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Summary. We present a functional equations approach to the non-negative functions h (x, y)
and E (x, y) satisfying

coshh (x, y) =
√

1 + x2
√

1 + y2 − xy,

E (x, y) = ||x− y||.

The underlying structure is a pre-Hilbert space X of dimension at least 2. An important tool is
the group of translations

Tt(x) = x+
(
(xe)(cosh t− 1) +

√
1 + x2 sinh t

)
e,

t ∈ R, where Tt : X → X satisfies the translation equation with a fixed e ∈ X such that e2 = 1.
One of the results is that a function

d : X ×X → R≥0 := {r ∈ R | r ≥ 0}

which is invariant under orthogonal mappings and the described translations for a fixed e, must
be of the form

d (x, y) = g
(
(h (x, y)

)
with an arbitrary function g : R≥0 → R≥0. If, moreover, d is additive on the line {ξe | ξ ∈ R},
then d is essentially equal to h.

Mathematics Subject Classification (1991). 39B40, 39B70, 46B20, 51K05.

1. Suppose that X is a pre-Hilbert space, i.e. a real vector space equiped with an
inner product

σ : X ×X → R, σ (x, y) =: xy

satisfying x2 = xx > 0 for all x 6= 0 in X . In addition we assume that the
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dimension of X is at least 2. Hence there exist elements e1, e2 of X with

e2
1 = 1 = e2

2 and e1e2 = 0. (1)

We define the hyperbolic distance h (x, y) ∈ R of x, y ∈ X by means of h (x, y) ≥
0 and

coshh (x, y) =
√

1 + x2
√

1 + y2 − xy, (2)

where cosh denotes the hyperbolic cosine. The right-hand side of (2) must be
greater or equal to 1: the inequality of Cauchy–Schwarz,

(xy)2 ≤ x2y2,

namely implies (xy)2 ≤ x2y2 + (x− y)2, i.e.

xy + 1 ≤ |xy + 1| ≤
√

1 + x2
√

1 + y2.

Among the results of this note are a characterization of the function h (x, y), more
precisely a functional equations approach to h (x, y), and, moreover, a similar
approach to the euclidean distance function

E (x, y) :=
√

(x− y)2 =‖ x− y ‖ . (3)

We are thus able to carry over results in [2] from Rn to arbitrary pre-Hilbert spaces
of dimension greater than 1 (Theorems 2, 3, 4). This, however, is accomplished
by developing additional methods in comparison with [2]. Especially, translation
groups T (e) are crucial. Moreover, the hyperbolic group H (X) of X will be
determined (Theorem 1) and the fundamental objects of the hyperbolic geometry
of X , like hyperbolic lines, hyperbolic subspaces, spherical-hyperbolic subspaces,
will be described (Theorem 5 and Propositions 2, 3, 4).

2. Let e be an element of X such that e2 = 1 holds true. For t ∈ R we call the
mapping

Tt(x) = x+
(

(xe)(cosh t− 1) +
√

1 + x2 sinh t
)
e (4)

from X into itself a hyperbolic translation of X with axis e. For arbitrary y in X
we denote by y1 the real number ye. A simple calculation yields

1 +
[
Tt(x)

]2 =
(
x1 sinh t+

√
1 + x2 cosh t

)2
. (5)

Since x2
1 = (xe)2 ≤ x2 · e2 = x2, we have

0 ≤ x2
1 +

[
1 + x2 − x2

1

]
cosh2 t
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and hence −x1 sinh t ≤ |x1 sinh t| ≤
√

1 + x2 cosh t, i.e.

0 ≤ x1 sinh t+
√

1 + x2 cosh t.

This leads to √
1 + [Tt(x)]2 = x1 sinh t+

√
1 + x2 cosh t, (6)

on account of (5). A simple calculation now implies

coshh
(
Tt(x), Tt(y)

)
= coshh (x, y)

for all x, y ∈ X , and hence that hyperbolic translations with axis e preserve hy-
perbolic distances.

Since, by applying (6),

Tt+s(x) = Tt
(
Ts(x)

)
holds true for all t, s ∈ R and all x ∈ X , the set of all hyperbolic translations with
axis e must be a group of bijective mappings of X with respect to the permutation
product. Notice that T0 is the identity mapping, and that T−t(y) is the uniquely
determined solution x of Tt(x) = y for given y ∈ X . We denote the group of all
hyperbolic translations with axis e by T (e).

If x, y ∈ X satisfy y − x ∈ Re, then there exists exactly one t ∈ R such that

Tt(x) = y

holds true. On account of (4) and in view of

y − x =: λe,

λ + xe = (xe) cosh t +
√

1 + x2 sinh t must be solved with respect to t. Since
(xe)2 ≤ x2, we define α ∈ R by means of

xe =: a sinhα with a ≥ 1 and a2 := 1 + x2 − (xe)2.

Hence λ+ xe = a sinh (t+ α) and t is thus uniquely determined.

3. We would like to define an orthogonal mapping ω of X as a surjective mapping
ω : X → X with ω (0) = 0 and such that

E
(
ω (x), ω (y)

)
= E (x, y)

holds true for all x, y ∈ X of euclidean distance 1 or 3. A theorem of H. Berens and
the author (see, e.g., [3], 48 ff) then implies that orthogonal mappings of X are
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bijective and linear and that they preserve euclidean distances. (In this connec-
tion also compare E. Schröder [5]). Denote by O (X) the group of all orthogonal
mappings of X . If ω is in O (X) then

E (x, 0) = E
(
ω (x), 0

)
implies x2 =

[
ω (x)

]2 for all x ∈ X . This together with

E (x, y) = E
(
ω (x), ω (y)

)
then yields xy = ω (x)ω (y) for all x, y ∈ X . We hence have

coshh (x, y) = coshh
(
ω (x), ω (y)

)
and thus h (x, y) = h

(
ω (x), ω (y)

)
for all x, y ∈ X and all ω ∈ O (X). This

implies that all orthogonal mappings of X preserve hyperbolic distances.
A hyperbolic isometry of X is a mapping of X into itself such that hyperbolic

distances are preserved. A hyperbolic isometry need not to be bijective. Take for
instance the pre-Hilbert space X of all sequences

(x1, x2, x3, . . . )

of real numbers such that almost all xi of the sequence are 0, with the usual
operations, and with the usual inner product

(x1, . . . )(y1, . . . ) =
∞∑
i=1

xi yi.

The mapping γ of X into itself with

γ (x1, x2, x3, . . . ) := (x1, 0, x2, 0, x3, 0, . . . )

is not bijective, but it preserves hyperbolic distances.
A hyperbolic transformation ofX is a surjective hyperbolic isometry. The group

of all these transformations will be denoted by H (X).

Theorem 1. Let e ∈ X be given with e2 = 1. Then

H (X) = O (X) · T (e) ·O (X).

Proof. 1. If p is in X , then there exists γ in O (X) with γ (p) =‖ p ‖ e. — This is
trivial in the case p = − ‖ p ‖ e by just applying γ (x) := −x. Otherwise put

b := p+ ‖ p ‖ e and ‖ b ‖ · a := b
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and, moreover, γ (x) := −x + 2 (xa) a. Now observe that γ is an involution and
that it preserves euclidean distances.

2. Suppose that δ is in H (X) and that δ (0) =: p. Then there exists γ ∈ O (X)
with

γδ (0) =‖ p ‖ e.

According to Section 2 there exists Tt ∈ T (e) with

Ttγδ (0) = 0.

The mapping ϕ := Ttγδ is bijective and it preserves hyperbolic distances. Hence

coshh (x, y) = coshh
(
ϕ (x), ϕ (y)

)
,

i.e.
√

1 + x2
√

1 + y2−xy =
√

1 + ξ2
√

1 + η2−ξη with ξ := ϕ (x) and η := ϕ (y).
Because of

h (0, z) = h
(

0, ϕ (z)
)

we get z2 =
[
ϕ (z)

]2 for all z ∈ X . This implies xy = ξη for all x, y in X . The
mapping ϕ hence preserves euclidean distances and is thus in O (X). �

4. Denote by R≥0 the set of all real numbers r ≥ 0. A function d : X×X → R≥0
is called a distance function of X . We will say that such a distance function is of
type D1 if, and only if, the functional equation

(D1) d (x, y) = d
(
ϕ (x), ϕ (y)

)
for all ϕ ∈ O (X) and all x, y ∈ X

holds true (see [2]). Obviously, h and E are of type D1.

Theorem 2. Define

K :=
{

(ξ1, ξ2, ξ3) ∈ R3 | ξ1, ξ2 ∈ R≥0 and ξ2
3 ≤ ξ1ξ2

}
.

Suppose that f : K → R≥0 is chosen arbitrarily. Then

d (x, y) = f (x2, y2, xy) (7)

is a distance function of X of type D1. If, vice versa, d is a distance function of
X of type D1, there exists f : K → R≥0 such that (7) holds true for all x, y ∈ X.

Proof. Obviously, (7) is of type D1. So assume that d is a distance function of X
of type D1. Suppose that (ξ1, ξ2, ξ3) is in K and that e1, e2 ∈ X satisfy (1). Put

x0 := 0 and y0 := e1
√
ξ2
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in the case ξ1 = 0. Observe here ξ3 = 0, in view of ξ2
3 ≤ ξ1ξ2. Then define

f (ξ1, ξ2, ξ3) := d (x0, y0). (8)

In the remaining case ξ1 > 0 put x0 := e1
√
ξ1,

y0
√
ξ1 := e1ξ3 + e2

√
ξ1ξ2 − ξ2

3

and, again, (8). The function f : K → R≥0 is hence defined for all elements of K.
We now have to prove that (7) holds true. Let x, y be elements of X and put

ξ1 := x2, ξ2 := y2, ξ3 := xy.

Because of the Cauchy–Schwarz inequality, (ξ1, ξ2, ξ3) must be in K. If we are
able to prove that there exists ϕ ∈ O (X) with

ϕ (x0) = x and ϕ (y0) = y, (9)

where x0, y0 are the already defined elements with respect to (ξ1, ξ2, ξ3), then

d (x, y) = d (x0, y0) = f (ξ1, ξ2, ξ3) = f (x2, y2, xy)

holds true and (7) is established. — In order to find ϕ ∈ O (X) with (9), we
observe

x2 = x2
0, y

2 = y2
0, xy = x0 y0. (10)

According to step 1 of the proof of Theorem 1 we may assume

x = x0 6= 0 and y 6= y0 6= 0, (11)

without loss of generality. Put z := y − y0 and define

M := {m ∈ X | m ⊥ z}.

Then M is a maximal subspace of X because

p ∈ X\M

implies pz2 − (pz) z ∈M and hence p ∈ Rz ⊕M . Furthermore observe x ∈M , in
view of (10) and (11). For

v = αz +m, m ∈M,

define ϕ (v) = −αz + m. Then ϕ ∈ O (X) satisfies ϕ (x) = x, since x ∈ M , and
ϕ (y0) = y, in view of

y0 = −1
2
z +

1
2

(y + y0), y + y0 ⊥ z. �
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Proposition 1. X is a metric space with respect to the distance function h (x, y).

The proof of this proposition is, mutatis mutandis, the same as that given in
[2] in the case of a more specialized situation, namely X = Rn.

Remark. Observe that X is also a metric space under the rather strange distance
function

d (x, y) := 3 · h (x, y) + 5 ·E (x, y)

(for all x, y ∈ X) which is of type D1 as well.

5. If e is an element of X with e2 = 1, then we already defined the hyperbolic
translation group T (e). The euclidean translation group S (e) is the set of all
mappings

St(x) = x+ te, t ∈ R,

of X into itself.
For a distance function d define(

D2(e,hyp)
)
d (x, y) = d

(
τ (x), τ (y)

)
for all x, y ∈ X and all τ ∈ T (e),(

D2(e, eucl)
)
d (x, y) = d

(
τ (x), τ (y)

)
for all x, y ∈ X and all τ ∈ S (e).

Theorem 3. Let g : R≥0 → R≥0 be given. Then

d (x, y) = g
(
E (x, y)

)
(12)

satisfies D1 and D2 (e, eucl) for every e ∈ X with e2 = 1. Similarly,

d (x, y) = g
(
h (x, y)

)
(13)

has properties D1 and D2 (e, hyp) for all e in question. There are no other distance
functions satisfying D1 and D2 (e, eucl), D2 (e, hyp), respectively, for a fixed given
e.

Proof. a) Suppose that d satisfies D1 and D2 (e, eucl) for a fixed given e. If y ∈ X
is not 0, then

S

(
y

‖ y ‖

)
= ωS (e)ω−1

for a suitable ω ∈ O (X). Hence

d (x, y) = d
(
x+ (−y), y + (−y)

)
= d (x− y, 0),
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a formula which also holds true in the case y = 0. Thus d (x, y) = f
(

(x−y)2, 0, 0
)

because of Theorem 2. Define

g (ξ) := f (ξ2, 0, 0)

for all real ξ ≥ 0. Hence

d (x, y) = g

(√
(x− y)2

)
= g

(
E (x, y)

)
.

b) Suppose that d is a distance function satisfying D1 and D2 (e, hyp) for a
fixed given e. We define a function

g : R≥0 → R≥0

as follows: for ξ ≥ 0 put
g (ξ) := d (0, e · sinh ξ).

If x, y ∈ X , then
h (x, y) = h (0, e · sinh ξ)

in the case ξ := h (x, y). Take a ϕ1 ∈ O (X) that transforms x in e
√
x2, then a

τ ∈ T (e) which maps this latter element into 0. With another ϕ2 ∈ O (X) we get

ϕ2τϕ1(x) = 0 and ϕ2τϕ1(y) =: eη

with η ≥ 0. Since
ξ = h (x, y) = h (0, eη)

it follows cosh ξ = coshh (0, eη) =
√

1 + η2, i.e. η = sinh ξ. Hence with γ := ϕ2τϕ1

d (x, y) = d
(
γ (x), γ (y)

)
= d (0, e sinh ξ) = g (ξ) = g

(
h (x, y)

)
.

�

6. A distance function d of X will be called additive on the half-line

l+ := {λe | λ ≥ 0}

if, and only if, the following property holds true.

(D3 (e)) Suppose that α, β, γ are real numbers with 0 = α ≤ β ≤ γ. Then

d (αe, γe) = d (αe, βe) + d (βe, γe). (14)
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Theorem 4. Let e ∈ X be an element with e2 = 1 and suppose that d is a distance
function of X satisfying D1, D3 (e) and D2(e, eucl), D2(e, hyp), respectively.
Then

d (x, y) = k ·E (x, y)

or
d (x, y) = k · h (x, y)

holds true with a fixed real number k ≥ 0.

Proof. We would like to prove that

g (ξ + η) = g (ξ) + g (η), (15)

holds true for all non-negative real numbers ξ and η. In the euclidean case there
exist 0 = α ≤ β ≤ γ with

ξ = E (0, βe) and η = E (βe, γe).

In view of ξ+η = E (0, γe) this implies (15), on account of (12) and (14). Mutatis
mutandis, the same argument may be applied to the hyperbolic case. Since all
solutions

g : R≥0 → R≥0

of (15) are given by g (ξ) = kξ, where k is a constant ≥ 0 (J. Aczél [1]), Theorem
4 is proved. �

7. The set
S (m, %) := {x ∈ X | h (m,x) = %} (16)

is called the hyperbolic hypersphere with center m ∈ X and radius % > 0.

Proposition 2. S (m, %) is the hyperellipsoid

S (m, %) = {x ∈ X | E (f, x) +E (g, x) = 2α} (17)

with f := me−%, g := me% and α := sinh % ·
√

1 +m2, where et denotes the
exponential function exp (t).

Proof. a) Put S := sinh % and C := cosh%. If then

E (f, x) +E (g, x) = 2α (18)

holds true, a simple calculation (apply e% = C+S, e−% = C−S and p := x−mC)
yields

|mx+ C| =
√

1 +m2
√

1 + x2. (19)
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If here −mx− C were equal to
√

1 +m2
√

1 + x2, then the contradiction

1 ≤ coshh (m,−x) =
√

1 +m2
√

1 + x2 +mx = −C

would be the consequence. Hence (19) yields

coshh (m,x) = C,

i.e. x ∈ S (m, %).
b) Assume vice versa C =

√
1 +m2

√
1 + x2−mx. Then the simple calculation

from a), but now in the other direction, leads to√
(p+mS)2

√
(p−mS)2 = |S2 · (2 +m2)− p2|. (20)

In the case
S2 · (2 +m2)− p2 ≥ 0, (21)

(18) is a consequence of (20). In order to prove (21) we observe

(mx)2 ≤ m2x2 + S2

and (1 + x2)(1 +m2) = (mx+ C)2, i.e.

x2 − 2 (mx)C +m2 = (mx)2 + S2 −m2x2 ≤ 2S2,

i.e. (21). �

Obviously, S (0, %) is a euclidean hypersphere with euclidean center 0 and eu-
clidean radius sinh %. In the case m 6= 0 the pairwise distinct elements

0, f = me−%, m, g = me%

are all on the euclidean half-line

M := {mσ | σ ≥ 0}.

If we define
mσ1 before mσ2

if, and only if, σ1 < σ2, then

0 before f before m before g

holds true. Suppose that a 6= 0 is in X and that λ, µ are real numbers with
0 < λ < µ. Then there exists exactly one α > 0 such that

{x ∈ X | E (aλ, x) +E (aµ, x) = 2α}
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is a hyperbolic hypersphere S (m, %). Here, obviously, the equations

2α = (µ− λ)
√

(λµ)−1 + a2,

m = a
√
λµ and % = 1

2(lnµ− lnλ) hold true.

8. We also would like to work with

S (m, 0) := {x ∈ X | h (m,x) = 0} = {m}.

If p, q are distinct elements of X , then

g (p, q) :=
{
x ∈ X | S

(
p, h (p, x)

)
∩ S

(
q, h (q, x)

)
= {x}

}
(see [4], 20) will be called a hyperbolic line of X .

Theorem 5. All hyperbolic lines of X are given by

l (a) = {aξ | ξ ∈ R} with a 6= 0 in X

and by
l (a, b) = {a cosh ξ + b sinh ξ | ξ ∈ R}

with a, b ∈ X and a 6= 0, b2 = 1, ab = 0.

Proof. a) Suppose that a 6= 0 is in X and that x ∈ g (0, a). Because of

2xa
a2 a− x ∈ S

(
0, h (0, x)

)
∩ S

(
a, h (a, x)

)
= {x}

we get x ∈ l (a). Assume ξa 6∈ g (0, a). Hence there is an y 6= ξa with

(ξa) a = ya and (ξa)2 = y2.

But
(ya)2 = ξ2a2a2 = y2a2

implies, according to Cauchy–Schwarz, that a and y are linearly dependent, i.e.
that y = ξa.

b) If g (p, q) is a hyperbolic line and δ a hyperbolic transformation, then, obvi-
ously,

δ
(
g (p, q)

)
= g

(
δ (p), δ (q)

)
and p, q ∈ g (p, q). Take δ ∈ H (X) with δ (p) = 0. Then

δ
(
g (p, q)

)
= l
(
δ (q)

)
.
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All hyperbolic lines of X are hence images of lines l (a) under hyperbolic transfor-
mations. In view of Theorem 1 we hence have to determine all

γ1Ttγ2

(
l (a)

)
with γ1, γ2 ∈ O (X) and Tt ∈ T (e). Obviously for γ ∈ O (X),

γ
(
l (a)

)
= l
(
γ (a)

)
,

γ
(
l (a, b)

)
= l
(
γ (a), γ (b)

)
.

So it remains to determine Tt
(
l (a)

)
. The cases t = 0 or e ∈ l (a) are trivial and

we hence will exclude them. Let j be an element in the subspace generated by e
and a such that j2 = 1 and ej = 0. Without loss of generality assume a =: αe+ j.
Then

Tt(ξa) = (ξαC + S
√

1 + ξ2a2) e+ ξj

with S := sinh t 6= 0 and C := cosh t > 1. We observe that

{Tt(ξa) =: x1(ξ) e+ x2(ξ) j | ξ ∈ R}

is the branch x1 > x2αC (for t > 0) or the branch x1 < x2αC (for t < 0) of the
hyperbola with equation

x2
1 − 2αCx1x2 + (α2 − S2)x2

2 = S2,

which can be written in the form

y2
1
k
− y2

2 = 1 (22)

with ka2 := S2 and√
α2 + C2 · (y1 y2) = (x1 x2)

(
C α
−α C

)
.

But the branches of (22) are exactly hyperbolic lines l (v, w).
c) Suppose that a, b are elements of X with a 6= 0, b2 = 1, ab = 0. Define t ∈ R

by sinh t = 1. For Tt in T (b) we then have

Tt(ξb) = ξb+
√

1 + ξ2a,

i.e. l (a, b) = Tt

(
l (b)

)
. �
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A hyperbolic line l (a, b) never contains 0, since a, b are linearly independent.
On the basis of this information it is easy to prove that through two distinct
elements p, q of X there is exactly one hyperbolic line: without loss of generality
we may assume that p = 0. But then there is only the line l (q) through p and q.

The nearest element of l (a, b) to 0, from the euclidean point of view (and also
from the hyperbolic point of view), is the element a, and it is a vertex of the
underlying hyperbola of l (a, b) as well. The other vertex is −a, and the foci of the
hyperbola in question are

± a

‖ a ‖

√
(a+ b)2 = ±a

√
1 +

1
a2 .

The asymptotes are l (a+ b) and l (a − b). It is then easy to prove that l (a, b) =
l (c, d) holds true if, and only if, a = c and b = ±d.

A hyperbolic line l (a) can be written in the form

l (a) = {0 · cosh ξ + a · sinh ξ | ξ ∈ R}.

We thus have formally l (a) = l (0, a). This is the reason that all hyperbolic lines
are of the form

l (a, b) = {a cosh ξ + b sinh ξ | ξ ∈ R}

with elements a, b ∈ X such that b2 = 1 and ab = 0 hold true. b is a tangent
vector in ξ = 0, i.e. in a and a will be called the vertex of l (a, b), even in the case
a = 0. If we determine the hyperbolic distance of x (α) and x (β), where

x (ξ) = a cosh ξ + b sinh ξ, (23)

we get
h
(
x (α), x (β)

)
= |β − α|. (24)

In order to find the hyperbolic line l (a, b) through the elements p 6= q of X we
proceed as follows: if p, q are linearly dependent, then l (0, b) is this line with
0 6= c ∈ {p, q}, ‖ c ‖ ·b := c. In the case that p, q are linearly independent, we
have, in view of (24),

p = a cosh ξ + b sinh ξ, (25)
q = a cosh(ξ + %) + b sinh (ξ + %) (26)

with % = h (p, q). (We could also work with % = −h (p, q).) This implies

a sinh % = p sinh (ξ + %)− q sinh ξ, (27)
b sinh % = −p cosh (ξ + %) + q cosh ξ. (28)
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Now ab = 0 yields

0 = p2 sinh (2ξ + 2%)− 2pq sinh (2ξ + %) + q2 sinh 2ξ,

i.e.
4ξ = ln (pe−% − q)2 − ln (pe% − q)2.

Knowing in this way % and ξ, (27), (28) lead to a, b, since % 6= 0.
A hyperbolic spear is an oriented hyperbolic line. If we agree that b has in a

the orientation of the curve (23), then l (a, b) may serve as representation of this
spear. The other spear then would be l (a,−b).

If p 6= q are elements of X , then the hyperbolic segment [p, q] is defined by
means of

[p, q] := {x (η) | ξ ≤ η ≤ ξ + %},
where we observe (23), (25), (26) and % > 0.

If we have p ∈ l (a, b) with (23), (25), then

{x (η) | η ≥ ξ} and {x (η) | η ≤ ξ}
are called the hyperbolic half-lines of l (a, b) with starting point p.

The theory of hyperbolic angles for X may now be developed as we did it in
our book [4], Section 3.3.

A hyperbolic subspace of X is a set M ⊆ X such that for all p 6= q in M the
line g (p, q) is a subset of M . Of course, ∅ and M are subspaces, also every single
element of X , but hyperbolic lines as well. Since every hyperbolic line is contained
in a one- or two-dimensional linear subspace of the vector space X , the following
Proposition must hold true.

Proposition 3. All hyperbolic subspaces of X are given by the linear subspaces
of X and their images under hyperbolic transformations of X.

A spherical-hyperbolic subspace is a set

M ∩ S (m, %),

where M is a hyperbolic subspace containing m. Without loss of generality we
may assume m = 0. Hence the following Proposition holds true.

Proposition 4. All spherical-hyperbolic subspaces of X are given by the spherical-
euclidean subspaces of X with center 0 and their images under hyperbolic trans-
formations of X.

Remark. Similar expressions, as those for hyperbolic lines, may be derived for
other hyperbolic subspaces. Again, the images of such subspaces (through 0) under
mappings Tt are crucial for this purpose.
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