b \Leftrightarrow$ $(1-\sqrt{\alpha \beta})(1+\sqrt{\alpha})(1+\sqrt{\beta})((1-\beta) a-(1-\alpha) b)=0$; since $(1+G) \subseteq \operatorname{Aut}(V,+)$, the last equation is equivalent to $(1-\sqrt{\alpha \beta})((1-\beta) a-(1-\alpha) b)=0$.
(iv) By (iii) $Z(\alpha, a)=\{(\xi, x) \in P \mid(1-\sqrt{\alpha \xi})((1-\xi) a-(1-\alpha) x=0\}$. Hence $[(\alpha, a)] \subseteq$ $Z(\alpha, a)$ and also $\left\{\left(\alpha^{-1}, x\right) \mid x \in V\right\} \subseteq Z(\alpha, a)$.

Moreover, $Z(-(\alpha, a))=Z\left(\alpha^{-1}, \alpha^{-1}(-a)\right) \supseteq[-(\alpha, a)] \cup(\alpha, V)$ and by (i) we have: $[(\alpha, a)] \subseteq Z(\alpha, a) \cap Z(-(\alpha, a))$.
(v)-(vi) Let $(\beta, b),(\beta, x) \in[(\alpha, a)] \cap(\beta, V)$, then $(1-\alpha) b=(1-\beta) a$ and $(1-\alpha) x=$ $(1-\beta) a$, i.e. $(1-\beta) a \in(1-\alpha) V$ and $(1-\alpha) x=(1-\alpha) b$ that is $(1-\alpha)(x-b)=0$.
(vii) By assumption there is $b \in V$ such that $a=(1-\alpha) b$ hence $(\alpha, a)=(\alpha,(1-\alpha) b)$ and $(1-\beta) a=(1-\beta)(1-\alpha) b=(1-\alpha)(1-\beta) b \in(1-\alpha) V$; so by (v) we have $[(\alpha, a)] \cap(\beta, V) \neq \emptyset$.

It follows from (2.3(vi)(vii)):
(2.4) Let $\alpha \in G^{*}$; then the following statements are equivalent:
(i) $\operatorname{Fix} \alpha=\{0\}$;
(ii) $\forall \beta \in G, \forall a \in V|[(\alpha, a)] \cap(\beta, V)| \leqslant 1$;
(iii) $\forall \beta \in G, \forall a \in(1-\alpha) V|[(\alpha, a)] \cap(\beta, V)|=1$.

We introduce now the following:
Definition. An element $(\alpha, a) \in P \backslash\{(1,0)\}$ is called transversal if $[(\alpha, a)] \cap(\beta, V) \neq \emptyset$ for any $\beta \in G$, or equivalently, by (2.3.v), $(1-G) a \subseteq(1-\alpha) V$. Then we say that $[(\alpha, a)]$ is transversal too.

From this definition it follows that any transversal $(\alpha, a) \in P$ must have $\alpha \neq 1$ and $(\alpha, 0)$ is transversal for any $\alpha \in G^{*}$.
(2.5) Let $\alpha \in G^{*}$ and $a \in V$ then
(i) if $a \in(1-\alpha) V$ then (α, a) is transversal;
(ii) if $(1-\alpha)$ is surjective then (α, a) is transversal.
(2.6) For any $\delta \in \bar{\Delta}$ and for any transversal $(\alpha, a) \in P, \delta(\alpha, a)$ is transversal.

Proof. By (2.4(ii)) and Theorem 2(ii), for any $\beta \in G[\delta(\alpha, a)] \cap(\beta, V)=\delta[(\alpha, a)] \cap$ $\delta(\beta, V)=\delta([(\alpha, a)] \cap(\beta, V)) \neq \emptyset$.

3. The K-loop $(P,+)$ and the group $G \ltimes V$

By the assumption of Section 2 we can turn $P=G \times V$ also in a group (P, \cdot) via the semidirect product:

$$
(\alpha, a) \cdot(\beta, b):=(\alpha \beta, a+\alpha b) .
$$

Then the reflection $\widetilde{\alpha, a})$ defined in Section 2 is exactly the map:

$$
\widetilde{(\alpha, a)}:\left\{\begin{aligned}
P & \rightarrow P \\
(\xi, x) & \rightarrow(\alpha, a) \cdot(\xi, x)^{-1} \cdot(\alpha, a)
\end{aligned}\right.
$$

and, if $\alpha \neq 1$, the centralizer of (α, a) in the group (P, \cdot) is exactly the set $[(\alpha, a)]$ (cf. (2.3)). Assumptions 1 and 2 of Theorem 1 are equivalent to requiring the group $(P, \cdot)=G \ltimes V$ to be uniquely divisible by 2 .

Remark 2. It is well known that to any group G one can associate a discrete symmetric space (see e.g. [7]), namely the so-called special reflection groupoid in the sense of [1], by setting, for any $a \in G, \tilde{a}: G \rightarrow G ; x \rightarrow a x^{-1} a$. If (and only if) G is uniquely divisible by 2 , then we can define, for any $a \in G, a^{0}: G \rightarrow G ; x \rightarrow \widetilde{\sqrt{a}}(x)$, so that $\left(G,,^{0} ; 1\right)$ becomes an invariant reflection structure in the sense of Section 1 . So we note that from any group G one can derive, in the sense of Section 2, a K-loop if G is uniquely divisible by 2 .

The semidirect product ($P=G \ltimes V, \cdot$) has a representation as an affine permutation group of V by:

$$
(\alpha, a)^{\prime}:\left\{\begin{aligned}
V & \rightarrow V \\
x & \rightarrow \alpha x+a .
\end{aligned}\right.
$$

Then, for each $a \in V$, the stabilizer $P_{a}:=\{(\xi, x) \in P \mid(\xi, x) \cdot(a)=a\}$ is a commutative subgroup of (P, \cdot) which intersects the normal subgroup $(1, V)$ in the neutral element $(1,0)$ of (P, \cdot) and $(P,+)$. But we can say more:
(3.1) For any $a \in V$ we have $P_{a}=\{(\xi,(1-\xi) a) \mid \xi \in G\}$ and:
(i) $\forall \alpha \in G^{*}, P_{a} \subseteq[(\alpha,(1-\alpha) a)]$ and the equality holds if Fix $\alpha=\{0\}$.
(ii) The operation "." and the loop operation " + " coincide in P_{a}, and $\left(P_{a},+\right)$ is a commutative subgroup of $(P,+)$ (and of any transversal subloop $[(\alpha,(1-\alpha) a)]$ with $\alpha \in G^{*}$).

Proof. (i) Let $(\beta, b) \in[(\alpha,(1-\alpha) a)]$, i.e. $(1-\alpha) b=(1-\beta)(1-\alpha) a$, then $(1-\alpha)$ $(b-(1-\beta) a)=0$ and this gives $b=(1-\beta) a$ if Fix $\alpha=\{0\}$.
(ii) For $\xi, \xi^{\prime} \in G$ we have
$(\xi,(1-\xi) a) \cdot\left(\xi^{\prime},\left(1-\xi^{\prime}\right) a\right)=\left(\xi \xi^{\prime},\left(1-\xi \xi^{\prime}\right) a\right)$
$(\xi,(1-\xi) a)+\left(\xi^{\prime},\left(1-\xi^{\prime}\right) a\right)=\left(\xi \xi^{\prime},\left(1+\sqrt{\xi} \xi^{\prime}\right)(1-\sqrt{\xi}) a+\sqrt{x}\left(1-\xi^{\prime}\right) a\right)=$ $\left(\xi \xi^{\prime},\left(1-\xi \xi^{\prime}\right) a\right)$.
(3.2) Let $(\alpha, a) \in P \backslash(1, V)$, then
(i) $([(\alpha, a)], \cdot)$ is a subgroup of (P, \cdot);
(ii) the operations "." and " + " coincide on $[(\alpha, a)]$ if and only if $([(\alpha, a)], \cdot)$ is abelian;
(iii) if Fix $\alpha=\{0\}$ then $([(\alpha, a)], \cdot)$ is abelian.

Proof. Let $(\xi, x),(\eta, y) \in[(\alpha, a)]$, i.e.
$(*)(1-\xi) a=(1-\alpha) x$ and $(1-\eta) a=(1-\alpha) y$.
(ii) $x+\xi y=y+\eta x \Leftrightarrow(1-\eta) x=(1-\xi) y$.

Moreover $(1+\sqrt{\xi} \eta) /(1+\sqrt{\xi}) x+\sqrt{\xi} y-(x+\xi y)=(\sqrt{\xi}(\eta-1)) /(1+\sqrt{\xi}) x+\sqrt{\xi}$ $(1-\sqrt{\xi}) y=0 \Leftrightarrow \sqrt{\xi}(\eta-1) x+\sqrt{\xi}(1-\xi) y=0 \Leftrightarrow(1-\xi) y=(1-\eta) x$.
(iii) $(*)$ implies $(1-\alpha)(1-\eta) x=(1-\eta)(1-\xi) a=(1-\alpha)(1-\xi) y$ and so, by $\operatorname{Fix} \alpha=\{0\},(1-\eta) x=(1-\xi) y$.

4. A bundle of ($\boldsymbol{P},+$)

In this section, we assume that, in addition to conditions 1 and 2 of Theorem 1 , the following condition is satisfied.
3. $\forall \alpha \in G^{*}$ Fix $\alpha=\{0\}$ (i.e. $(1-\alpha)$ is a monomorphism of $\left.(V,+)\right)$.

Let

$$
\mathscr{F}:=\{[(\alpha, a)] \mid(\alpha, a) \in P \backslash(1, V)\} \cup\{(1, V)\}
$$

then we have
\mathscr{F} is a $(1,0)$-bundle of $(P,+)$ consisting of abelian subgroups.
Proof. By Theorem 1(iii) and (3.2(ii)), the elements of \mathscr{F} are all abelian subgroups. Since conditions (F1,2) of Section 1 are trivially verified, we have only to check (F3). By (2.4(ii)), for any $(\alpha, a) \in P \backslash(1, V),[(\alpha, a)] \cap(1, V)=\{(1,0)\}$.

Let $(\beta, b) \in[(\alpha, a)]$ with $\beta \neq 1$ and let $(\xi, x) \in[(\beta, b)]$, i.e. $(1-\beta) a=(1-\alpha) b$ and $(1-\xi) b=(1-\beta) x$. Then $(\alpha, a) \in[(\beta, b)]$ and $(1-\alpha)(1-\beta) x=(1-\xi)(1-\beta) a$, and so, by Fix $\beta=\{0\},(1-\alpha) x=(1-\xi) a$, i.e. $(\xi, x) \in[(\alpha, a)]$, i.e. $[(\beta, b)] \subseteq[(\alpha, a)]$. By $(\alpha, a) \in[(\beta, b)]$ we have $[(\beta, b)]=[(\alpha, a)]$.

By Theorem 1 (iii), we know that for any $\delta \in \bar{\Delta}, \delta(1, V)=(1, V)$ and by (2.3(ii)) for any $[(\alpha, a)] \in \mathscr{F} \backslash\{(1, V)\} \delta([(\alpha, a)])=[(\alpha,(1-\alpha) d+a)] \in \mathscr{F} \backslash\{(1, V)\}$.
Thus condition (F5) is satisfied for the elements of \mathscr{F} and by (4.1), (1.2(ii)) and Theorem 1. we can state:

Theorem 3. The set \mathscr{F} is an incidence $(1,0)$-bundle of the K-loop $(P,+)$ consisting of abelian subgroups and $(P, \mathscr{L},+)$, where $\mathscr{L}:=\{(\alpha, a)+X \mid(\alpha, a) \in P, X \in \mathscr{F}\}$, is an incidence loop with $\Delta \leqslant \operatorname{Aut}(P, \mathscr{L},+)$.

We observe that the elements of \mathscr{F}, that are the centralizers in the group (P, \cdot), can be also characterized with respect to the loop operation in the following way:
(4.2) (i) For any $\alpha \in G^{*}$:

$$
[(\alpha, a)]=Z(\alpha, a) \cap Z(-(\alpha, a)) .
$$

(ii) For any $a \neq 0(1, V)=Z(1, a)$.

Proof. (i) By (2.3(iii)), we have that $(\xi, x) \in Z(\alpha, a)$ if and only if $(1-\sqrt{\alpha \xi})$ $((1-\xi) a-(1-\alpha) x)=0$. So two cases can occur:
(a) $\xi \neq \alpha^{-1}$ then $\sqrt{\alpha \xi} \neq 1$ and so, since Fix $\sqrt{\alpha \xi}=\{0\}$, we have $(1-\xi) a-(1-\alpha) x=0$ i.e. $(\xi, x) \in[(\alpha, a)]$.
(b) $\xi=\alpha^{-1}$ then $\left(\alpha^{-1}, V\right) \subseteq Z(\alpha, a)$.

Thus, with $(2.3(\mathrm{iv})) Z(\alpha, a)=[(\alpha, a)] \cup\left(\alpha^{-1}, V\right)$ and so $[(\alpha, a)]=Z(\alpha, a) \cap Z(-(\alpha, a))$.
(ii) $(\xi, x) \in Z(1, a) \Leftrightarrow(1-\sqrt{\xi})(1-\xi)=0 \Leftrightarrow \xi=1$ by condition 3 .

References

[1] H. Hotje, S. Pianta, E. Zizioli, Symmetric Incidence Groupoids, Preprintreihe des Instituts für Mat. Univ. Hannover, No. 271, 1996.
[2] H. Karzel, Kinematic Spaces, Symp. Mat. Ist. Naz. di Alta Matem. 11 (1973) 413-439.
[3] H. Karzel, Recent developments on absolute geometries and algebraization by K-loops, Discrete Math. 208/209 (1999) 387-409.
[4] H. Karzel, Porous double spaces, J. Geom. 34 (1989) 80-104.
[5] H. Karzel, Kinematische Algebren und ihre geometrischen Ableitungen, Abh. Math. Sem. Univ. Hamburg 41 (1974) 158-171.
[6] A. Kreuzer, H. Wefelscheid, On K-loops of finite order, Result. Math. 25 (1994) 79-102.
[7] O. Loos, Symmetric Spaces, Benjamin, New York, 1969.
[8] H. Struve, R. Endliche Cayley-Kleinsche geometrien, Arch. Math. 48 (1987) 178-184.
[9] H. Struve, R. Zum Begriff der projektiv-metrischen Ebene, Z. Math., Logik Grundlagen Math. 34 (1988) 79-88.
[10] E. Zizioli, Fibered incidence loops and kinematic loops. J. Geom. 30 (1987) 144-151.

[^0]: ${ }^{2}$ Research supported by M.U.R.S.T., by C.N.R. (G.N.S.A.G.A.) and by Vigoni programme 1998.

 * Corresponding author. Technische Universität München, FB Mathematik, Arcisstr. 21, 80333 München 2, Germany.

 E-mail addresses: karzel@mathematik.tu-muenchen.de (H. Karzel), pianta@dmf.bs.unicatt.it (S. Pianta), zizioli@dmf.bs.unicatt.it (E. Zizioli).

