Hyperbolic distances in Hilbert spaces

Walter Benz
Dedicated to János Aczél on the occasion of his 75 th birthday, in friendship

Summary. We present a functional equations approach to the non-negative functions $h(x, y)$ and $E(x, y)$ satisfying

$$
\begin{aligned}
\cosh h(x, y) & =\sqrt{1+x^{2}} \sqrt{1+y^{2}}-x y \\
E(x, y) & =\|x-y\|
\end{aligned}
$$

The underlying structure is a pre-Hilbert space X of dimension at least 2. An important tool is the group of translations

$$
T_{t}(x)=x+\left((x e)(\cosh t-1)+\sqrt{1+x^{2}} \sinh t\right) e
$$

$t \in \mathbb{R}$, where $T_{t}: X \rightarrow X$ satisfies the translation equation with a fixed $e \in X$ such that $e^{2}=1$. One of the results is that a function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}:=\{r \in \mathbb{R} \mid r \geq 0\}
$$

which is invariant under orthogonal mappings and the described translations for a fixed e, must be of the form

$$
d(x, y)=g((h(x, y))
$$

with an arbitrary function $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$. If, moreover, d is additive on the line $\{\xi e \mid \xi \in \mathbb{R}\}$, then d is essentially equal to h.

Mathematics Subject Classification (1991). 39B40, 39B70, 46B20, 51K05.

1. Suppose that X is a pre-Hilbert space, i.e. a real vector space equiped with an inner product

$$
\sigma: X \times X \rightarrow \mathbb{R}, \sigma(x, y)=: x y
$$

satisfying $x^{2}=x x>0$ for all $x \neq 0$ in X. In addition we assume that the
dimension of X is at least 2. Hence there exist elements e_{1}, e_{2} of X with

$$
\begin{equation*}
e_{1}^{2}=1=e_{2}^{2} \text { and } e_{1} e_{2}=0 \tag{1}
\end{equation*}
$$

We define the hyperbolic distance $h(x, y) \in \mathbb{R}$ of $x, y \in X$ by means of $h(x, y) \geq$ 0 and

$$
\begin{equation*}
\cosh h(x, y)=\sqrt{1+x^{2}} \sqrt{1+y^{2}}-x y \tag{2}
\end{equation*}
$$

where cosh denotes the hyperbolic cosine. The right-hand side of (2) must be greater or equal to 1 : the inequality of Cauchy-Schwarz,

$$
(x y)^{2} \leq x^{2} y^{2}
$$

namely implies $(x y)^{2} \leq x^{2} y^{2}+(x-y)^{2}$, i.e.

$$
x y+1 \leq|x y+1| \leq \sqrt{1+x^{2}} \sqrt{1+y^{2}}
$$

Among the results of this note are a characterization of the function $h(x, y)$, more precisely a functional equations approach to $h(x, y)$, and, moreover, a similar approach to the euclidean distance function

$$
\begin{equation*}
E(x, y):=\sqrt{(x-y)^{2}}=\|x-y\| \tag{3}
\end{equation*}
$$

We are thus able to carry over results in [2] from \mathbb{R}^{n} to arbitrary pre-Hilbert spaces of dimension greater than 1 (Theorems 2, 3, 4). This, however, is accomplished by developing additional methods in comparison with [2]. Especially, translation groups $\mathfrak{T}(e)$ are crucial. Moreover, the hyperbolic group $H(X)$ of X will be determined (Theorem 1) and the fundamental objects of the hyperbolic geometry of X, like hyperbolic lines, hyperbolic subspaces, spherical-hyperbolic subspaces, will be described (Theorem 5 and Propositions 2, 3, 4).
2. Let e be an element of X such that $e^{2}=1$ holds true. For $t \in \mathbb{R}$ we call the mapping

$$
\begin{equation*}
T_{t}(x)=x+\left((x e)(\cosh t-1)+\sqrt{1+x^{2}} \sinh t\right) e \tag{4}
\end{equation*}
$$

from X into itself a hyperbolic translation of X with axis e. For arbitrary y in X we denote by y_{1} the real number $y e$. A simple calculation yields

$$
\begin{equation*}
1+\left[T_{t}(x)\right]^{2}=\left(x_{1} \sinh t+\sqrt{1+x^{2}} \cosh t\right)^{2} \tag{5}
\end{equation*}
$$

Since $x_{1}^{2}=(x e)^{2} \leq x^{2} \cdot e^{2}=x^{2}$, we have

$$
0 \leq x_{1}^{2}+\left[1+x^{2}-x_{1}^{2}\right] \cosh ^{2} t
$$

and hence $-x_{1} \sinh t \leq\left|x_{1} \sinh t\right| \leq \sqrt{1+x^{2}} \cosh t$, i.e.

$$
0 \leq x_{1} \sinh t+\sqrt{1+x^{2}} \cosh t
$$

This leads to

$$
\begin{equation*}
\sqrt{1+\left[T_{t}(x)\right]^{2}}=x_{1} \sinh t+\sqrt{1+x^{2}} \cosh t \tag{6}
\end{equation*}
$$

on account of (5). A simple calculation now implies

$$
\cosh h\left(T_{t}(x), T_{t}(y)\right)=\cosh h(x, y)
$$

for all $x, y \in X$, and hence that hyperbolic translations with axis e preserve hyperbolic distances.

Since, by applying (6),

$$
T_{t+s}(x)=T_{t}\left(T_{s}(x)\right)
$$

holds true for all $t, s \in \mathbb{R}$ and all $x \in X$, the set of all hyperbolic translations with axis e must be a group of bijective mappings of X with respect to the permutation product. Notice that T_{0} is the identity mapping, and that $T_{-t}(y)$ is the uniquely determined solution x of $T_{t}(x)=y$ for given $y \in X$. We denote the group of all hyperbolic translations with axis e by $\mathfrak{T}(e)$.

If $x, y \in X$ satisfy $y-x \in \mathbb{R} e$, then there exists exactly one $t \in \mathbb{R}$ such that

$$
T_{t}(x)=y
$$

holds true. On account of (4) and in view of

$$
y-x=: \lambda e
$$

$\lambda+x e=(x e) \cosh t+\sqrt{1+x^{2}} \sinh t$ must be solved with respect to t. Since $(x e)^{2} \leq x^{2}$, we define $\alpha \in \mathbb{R}$ by means of

$$
x e=: a \sinh \alpha \text { with } a \geq 1 \text { and } a^{2}:=1+x^{2}-(x e)^{2}
$$

Hence $\lambda+x e=a \sinh (t+\alpha)$ and t is thus uniquely determined.
3. We would like to define an orthogonal mapping ω of X as a surjective mapping $\omega: X \rightarrow X$ with $\omega(0)=0$ and such that

$$
E(\omega(x), \omega(y))=E(x, y)
$$

holds true for all $x, y \in X$ of euclidean distance 1 or 3 . A theorem of H. Berens and the author (see, e.g., [3], 48 ff) then implies that orthogonal mappings of X are
bijective and linear and that they preserve euclidean distances. (In this connection also compare E. Schröder [5]). Denote by $O(X)$ the group of all orthogonal mappings of X. If ω is in $O(X)$ then

$$
E(x, 0)=E(\omega(x), 0)
$$

implies $x^{2}=[\omega(x)]^{2}$ for all $x \in X$. This together with

$$
E(x, y)=E(\omega(x), \omega(y))
$$

then yields $x y=\omega(x) \omega(y)$ for all $x, y \in X$. We hence have

$$
\cosh h(x, y)=\cosh h(\omega(x), \omega(y))
$$

and thus $h(x, y)=h(\omega(x), \omega(y))$ for all $x, y \in X$ and all $\omega \in O(X)$. This implies that all orthogonal mappings of X preserve hyperbolic distances.

A hyperbolic isometry of X is a mapping of X into itself such that hyperbolic distances are preserved. A hyperbolic isometry need not to be bijective. Take for instance the pre-Hilbert space X of all sequences

$$
\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

of real numbers such that almost all x_{i} of the sequence are 0 , with the usual operations, and with the usual inner product

$$
\left(x_{1}, \ldots\right)\left(y_{1}, \ldots\right)=\sum_{i=1}^{\infty} x_{i} y_{i}
$$

The mapping γ of X into itself with

$$
\gamma\left(x_{1}, x_{2}, x_{3}, \ldots\right):=\left(x_{1}, 0, x_{2}, 0, x_{3}, 0, \ldots\right)
$$

is not bijective, but it preserves hyperbolic distances.
A hyperbolic transformation of X is a surjective hyperbolic isometry. The group of all these transformations will be denoted by $H(X)$.

Theorem 1. Let $e \in X$ be given with $e^{2}=1$. Then

$$
H(X)=O(X) \cdot \mathfrak{T}(e) \cdot O(X)
$$

Proof. 1. If p is in X, then there exists γ in $O(X)$ with $\gamma(p)=\|p\| e$. - This is trivial in the case $p=-\|p\| e$ by just applying $\gamma(x):=-x$. Otherwise put

$$
b:=p+\|p\| e \text { and }\|b\| \cdot a:=b
$$

and, moreover, $\gamma(x):=-x+2(x a) a$. Now observe that γ is an involution and that it preserves euclidean distances.
2. Suppose that δ is in $H(X)$ and that $\delta(0)=: p$. Then there exists $\gamma \in O(X)$ with

$$
\gamma \delta(0)=\|p\| e
$$

According to Section 2 there exists $T_{t} \in \mathfrak{T}(e)$ with

$$
T_{t} \gamma \delta(0)=0
$$

The mapping $\varphi:=T_{t} \gamma \delta$ is bijective and it preserves hyperbolic distances. Hence

$$
\cosh h(x, y)=\cosh h(\varphi(x), \varphi(y))
$$

i.e. $\sqrt{1+x^{2}} \sqrt{1+y^{2}}-x y=\sqrt{1+\xi^{2}} \sqrt{1+\eta^{2}}-\xi \eta$ with $\xi:=\varphi(x)$ and $\eta:=\varphi(y)$. Because of

$$
h(0, z)=h(0, \varphi(z))
$$

we get $z^{2}=[\varphi(z)]^{2}$ for all $z \in X$. This implies $x y=\xi \eta$ for all x, y in X. The mapping φ hence preserves euclidean distances and is thus in $O(X)$.
4. Denote by $\mathbb{R}_{\geq 0}$ the set of all real numbers $r \geq 0$. A function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ is called a distance function of X. We will say that such a distance function is of type D_{1} if, and only if, the functional equation

$$
\left(\mathrm{D}_{1}\right) d(x, y)=d(\varphi(x), \varphi(y)) \text { for all } \varphi \in O(X) \text { and all } x, y \in X
$$

holds true (see [2]). Obviously, h and E are of type D_{1}.
Theorem 2. Define

$$
K:=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3} \mid \xi_{1}, \xi_{2} \in \mathbb{R}_{\geq 0} \text { and } \xi_{3}^{2} \leq \xi_{1} \xi_{2}\right\}
$$

Suppose that $f: K \rightarrow \mathbb{R}_{\geq 0}$ is chosen arbitrarily. Then

$$
\begin{equation*}
d(x, y)=f\left(x^{2}, y^{2}, x y\right) \tag{7}
\end{equation*}
$$

is a distance function of X of type D_{1}. If, vice versa, d is a distance function of X of type D_{1}, there exists $f: K \rightarrow \mathbb{R}_{\geq 0}$ such that (7) holds true for all $x, y \in X$.

Proof. Obviously, (7) is of type D_{1}. So assume that d is a distance function of X of type D_{1}. Suppose that $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ is in K and that $e_{1}, e_{2} \in X$ satisfy (1). Put

$$
x_{0}:=0 \text { and } y_{0}:=e_{1} \sqrt{\xi_{2}}
$$

in the case $\xi_{1}=0$. Observe here $\xi_{3}=0$, in view of $\xi_{3}^{2} \leq \xi_{1} \xi_{2}$. Then define

$$
\begin{equation*}
f\left(\xi_{1}, \xi_{2}, \xi_{3}\right):=d\left(x_{0}, y_{0}\right) \tag{8}
\end{equation*}
$$

In the remaining case $\xi_{1}>0$ put $x_{0}:=e_{1} \sqrt{\xi_{1}}$,

$$
y_{0} \sqrt{\xi_{1}}:=e_{1} \xi_{3}+e_{2} \sqrt{\xi_{1} \xi_{2}-\xi_{3}^{2}}
$$

and, again, (8). The function $f: K \rightarrow \mathbb{R}_{\geq 0}$ is hence defined for all elements of K. We now have to prove that (7) holds true. Let x, y be elements of X and put

$$
\xi_{1}:=x^{2}, \xi_{2}:=y^{2}, \xi_{3}:=x y
$$

Because of the Cauchy-Schwarz inequality, $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ must be in K. If we are able to prove that there exists $\varphi \in O(X)$ with

$$
\begin{equation*}
\varphi\left(x_{0}\right)=x \text { and } \varphi\left(y_{0}\right)=y \tag{9}
\end{equation*}
$$

where x_{0}, y_{0} are the already defined elements with respect to $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$, then

$$
d(x, y)=d\left(x_{0}, y_{0}\right)=f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(x^{2}, y^{2}, x y\right)
$$

holds true and (7) is established. - In order to find $\varphi \in O(X)$ with (9), we observe

$$
\begin{equation*}
x^{2}=x_{0}^{2}, y^{2}=y_{0}^{2}, x y=x_{0} y_{0} \tag{10}
\end{equation*}
$$

According to step 1 of the proof of Theorem 1 we may assume

$$
\begin{equation*}
x=x_{0} \neq 0 \text { and } y \neq y_{0} \neq 0 \tag{11}
\end{equation*}
$$

without loss of generality. Put $z:=y-y_{0}$ and define

$$
M:=\{m \in X \mid m \perp z\}
$$

Then M is a maximal subspace of X because

$$
p \in X \backslash M
$$

implies $p z^{2}-(p z) z \in M$ and hence $p \in \mathbb{R} z \oplus M$. Furthermore observe $x \in M$, in view of (10) and (11). For

$$
v=\alpha z+m, m \in M
$$

define $\varphi(v)=-\alpha z+m$. Then $\varphi \in O(X)$ satisfies $\varphi(x)=x$, since $x \in M$, and $\varphi\left(y_{0}\right)=y$, in view of

$$
y_{0}=-\frac{1}{2} z+\frac{1}{2}\left(y+y_{0}\right), y+y_{0} \perp z
$$

Proposition 1. X is a metric space with respect to the distance function $h(x, y)$.
The proof of this proposition is, mutatis mutandis, the same as that given in [2] in the case of a more specialized situation, namely $X=\mathbb{R}^{n}$.

Remark. Observe that X is also a metric space under the rather strange distance function

$$
d(x, y):=3 \cdot h(x, y)+5 \cdot E(x, y)
$$

(for all $x, y \in X$) which is of type D_{1} as well.
5. If e is an element of X with $e^{2}=1$, then we already defined the hyperbolic translation group $\mathfrak{T}(e)$. The euclidean translation group $\mathfrak{S}(e)$ is the set of all mappings

$$
S_{t}(x)=x+t e, t \in \mathbb{R}
$$

of X into itself.
For a distance function d define

$$
\begin{aligned}
\left(\mathbf{D}_{2}(e, \text { hyp })\right) d(x, y) & =d(\tau(x), \tau(y)) \text { for all } x, y \in X \text { and all } \tau \in \mathfrak{T}(e) \\
\left(\mathbf{D}_{2}(e, \text { eucl })\right) d(x, y) & =d(\tau(x), \tau(y)) \text { for all } x, y \in X \text { and all } \tau \in \mathfrak{S}(e)
\end{aligned}
$$

Theorem 3. Let $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ be given. Then

$$
\begin{equation*}
d(x, y)=g(E(x, y)) \tag{12}
\end{equation*}
$$

satisfies D_{1} and $\mathrm{D}_{2}\left(e\right.$, eucl) for every $e \in X$ with $e^{2}=1$. Similarly,

$$
\begin{equation*}
d(x, y)=g(h(x, y)) \tag{13}
\end{equation*}
$$

has properties D_{1} and $\mathrm{D}_{2}(e$, hyp) for all e in question. There are no other distance functions satisfying D_{1} and $\mathrm{D}_{2}(e$, eucl $), \mathrm{D}_{2}(e$, hyp $)$, respectively, for a fixed given e.

Proof. a) Suppose that d satisfies D_{1} and $\mathrm{D}_{2}(e$, eucl) for a fixed given e. If $y \in X$ is not 0 , then

$$
\mathfrak{S}\left(\frac{y}{\|y\|}\right)=\omega \mathfrak{S}(e) \omega^{-1}
$$

for a suitable $\omega \in O(X)$. Hence

$$
d(x, y)=d(x+(-y), y+(-y))=d(x-y, 0)
$$

a formula which also holds true in the case $y=0$. Thus $d(x, y)=f\left((x-y)^{2}, 0,0\right)$ because of Theorem 2. Define

$$
g(\xi):=f\left(\xi^{2}, 0,0\right)
$$

for all real $\xi \geq 0$. Hence

$$
d(x, y)=g\left(\sqrt{(x-y)^{2}}\right)=g(E(x, y))
$$

b) Suppose that d is a distance function satisfying D_{1} and $\mathrm{D}_{2}(e$, hyp) for a fixed given e. We define a function

$$
g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}
$$

as follows: for $\xi \geq 0$ put

$$
g(\xi):=d(0, e \cdot \sinh \xi)
$$

If $x, y \in X$, then

$$
h(x, y)=h(0, e \cdot \sinh \xi)
$$

in the case $\xi:=h(x, y)$. Take a $\varphi_{1} \in O(X)$ that transforms x in $e \sqrt{x^{2}}$, then a $\tau \in \mathfrak{T}(e)$ which maps this latter element into 0 . With another $\varphi_{2} \in O(X)$ we get

$$
\varphi_{2} \tau \varphi_{1}(x)=0 \text { and } \varphi_{2} \tau \varphi_{1}(y)=: e \eta
$$

with $\eta \geq 0$. Since

$$
\xi=h(x, y)=h(0, e \eta)
$$

it follows $\cosh \xi=\cosh h(0, e \eta)=\sqrt{1+\eta^{2}}$, i.e. $\eta=\sinh \xi$. Hence with $\gamma:=\varphi_{2} \tau \varphi_{1}$

$$
d(x, y)=d(\gamma(x), \gamma(y))=d(0, e \sinh \xi)=g(\xi)=g(h(x, y))
$$

6. A distance function d of X will be called additive on the half-line

$$
l_{+}:=\{\lambda e \mid \lambda \geq 0\}
$$

if, and only if, the following property holds true.
$\left(\mathbf{D}_{3}\right.$ (e)) Suppose that α, β, γ are real numbers with $0=\alpha \leq \beta \leq \gamma$. Then

$$
\begin{equation*}
d(\alpha e, \gamma e)=d(\alpha e, \beta e)+d(\beta e, \gamma e) \tag{14}
\end{equation*}
$$

Theorem 4. Let $e \in X$ be an element with $e^{2}=1$ and suppose that d is a distance function of X satisfying $\mathrm{D}_{1}, \mathrm{D}_{3}$ (e) and $\mathrm{D}_{2}\left(e\right.$, eucl), $\mathrm{D}_{2}(e$, hyp $)$, respectively. Then

$$
d(x, y)=k \cdot E(x, y)
$$

or

$$
d(x, y)=k \cdot h(x, y)
$$

holds true with a fixed real number $k \geq 0$.
Proof. We would like to prove that

$$
\begin{equation*}
g(\xi+\eta)=g(\xi)+g(\eta) \tag{15}
\end{equation*}
$$

holds true for all non-negative real numbers ξ and η. In the euclidean case there exist $0=\alpha \leq \beta \leq \gamma$ with

$$
\xi=E(0, \beta e) \text { and } \eta=E(\beta e, \gamma e)
$$

In view of $\xi+\eta=E(0, \gamma e)$ this implies (15), on account of (12) and (14). Mutatis mutandis, the same argument may be applied to the hyperbolic case. Since all solutions

$$
g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}
$$

of (15) are given by $g(\xi)=k \xi$, where k is a constant ≥ 0 (J. Aczél [1]), Theorem 4 is proved.
7. The set

$$
\begin{equation*}
S(m, \varrho):=\{x \in X \mid h(m, x)=\varrho\} \tag{16}
\end{equation*}
$$

is called the hyperbolic hypersphere with center $m \in X$ and radius $\varrho>0$.
Proposition 2. $S(m, \varrho)$ is the hyperellipsoid

$$
\begin{equation*}
S(m, \varrho)=\{x \in X \mid E(f, x)+E(g, x)=2 \alpha\} \tag{17}
\end{equation*}
$$

with $f:=m e^{-\varrho}, g:=m e^{\varrho}$ and $\alpha:=\sinh \varrho \cdot \sqrt{1+m^{2}}$, where e^{t} denotes the exponential function $\exp (t)$.

Proof. a) Put $S:=\sinh \varrho$ and $C:=\cosh \varrho$. If then

$$
\begin{equation*}
E(f, x)+E(g, x)=2 \alpha \tag{18}
\end{equation*}
$$

holds true, a simple calculation (apply $e^{\varrho}=C+S, e^{-\varrho}=C-S$ and $p:=x-m C$) yields

$$
\begin{equation*}
|m x+C|=\sqrt{1+m^{2}} \sqrt{1+x^{2}} \tag{19}
\end{equation*}
$$

If here $-m x-C$ were equal to $\sqrt{1+m^{2}} \sqrt{1+x^{2}}$, then the contradiction

$$
1 \leq \cosh h(m,-x)=\sqrt{1+m^{2}} \sqrt{1+x^{2}}+m x=-C
$$

would be the consequence. Hence (19) yields

$$
\cosh h(m, x)=C
$$

i.e. $x \in S(m, \varrho)$.
b) Assume vice versa $C=\sqrt{1+m^{2}} \sqrt{1+x^{2}}-m x$. Then the simple calculation from a), but now in the other direction, leads to

$$
\begin{equation*}
\sqrt{(p+m S)^{2}} \sqrt{(p-m S)^{2}}=\left|S^{2} \cdot\left(2+m^{2}\right)-p^{2}\right| \tag{20}
\end{equation*}
$$

In the case

$$
\begin{equation*}
S^{2} \cdot\left(2+m^{2}\right)-p^{2} \geq 0 \tag{21}
\end{equation*}
$$

(18) is a consequence of (20). In order to prove (21) we observe

$$
(m x)^{2} \leq m^{2} x^{2}+S^{2}
$$

and $\left(1+x^{2}\right)\left(1+m^{2}\right)=(m x+C)^{2}$, i.e.

$$
x^{2}-2(m x) C+m^{2}=(m x)^{2}+S^{2}-m^{2} x^{2} \leq 2 S^{2}
$$

i.e. (21).

Obviously, $S(0, \varrho)$ is a euclidean hypersphere with euclidean center 0 and euclidean radius $\sinh \varrho$. In the case $m \neq 0$ the pairwise distinct elements

$$
0, f=m e^{-\varrho}, m, g=m e^{\varrho}
$$

are all on the euclidean half-line

$$
M:=\{m \sigma \mid \sigma \geq 0\}
$$

If we define

$$
m \sigma_{1} \text { before } m \sigma_{2}
$$

if, and only if, $\sigma_{1}<\sigma_{2}$, then

$$
0 \text { before } f \text { before } m \text { before } g
$$

holds true. Suppose that $a \neq 0$ is in X and that λ, μ are real numbers with $0<\lambda<\mu$. Then there exists exactly one $\alpha>0$ such that

$$
\{x \in X \mid E(a \lambda, x)+E(a \mu, x)=2 \alpha\}
$$

is a hyperbolic hypersphere $S(m, \varrho)$. Here, obviously, the equations

$$
2 \alpha=(\mu-\lambda) \sqrt{(\lambda \mu)^{-1}+a^{2}}
$$

$m=a \sqrt{\lambda \mu}$ and $\varrho=\frac{1}{2}(\ln \mu-\ln \lambda)$ hold true.
8. We also would like to work with

$$
S(m, 0):=\{x \in X \mid h(m, x)=0\}=\{m\}
$$

If p, q are distinct elements of X, then

$$
g(p, q):=\{x \in X \mid S(p, h(p, x)) \cap S(q, h(q, x))=\{x\}\}
$$

(see [4], 20) will be called a hyperbolic line of X.
Theorem 5. All hyperbolic lines of X are given by

$$
l(a)=\{a \xi \mid \xi \in \mathbb{R}\} \text { with } a \neq 0 \text { in } X
$$

and by

$$
l(a, b)=\{a \cosh \xi+b \sinh \xi \mid \xi \in \mathbb{R}\}
$$

with $a, b \in X$ and $a \neq 0, b^{2}=1, a b=0$.
Proof. a) Suppose that $a \neq 0$ is in X and that $x \in g(0, a)$. Because of

$$
\frac{2 x a}{a^{2}} a-x \in S(0, h(0, x)) \cap S(a, h(a, x))=\{x\}
$$

we get $x \in l(a)$. Assume $\xi a \notin g(0, a)$. Hence there is an $y \neq \xi a$ with

$$
(\xi a) a=y a \text { and }(\xi a)^{2}=y^{2}
$$

But

$$
(y a)^{2}=\xi^{2} a^{2} a^{2}=y^{2} a^{2}
$$

implies, according to Cauchy-Schwarz, that a and y are linearly dependent, i.e. that $y=\xi a$.
b) If $g(p, q)$ is a hyperbolic line and δ a hyperbolic transformation, then, obviously,

$$
\delta(g(p, q))=g(\delta(p), \delta(q))
$$

and $p, q \in g(p, q)$. Take $\delta \in H(X)$ with $\delta(p)=0$. Then

$$
\delta(g(p, q))=l(\delta(q))
$$

All hyperbolic lines of X are hence images of lines $l(a)$ under hyperbolic transformations. In view of Theorem 1 we hence have to determine all

$$
\gamma_{1} T_{t} \gamma_{2}(l(a))
$$

with $\gamma_{1}, \gamma_{2} \in O(X)$ and $T_{t} \in \mathfrak{T}(e)$. Obviously for $\gamma \in O(X)$,

$$
\begin{aligned}
\gamma(l(a)) & =l(\gamma(a)), \\
\gamma(l(a, b)) & =l(\gamma(a), \gamma(b)) .
\end{aligned}
$$

So it remains to determine $T_{t}(l(a))$. The cases $t=0$ or $e \in l(a)$ are trivial and we hence will exclude them. Let j be an element in the subspace generated by e and a such that $j^{2}=1$ and $e j=0$. Without loss of generality assume $a=: \alpha e+j$. Then

$$
T_{t}(\xi a)=\left(\xi \alpha C+S \sqrt{1+\xi^{2} a^{2}}\right) e+\xi j
$$

with $S:=\sinh t \neq 0$ and $C:=\cosh t>1$. We observe that

$$
\left\{T_{t}(\xi a)=: x_{1}(\xi) e+x_{2}(\xi) j \mid \xi \in \mathbb{R}\right\}
$$

is the branch $x_{1}>x_{2} \alpha C$ (for $t>0$) or the branch $x_{1}<x_{2} \alpha C$ (for $t<0$) of the hyperbola with equation

$$
x_{1}^{2}-2 \alpha C x_{1} x_{2}+\left(\alpha^{2}-S^{2}\right) x_{2}^{2}=S^{2}
$$

which can be written in the form

$$
\begin{equation*}
\frac{y_{1}^{2}}{k}-y_{2}^{2}=1 \tag{22}
\end{equation*}
$$

with $k a^{2}:=S^{2}$ and

$$
\sqrt{\alpha^{2}+C^{2}} \cdot\left(y_{1} y_{2}\right)=\left(x_{1} x_{2}\right)\left(\begin{array}{cc}
C & \alpha \\
-\alpha & C
\end{array}\right)
$$

But the branches of (22) are exactly hyperbolic lines $l(v, w)$.
c) Suppose that a, b are elements of X with $a \neq 0, b^{2}=1, a b=0$. Define $t \in \mathbb{R}$ by $\sinh t=1$. For T_{t} in $\mathfrak{T}(b)$ we then have

$$
T_{t}(\xi b)=\xi b+\sqrt{1+\xi^{2}} a
$$

i.e. $l(a, b)=T_{t}(l(b))$.

A hyperbolic line $l(a, b)$ never contains 0 , since a, b are linearly independent. On the basis of this information it is easy to prove that through two distinct elements p, q of X there is exactly one hyperbolic line: without loss of generality we may assume that $p=0$. But then there is only the line $l(q)$ through p and q.

The nearest element of $l(a, b)$ to 0 , from the euclidean point of view (and also from the hyperbolic point of view), is the element a, and it is a vertex of the underlying hyperbola of $l(a, b)$ as well. The other vertex is $-a$, and the foci of the hyperbola in question are

$$
\pm \frac{a}{\|a\|} \sqrt{(a+b)^{2}}= \pm a \sqrt{1+\frac{1}{a^{2}}}
$$

The asymptotes are $l(a+b)$ and $l(a-b)$. It is then easy to prove that $l(a, b)=$ $l(c, d)$ holds true if, and only if, $a=c$ and $b= \pm d$.

A hyperbolic line $l(a)$ can be written in the form

$$
l(a)=\{0 \cdot \cosh \xi+a \cdot \sinh \xi \mid \xi \in \mathbb{R}\}
$$

We thus have formally $l(a)=l(0, a)$. This is the reason that all hyperbolic lines are of the form

$$
l(a, b)=\{a \cosh \xi+b \sinh \xi \mid \xi \in \mathbb{R}\}
$$

with elements $a, b \in X$ such that $b^{2}=1$ and $a b=0$ hold true. b is a tangent vector in $\xi=0$, i.e. in a and a will be called the vertex of $l(a, b)$, even in the case $a=0$. If we determine the hyperbolic distance of $x(\alpha)$ and $x(\beta)$, where

$$
\begin{equation*}
x(\xi)=a \cosh \xi+b \sinh \xi \tag{23}
\end{equation*}
$$

we get

$$
\begin{equation*}
h(x(\alpha), x(\beta))=|\beta-\alpha| \tag{24}
\end{equation*}
$$

In order to find the hyperbolic line $l(a, b)$ through the elements $p \neq q$ of X we proceed as follows: if p, q are linearly dependent, then $l(0, b)$ is this line with $0 \neq c \in\{p, q\},\|c\| \cdot b:=c$. In the case that p, q are linearly independent, we have, in view of (24),

$$
\begin{align*}
& p=a \cosh \xi+b \sinh \xi \tag{25}\\
& q=a \cosh (\xi+\varrho)+b \sinh (\xi+\varrho) \tag{26}
\end{align*}
$$

with $\varrho=h(p, q)$. (We could also work with $\varrho=-h(p, q)$.) This implies

$$
\begin{align*}
a \sinh \varrho & =p \sinh (\xi+\varrho)-q \sinh \xi \tag{27}\\
b \sinh \varrho & =-p \cosh (\xi+\varrho)+q \cosh \xi \tag{28}
\end{align*}
$$

Now $a b=0$ yields

$$
0=p^{2} \sinh (2 \xi+2 \varrho)-2 p q \sinh (2 \xi+\varrho)+q^{2} \sinh 2 \xi
$$

i.e.

$$
4 \xi=\ln \left(p e^{-\varrho}-q\right)^{2}-\ln \left(p e^{\varrho}-q\right)^{2}
$$

Knowing in this way ϱ and $\xi,(27),(28)$ lead to a, b, since $\varrho \neq 0$.
A hyperbolic spear is an oriented hyperbolic line. If we agree that b has in a the orientation of the curve (23), then $l(a, b)$ may serve as representation of this spear. The other spear then would be $l(a,-b)$.

If $p \neq q$ are elements of X, then the hyperbolic segment $[p, q]$ is defined by means of

$$
[p, q]:=\{x(\eta) \mid \xi \leq \eta \leq \xi+\varrho\},
$$

where we observe $(23),(25),(26)$ and $\varrho>0$.
If we have $p \in l(a, b)$ with (23), (25), then

$$
\{x(\eta) \mid \eta \geq \xi\} \text { and }\{x(\eta) \mid \eta \leq \xi\}
$$

are called the hyperbolic half-lines of $l(a, b)$ with starting point p.
The theory of hyperbolic angles for X may now be developed as we did it in our book [4], Section 3.3.

A hyperbolic subspace of X is a set $M \subseteq X$ such that for all $p \neq q$ in M the line $g(p, q)$ is a subset of M. Of course, \emptyset and M are subspaces, also every single element of X, but hyperbolic lines as well. Since every hyperbolic line is contained in a one- or two-dimensional linear subspace of the vector space X, the following Proposition must hold true.

Proposition 3. All hyperbolic subspaces of X are given by the linear subspaces of X and their images under hyperbolic transformations of X.

A spherical-hyperbolic subspace is a set

$$
M \cap S(m, \varrho)
$$

where M is a hyperbolic subspace containing m. Without loss of generality we may assume $m=0$. Hence the following Proposition holds true.

Proposition 4. All spherical-hyperbolic subspaces of X are given by the sphericaleuclidean subspaces of X with center 0 and their images under hyperbolic transformations of X.

Remark. Similar expressions, as those for hyperbolic lines, may be derived for other hyperbolic subspaces. Again, the images of such subspaces (through 0) under mappings T_{t} are crucial for this purpose.

References

[1] J. AczÉL, Lectures on functional equations and their applications, Academic Press, New York-London, 1966.
[2] W. Benz, Hyperbolic and euclidean distance functions, Publication of the Bulgarian Academy of Sciences in honor of N. Obreshkov, Sofia, to appear.
[3] W. Benz, Geometrische Transformationen, BI Wissenschaftsverlag, Mannheim-Wien-Zürich, 1992.
[4] W. Benz, Ebene Geometrie, Spektrum Akademischer Verlag, Heidelberg-Oxford, 1997.
[5] E. M. Schröder, Eine Ergänzung zum Satz von Beckman und Quarles, Aequationes Math. 19 (1979) 89-92.
W. Benz

Mathematisches Seminar
Universität Hamburg
Bundesstr. 55
D-20146 Hamburg
Germany
Manuscript received: March 30, 1998 and, in final form, November 9, 1998.

