Groupoids Associated with the Ternary Ring of a Projective Plane

Dedicated to Helmut Karzel on the occasion of his 70th birthday
Walter Benz and Khuloud Ghalieh

0. INTRODUCTION

Let π be a projective plane $[1,6]$ with the incidence relation I and coordinatized by a temary ring (R, F) chosen in π relative to a coordinatizing quadrangle ($\mathrm{X}, \mathrm{Y}, \mathrm{Q}, \mathrm{E}$). The points of π are the elements $(x, y)(x, y \in R)$ esp. $Q=(0,0) E=(1,1)$, the (m) ($m \in R$), esp. $X=(0)$, and Y; the lines of π are the $[m, k](m, k \in R),[c](c \in R), L$; the incidence relation I is determined by: $y=F(x, m, k) \Leftrightarrow(x, y) I[m, k], \forall x, m, k \in R ;(x, y) I[x] ;(x, x)$ $I[1,0] ;(\mathrm{m}) \mathrm{I}[\mathrm{m}, \mathrm{k}] ;(\mathrm{m}) \mathrm{I} \mathrm{L} ;(0, \mathrm{k}) \mathrm{I}[\mathrm{m}, \mathrm{k}] ;(1, \mathrm{~m}) \mathrm{I}[\mathrm{m}, 0] ; \mathrm{Y} I \mathrm{~L}$. Using the notation of $[3]$ the intersection of two different lines a, b is denoted by $a \cap b$, the join of two different points A, B by $[A B]$, while by $(A B C)$ we denote the collinearity of the points A, B, C. Using the two elements $0,1(0,1$ are two distinct elements in the coordinatizing set R$)$ three binary operations, namely, $+, \cdot, *$ were defined out of the ternary ring (R, F) (see [1.p. 50], [2] and [3]) as follows: $a+b=F(a, 1, b), a \cdot b=F(a, b, 0), a * b=F(1, a, b), \forall a, b$ $\in R$. A fourth binary operation, denoted by " 0 " has been defined as follows [3]:

$$
a a b=F(a, b, 1), \forall a, b \in R .
$$

In this paper we introduce on (R, F) three binary operations by fixing any element p in R as follows:

$$
\begin{gathered}
a 0_{p} b=F(a, b, p), \forall a, b \in R \\
a+_{p} b=F(a, p, b), \forall a, b \in R ; p \neq 0 \\
a^{*} p^{b}=F(p, a, b), \forall a, b \in R ; p \neq 0
\end{gathered}
$$

We shall develop some algebraic and geometric properties of the groupoids (binary systems) ($\mathrm{R}, \mathrm{o}_{\mathrm{p}}$), ($\mathrm{R},+\mathrm{p}$) and $\left(\mathrm{R},{ }^{*} \mathrm{p}\right)$ in the presence of certain configurational propositions [7, p. 22-23].

1. THE GROUPOID (R, o_{p})

Let p be any fixed element in R. Then, for any $a, b \in R$, we define $a o_{p} b=F(a, b, p)$. Thus $\left(R, o_{p}\right)$ is a binary system (a groupoid). We write $a o_{0} b=a \cdot b$ and $a 0_{1} b=a o b$.

LEMMA 1. For any $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{ao}_{\mathrm{p}} \mathrm{b}=\mathrm{p} \Leftrightarrow \mathrm{a}=0$ or $\mathrm{b}=0$.

Proof. $\mathrm{ao} \mathrm{p} \mathrm{b}=\mathrm{p} \Leftrightarrow \mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{p})=\mathrm{p} \Leftrightarrow(\mathrm{a}, \mathrm{p}) \mathrm{I}[\mathrm{b}, \mathrm{p}] \Leftrightarrow[\mathrm{a}],[0, \mathrm{p}],[\mathrm{b}, \mathrm{p}]$ are concurrent \Leftrightarrow $(0, b)[[a]$ or $[0, p]=[b, p] \Leftrightarrow a=0$ or $b=0$.

LEMMA 2. For any $a, b \in R$, the two equations $a o_{p x}=b$ and $y_{p_{p}}=b$ have unique solutions in R if, and only if, $a \neq 0$.

Proof. Let $\mathrm{a}, \mathrm{b} \in \mathrm{R} ; \mathrm{a} \neq 0$, then $\mathrm{ao}_{\mathrm{p}} \mathrm{x}=\mathrm{b} \Leftrightarrow \mathrm{F}(\mathrm{a}, \mathrm{x}, \mathrm{p})=\mathrm{b} \Leftrightarrow(\mathrm{a}, \mathrm{b})[\mathrm{x}, \mathrm{p}] \Leftrightarrow(\mathrm{x})=\mathrm{L} \cap[(\mathrm{a}, \mathrm{b})$ $(0, p)]$, which shows that there exists exactly one solution x in R. Similarly, yopa $=b \Leftrightarrow$ $F(y, a, p)=b \Leftrightarrow(y, b)[a, p] \Leftrightarrow(y, b)=[0, b] \cap[a, p]$, which shows that there exists exactly one solution y in R. By Lemma 1, there are no solutions in the case $a=0$ for $b \neq p$ and every element of R is a solution if $b=p$.

REMARK. From Lemma 2 follow the following two cancellation laws in the groupoid ($\mathrm{R}, \mathrm{o}_{\mathrm{p}}$):
(i) $\mathrm{ao}_{\mathrm{p}} \mathrm{b}=\mathrm{ao}_{\mathrm{p}} \mathrm{c} \Rightarrow \mathrm{b}=\mathrm{c}, \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R} ; \mathrm{a} \neq 0$,
(ii) $b o_{p a}=c o_{p} a \Rightarrow b=c, \forall a, b, c \in R ; a \neq 0$.

It follows, from Lemma 2, that $\left(\mathrm{R}, \mathrm{o}_{\mathrm{p}}\right)$ is not a quasigroup (in particular (R, \cdot) and (R, o) are not quasigroups). We also note that if $p=0$, i.e., $a o_{p} b=a \cdot b$, then $(R \backslash\{0\}, \cdot)$ is a loop $[1$,
p.50]. But if $p \neq 0$ (esp. $p=1$), then the equation $\mathrm{po}_{\mathrm{p}} \mathrm{x}=0$ has a unique solution x , which is $\neq 0$, since $\mathrm{po}_{\mathrm{p}} 0=\mathrm{p}$. Also, the equation yo $\mathrm{p} p=0$, has a unique solution y , which is $\neq 0$, since $0 o_{p} p=p$. Hence, the pair $\left(R \backslash\{0\}, o_{p}\right)$ is not a groupoid, i.e., the exclusion of 0 doesn't help in the case $p \neq 0$ (esp. $p=1$). Moreover, in the system ($\mathrm{R}, \mathrm{o}_{\mathrm{p}}$), $\mathrm{p} \neq 0$, there is no right or left identity element because the two equations $x o_{p} 0=p$ and $0 o_{p} y=p$ hold true for any $x, y \in R$. The following lemma shows that the exclusion of 0 again doesn't help (for the case $\mathrm{p}=1$, compare [3]).

LEMMA 3. Let p be a fixed element in $\mathrm{R} \backslash\{0\}$ (esp. $\mathrm{p}=1$). Then, unless $\mathrm{R}=\{0,1\}$, there is no $x, y \in R$ such that:
(i) $\mathrm{xo}_{\mathrm{p}} \mathrm{a}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{R} \backslash\{0\}$,
(ii) $\mathrm{aop}_{\mathrm{p}} \mathrm{y}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{R} \backslash\{0\}$.

Proof. For $\mathrm{a}=\mathrm{p}$, in equation (i) as well as (ii), we obtain $\mathrm{x}=0, \mathrm{y}=0$, respectively. Now for any $\mathrm{a} \neq \mathrm{p}$, we have $00_{\mathrm{p}} \mathrm{a}=\mathrm{a} \Rightarrow \mathrm{a}=\mathrm{p}$, also, $\mathrm{ao}_{\mathrm{p}} 0=\mathrm{a} \Rightarrow \mathrm{a}=\mathrm{p}$. In particular for $\mathrm{a}=1$, we get $p=1$ and hence $R=\{0,1\}$. Conversely, if $R=\{0,1\}$,i.e., $p=1$, the two equations $x 01=1$ and $10 y=1$, have, by Lemma 1 , the solution $x=y=0$.

LEMMA 4. For $\mathrm{p} \neq 0$, the groupoid ($\mathrm{R}, \mathrm{o}_{\mathrm{p}}$) is non-associative in any ternary ring (R, F).
Proof. $0 o_{p}\left(1 o_{p} 1\right)=p$, but $\left(0 o_{p} 1\right) o_{p} 1=\mathrm{po}_{\mathrm{p}} 1=\mathrm{F}(\mathrm{p}, 1, \mathrm{p}) \neq \mathrm{p}$ since $(\mathrm{p}, \mathrm{p})(\neq \mathrm{Q})$ is on $[1,0]$ and therefore not on $[1, p]$.

However, a weak form of associativity, namely ($\left.a_{0} a\right) o_{p} a=a o_{p}\left(a o_{p} a\right), \forall a \in R$, may hold in those projective planes in which the following condition, denoted by C_{1}, is satisfied.

The condition C_{1}.

If $1,2,3,4$ are four points, no three of which are collinear, 0 a point not on the lines [12], $\left[\begin{array}{ll}1 & 3\end{array}\right],\left[\begin{array}{ll}1 & 4\end{array}\right],\left[\begin{array}{ll}2 & 3\end{array}\right],\left[\begin{array}{ll}2 & 4\end{array}\right]$ and $3^{\prime}=\left[\begin{array}{ll}1 & 3\end{array}\right] \cap\left[\begin{array}{ll}2 & 4\end{array}\right], 4^{\prime}=\left[\begin{array}{ll}1 & 4\end{array}\right] \cap\left[\begin{array}{ll}2 & 3\end{array}\right], 5=\left[\begin{array}{ll}0 & 3\end{array}\right] \cap\left[\begin{array}{ll}1 & 2\end{array}\right], 0^{\prime}=\left[\begin{array}{ll}0 & 2\end{array}\right] \cap$ $[45], 6=\left[\begin{array}{ll}0 & 4^{\prime}\end{array}\right] \cap[12], 7=\left[\begin{array}{ll}0 & 3^{\prime}\end{array}\right] \cap[14], 8=\left[0^{\prime} 6\right] \cap[24], 9=\left[0^{\prime} 4\right] \cap[27]$, then (189).

THEOREM 1. C_{1} holds, in a projective plane if, and only if, $\left(a o_{p} a\right) o_{p} a=a o_{p}\left(a o_{p} a\right), \forall a$ $\in R$ in every coordinatizing (R, F).

Proof: In the incomplete C_{1}-configuration set $(\mathrm{X}, \mathrm{Y}, \mathrm{Q}, \mathrm{E})$ so that (see Fig. 1): $1=\mathrm{X}, 2=$ $Y, 0=Q$ and $E=\left[\begin{array}{ll}2 & 3\end{array}\right] \cap\left[\begin{array}{ll}0 & 3^{\prime}\end{array}\right],(1, a)=3,(a, b)=4$ with $b=a o_{p}$. Thus, $3^{\prime}=(a, a), 4^{\prime}=$ $(1, b), 5=(a), 0^{\prime}=(0, p), 6=(b), 7=(b, b), 8=\left(a, a o_{p} b\right), 9=(b, b \circ p a)$ and hence $(189) \Leftrightarrow$ $a o_{p} b=b o_{p} a$.

Fig. 1
It is to be noted that with the condition (034), C_{1} is nothing else than the hexagon condition [6, p. 54] for the ($0,1,2$) - net. This condition for all non - collinear point triples $0,1,2$ is equivalent with $\mathrm{a}^{2} \cdot \mathrm{a}=\mathrm{a} \cdot \mathrm{a}^{2}$. We remark also that if (R, F) is linear ternary ring (ie., $F(x, m, k)=x . m+k$), then $1 o_{p a}=F(1, a, p)=a^{*} p=a+p=F(a, 1, p)=a o_{p} l$. We write $\left\{(1,2,3),\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)\right\}^{0}(456)$ for two triangles $(1,2,3),\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)$ perspective from a point 0 and from a line $\left[\begin{array}{ll}4 & 5\end{array}\right]=\left[\begin{array}{ll}4 & 6\end{array}\right]$. An incomplete configuration [3] is a configuration with one missing incidence. We denote by D_{1} the little Desargues proposition in which the center of perspectivity of D_{1} is incident with the axis of perspectivity [4, p. 330]. The following theorem shows that the little Desargues proposition is the geometric representation of the algebraic identity $10_{p} a=a o_{p} 1$ (equivalently, $a^{*} p=a+p$).

THEOREM 2. In any projective plane π the proposition D_{1} holds if, and only if, $10_{\mathrm{p}} \mathrm{a}=$ ${ }^{a o} p l, \forall a \in R ; p \in R \backslash\{0\}$ for every coordinatizing (R, F).

Proof. Let ($1,2,3$), ($\left.1^{\prime}, 2^{\prime}, 3^{\prime}\right)$ be two triangles generating an inco: plate D_{1}-configuration in which $\left\{(1,2,3),\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)\right\}^{0}$ and (0 45) (see Fig. 2). Choose the coordinatizing quadrangle(X, Y, Q, E) so that $X=[23] \cap[45], 0=Y, 1=Q, E=[13] \cap[02], 2=(1, a)$ and $1^{\prime}=(0, p)$; $p \neq 0$, thus $3=(a, a), 2^{\prime}=(1, F(1, a, p)), 3^{\prime}=(a, F(a, 1, p))$ and therefore $\left(2^{\prime} 3^{\prime} X\right) \Leftrightarrow(6 I[45])$ $\Leftrightarrow F(1, a . p)=F(a, 1, p)$.

Fig. 2

It is to be noted that if $p=0$, then $i \cdot a=a \cdot 1=a, \forall a \in R$, and if $p=1$, then a special case of the little Desarques is shown to be the configurational representation of the algebraic identity Doa $=\mathrm{aol}, \forall \mathrm{a} \in \mathrm{R}$, (see theorem 1 in [3]).

Let $(1,2,3)$ and $\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)$ be any two triangles in a projective plane π with $4=[12] \cap$ $\left[1^{\prime} 2^{\prime}\right], 5=\left[\begin{array}{ll}1 & 3\end{array}\right] \cap\left[1^{\prime} 3^{\prime}\right], 6=\left[\begin{array}{ll}2 & 3\end{array}\right] \cap\left[2^{\prime} 3^{\prime}\right]$. Special forms of Desargues proposition denoted by D_{1} (the little Desargues proposition), D_{2} and D_{3} arise when one requires one, two and three vertices of one triangle to lie on the sides of the other triangle [4, p.330]. We may reformulate D_{2} and D_{3} as follows:

The proposition D_{2}.
If $\left\{(1,2,3),\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)\right\}^{0}$; with $1 \mathrm{I}\left[2^{\prime} 3^{\prime}\right]$ and $1^{\prime} \mathrm{I}[23]$, then (4 56).

The proposition D_{3}.
If $\left\{(1,2,3),\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)\right\}^{0}$; with $3 I\left[1^{\prime} 2^{\prime}\right]$ and $5 I\left[2^{\prime} 2\right]$ and $6 I\left[1^{\prime} 1\right]$ then (456) (see Fig. 6).

Now, a special form of the proposition D_{2} may be formulated as follows:

The proposition $\left(\mathrm{D}_{2}\right)^{*}$.
If the triangles $(1,2,3)$ and $\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)$ are perspective from $0,1^{\prime} \mathrm{I}[23], 1 \mathrm{~L}\left[2^{\circ} 3^{\prime}\right], 4=[12] \cap$ $\left[1^{\prime} 2^{\prime}\right], 5=\left[\begin{array}{ll}1 & 3\end{array}\right] \cap\left[1^{\prime} 3 \prime\right], 6=\left[\begin{array}{ll}2 & 3\end{array}\right] \cap\left[2^{\prime} 3^{\prime}\right]$ and the lines $[12],\left[1^{\prime} 3 \prime\right],\left[\begin{array}{ll}0 & 6\end{array}\right]$ are concurrent, then (456) (see Fig. 3).

THEOREM 5. $\left(\mathrm{D}_{2}\right)^{*}$ is valid in a projective plane if, and only if, in every coordinatizing (R, F) of the plane the element a determined by $a 01=0$ fulfils also the equation $10 a=0$.

Proof. Let $(1,2,3),\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)$ be two triangles generating an incomplete $\left(\mathrm{D}_{2}\right)^{*}$-configuration as depicted in Fig. 3. Assume that aol $=0$, then we may set $6=(0), 1=Y, 1^{\prime}=\mathrm{Q}$ and $7=$ $(1,1)$. It follows that $3^{\prime}=(1), 0=(0,1), 2=(1,0)$ and $(x, 0)[[1,1] \Rightarrow x o l=0 \Rightarrow x=a$.

Fig. 3

Therefore, $5=(a, a), 4=(1, a)$ and $2^{\prime}=(a)$. Now, the configuration is complete $\Leftrightarrow\left(02^{\prime} 2\right)$ holds true $\Leftrightarrow(1,0)[[a, 1] \Leftrightarrow 10 a=0$.

The question which presents itself is: under what condition is the groupoid ($\mathrm{R}, \mathrm{o}_{\mathrm{p}}$) commutative? the question is answered for the two special cases: $p=0$ and $p=1$. In fact, it has been shown that the proposition of Pappus charcterizes the commutativity of
multiplication "•" [7, p.39] and the commutativity of the operation "o" [3; p.6]. Now a general answer is given in the following theorem.

THEOREM 6. The proposition of Pappus holds in a projective plane if, and only if, $a o_{p} b=b o_{p} a, \forall a, b \in R ; p \in R$ in all coordinatizing (R, F) of the plane.

Proof. The result follows by observing that the proof of Theorem 16 in [5] remains valid by putting $\mathrm{c}=\mathrm{p}$, i.e., when we set $1^{\prime}=(0, p)$ and $E=(1,1) \mathrm{I}[12]$.

The relationships of the two configurational propositions D_{1} and D_{2} with the groupoid ($\mathrm{R}, \mathrm{o}_{\mathrm{p}}$) are explained in the following sequence of theorems and their corollaries.

THEOREM 7. D_{1} holds in a projective plane if, and only if, in every coordinatizing ternary ring $(R, F), a \cdot b=c \cdot d \Rightarrow a o_{p} b=c o_{p} d, \forall a, b, c, d \in R ; p \in R \backslash\{0\}$.

Proof: Let $(1,2,3)$ and $\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)$ be two triangles generating an incomplete D_{1} configuration with center of perspectivity 0 and (045). Putting (see Fig. 4) $0=\mathrm{Y}, 2^{\prime}=\mathrm{Q}, 2$ $=(0, p) ; p \neq 0,\left[3^{\prime} 3\right]=[a], 4=(d), 5=(b), X=[45] \cap\left[1^{\prime} 3^{\prime}\right]$, thus $3^{\prime}=[a] \cap[b, 0]=(a, a \cdot b), 1^{\prime}=$ $[d .0] \cap[0, a \cdot b]=(c, a \cdot b), \quad 1=(c, F(c, d, p)), 3=(a, F(a, b, p))$ and hence $(456) \Leftrightarrow(13 X) \Leftrightarrow$ $F(c, d, p)=F(a, b, p)$.

Fig. 4

COROLLARY 1. D_{1} holds in a projective plane if, and only if, in every coordinatizing ternary ring $(R, F), a o_{p} b=(a \cdot b) o_{p} 1, \forall a, b \in R ; p \in R \backslash\{0\}$.

Proof: This result follows from the fact that the two algebraic identities given in Theorem 7 and the preceding corollary are equivalent. To establish this we suppose first that: for any $a, b, c, d \in R, a \cdot b=c \cdot d \Rightarrow a o_{p} b=c o p d$. Then putting $d=1$, we obtain $a \cdot b=c \Rightarrow a o_{p} b=$ $c o_{p} l=(a \cdot b) o_{p} 1$. For the converse, assume that: $a o_{p} b=(a \cdot b) o_{p} 1, \forall a, b \in R$. Then, $a \cdot b=$ $c \cdot d \Rightarrow(a \cdot b) o_{p} 1=(c \cdot d) o_{p} 1 \Rightarrow a o_{p} b=c o_{p} d . \square$

THEOREM 8. D_{2} holds in a projective plane if, and only if, in every coordinatizing (R, F) $a \cdot b=c \cdot d=p \Rightarrow a o_{p} b=\operatorname{cop} d, \forall a, b, c, d \in R ; p \in R \backslash\{0\}$.

Proof: Follow the proof of Theorem 13 in [5] by setting e $=p . \square$

When $E=(1,1)$, in the proof of Theorem 13 in [5], is restricted to be incident with [1'2 $]$, we obtain the the following result.

COROLLARY 2. D_{2} holds in a plane if, and only if, in every $(R, F) a \cdot b=c \cdot d=1 \Rightarrow a o b=$ $\operatorname{cod}, \forall a, b, c, d \in R$.

THEOREM 9. D_{2} holds in a plane if, and only if, in every coordinatizing (R, F) $a \cdot b=p$ $\Rightarrow \mathrm{aO}_{\mathrm{p}} \mathrm{b}=\mathrm{po}_{\mathrm{p}} 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{R} ; \mathrm{p} \in \mathrm{R} \backslash\{0\}$.

Proof. Since the two algebraic conditions of Theorem 8 and Theorem 9 are equivalent, we conclude this result. \square

Similarly, the following result is a consequence of Corollary 2.

COROLLARY 3. D_{2} hoids in a plane if, and only if, $a \cdot b=1 \Rightarrow a o b=101, \forall a, b, c, d \in R$, for every coordinatizing (R, F).

Finally, the relationship of the proposition \bar{F}, which states that the diagonal points of a complete quadrangle form a collinear triple [4, p. 329], with the groupoid (R, o_{p}); $p \neq 0$, is explained in the following theorem.

THEOREM 10. The proposition $\overline{\mathrm{F}}$ holds, in any projective plane π, if, and only if, in every coordinatizing (R, F) of $\pi, a \cdot b=p \Rightarrow a 0_{p} b=0, \forall a, b \in R ; p \in R \backslash\{0\}$.

Proof. Observing the validity of the proof of Theorem 8 in [5], when c is taken to be any element p in $\mathrm{R} \backslash\{0\}$, this result can be established.
For the special case $p=1$, i.e., $E=(1,1) I[24]$, we state the following result obtained also in [3, p. 8].

COROLLARY 4. The proposition $\overline{\mathrm{F}}$ holds in π if, and only if, in every coordinatizing $(R, F), a \cdot b=1 \Rightarrow a o b=0, \forall a, b \in R$.

Finally, we generalize the results obtained in the two theorems 6, 7, given in [3], to be satisfied in any groupoid (R, o_{p}); such that p is taken to be any fixed element in $R \backslash\{0\}$. In fact, we prove analogously the following theorem.

THEOREM 11. In any groupoid ($\mathrm{R}, \mathrm{o}_{\mathrm{p}}$); $\mathrm{p} \neq 0$, the following properties are equivalent:
(1) $a o_{\mathrm{p}} b=(a \cdot b) o_{\mathrm{p}} 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$,
(2) $\mathrm{a} \cdot \mathrm{b}=\mathrm{c} \cdot \mathrm{d} \Rightarrow a o_{\mathrm{p}} \mathrm{b}=\operatorname{co}_{\mathrm{p}} \mathrm{d}, \forall \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}$,
(3) $a o_{p} b=c o_{p} d \Rightarrow a \cdot b=c \cdot d, \forall a, b, c, d \in R$,
(4) $\exists f_{\mathrm{p}}, g_{\mathrm{p}}: \mathrm{R} \rightarrow \mathrm{R} ; \mathrm{ao} \mathrm{p}_{\mathrm{p}} \mathrm{b}=\mathrm{f}_{\mathrm{p}}(\mathrm{a} \cdot \mathrm{b})+\mathrm{g}_{\mathrm{p}}(\mathrm{a}+\mathrm{b}), \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$,
(5) $\exists \varphi_{\mathrm{p}}, \psi_{\mathrm{p}}: R \rightarrow \mathrm{R} ; \mathrm{a} \cdot \mathrm{b}=\varphi_{\mathrm{p}}\left(\mathrm{ao}_{\mathrm{p}} \mathrm{b}\right)+\psi_{\mathrm{p}}(\mathrm{a}+\mathrm{b}), \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$.

Proof. For $(1) \Leftrightarrow(2)$, see the proof of Corollary 1 . Now to show (1) $\Leftrightarrow(3)$, we assume first (1) holds true. Then, $a o_{p} b=c o_{p} d \Rightarrow(a \cdot b) o_{p} 1=(c \cdot d) o_{p} 1$, and hence by Lemma 2, we get $a \cdot b=c \cdot d$, i.e., (3) holds true. Suppose (3) holds true. Then, by Lemma 2, the equation $x o_{p} 1$ $=a o_{p} b$ has unique solution in R and by (3), it follows that $x=x \cdot 1=a \cdot b$, i.e., $a o_{p} b=$ $(a \cdot b) o_{p}$. Thus (1) holds true. Now we show (1) implies (4). In fact, we let: $f_{p}(x):=x$ and $g_{p}(x):=p, \forall x \in R$. By (1), for any $a, b \in R$, we have $a o_{p} b=(a \cdot b) o_{p} l=a \cdot b+p$.Thus, $a o_{p} b$ $=f_{p}(a \cdot b)+g_{p}(a+b)$. Hence (4) holds true. For the converse, we suppose (4). Putting $a=0$ in (4), then $p=f_{p}(0)+g_{p}(b), \forall b \in R$. Since $(R,+)$ is a loop, it follows that there exists $k \in R$ with $g_{p}(x):=k, \forall x \in R$. Since $a \cdot b=(a \cdot b) \cdot 1$, we have

$$
\begin{aligned}
a o_{p} b & =f_{p}(a \cdot b)+g_{p}(a+b) \\
& =f_{p}(a \cdot b)+k \\
= & f_{p}((a \cdot b) \cdot 1)+k \\
& =(a \cdot b) O_{p} 1 .
\end{aligned}
$$

Thus $(4) \Rightarrow(1)$. We conclude this proof by showing (1) $\Leftrightarrow(5)$. Suppose that (1) holds true, i.e., $a o_{p} b=(a \cdot b) o_{p} 1$, for any a, b in R. Then we may put $\varphi_{p}(x):=y$ such that y is the unique
solution of the equation $y+p=x$. Also, put $\psi_{p}(x):=0$. Thus, from $a \cdot b=\varphi_{p}(a \cdot b+p)$ and $a \cdot b+p=a o_{p} b(b y(1))$, we obtain that

$$
\begin{aligned}
a \cdot b & =\varphi_{p}\left(a o_{p} b\right)+0 \\
& =\varphi_{p}\left(a o_{p} b\right)+\psi_{p}(a+b)
\end{aligned}
$$

Hence (5) is valid.
Remains to show that: $(5) \Rightarrow(1)$. Now putting $a=0$ in (5), we obtain

$$
0=\varphi_{\mathrm{p}}(\mathrm{p})+\psi_{\mathrm{p}}(\mathrm{~b}), \forall \mathrm{b} \in \mathrm{R} .
$$

Consequently, since ($\mathrm{R},+$) is a loop, there exists $\mathrm{t} \in \mathrm{R}$ with $\psi_{\mathrm{p}}(\mathrm{x}):=\mathrm{t}, \forall \mathrm{x} \in \mathrm{R}$. Thus, for any $a, b \in R$, we have

$$
\begin{aligned}
a \cdot b & =\varphi_{p}\left(a o_{p} b\right)+\psi_{p}(a+b) \\
& =\varphi_{p}\left(a o_{p} b\right)+t \\
& =\varphi_{p}\left((a \cdot b) o_{p} 1\right)+t .
\end{aligned}
$$

Therefore, $\varphi_{p}\left(a_{p} b\right)=\varphi_{p}\left((a \cdot b) o_{p} l\right)$. But, φ_{p} is one-to-one function and hence, $a o_{p} b=$ $(a \cdot b) o_{p} 1$. This completes the proof.

THEOREM 12. The following properties are equivalent in any groupoid (R, op) ; $\mathrm{p} \neq 0$.
(1) $\exists \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} ; \mathrm{f}\left(\mathrm{ao}_{\mathrm{p}}(\mathrm{b} \cdot \mathrm{c})\right)=(\mathrm{a} \cdot \mathrm{b}) \mathrm{o}_{\mathrm{p}} \mathrm{c}, \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$,
(2) $a o_{\mathrm{p}} \mathrm{b}=(\mathrm{a} \cdot \mathrm{b}) \mathrm{o}_{\mathrm{p}} 1$ and $(\mathrm{a} \cdot \mathrm{b}) \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c}), \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$,
(3) $a o_{p}(b \cdot c)=(a \cdot b) o_{p} c, \forall a, b, c \in R$.

Proof. It is easy to show that (2) and (3) are equivalent and (1) follows from (3). Remains to show (1) $\Rightarrow(3)$. Putting $c=1$ in (1), we have $f\left(a o_{p} b\right)=(a \cdot b) o_{p} 1$ and therefore $(a \cdot b) o_{p} c$ $=f\left(a o_{p}(b \cdot c)\right)=a \cdot(b \cdot c) o_{p} 1$. Also, $a=1$ gives $b o_{p} c=(b \cdot c) o_{p} 1$ and thus $a o_{p}(b \cdot c)=a \cdot(b \cdot c) o_{p} 1$ $=(\mathrm{a} \cdot \mathrm{b}) \mathrm{op}_{\mathrm{p}} \mathrm{c} . \square$

2. THE QUASIGROUPS $(R,+p)$ and $\left(R,{ }^{*} p\right)$

Let π be any projective plane coordinatized by the ternary ring (R, F). Fixing an element p $\neq 0$ in R, and using the ternary operation F, two binary operations, denoted by $+_{p}$ and ${ }^{*} \mathrm{p}$, are to be defined as follows:

$$
\begin{gathered}
\mathrm{a}+\mathrm{p} \mathrm{~b}=\mathrm{F}(\mathrm{a}, \mathrm{p}, \mathrm{~b}), \\
\mathrm{a}^{*} \mathrm{p} \mathrm{~b}=\mathrm{F}(\mathrm{p}, \mathrm{a}, \mathrm{~b}), \forall \mathrm{a}, \mathrm{~b} \in \mathrm{R} .
\end{gathered}
$$

We may write $a+1 b=a+b$ and $a^{*} 1^{b}=a * b$.
First we prove the following sequence of lemmas concerning the system ($\mathrm{R}, \mathrm{t}_{\mathrm{p}}$).

LEMMA 5. ($\mathrm{R},+_{\mathrm{p}}$) is a quasigroup with left identity element 0 .
Proof. Since, $a+p b=F(a, p, b)$, the system $(R,+p)$ is a groupoid (binary system). Now consider the equation ${ }^{+}{ }_{p}{ }^{x}=b, a, b \in R$. In fact, ${ }^{+}{ }^{+} p^{x}=b \Leftrightarrow F(a, p, x)=b \Leftrightarrow(a, b) I[p, x] \Leftrightarrow$ $(0, x)=[0] \cap[(p)(a, b)]$. Hence the equation has a unique solution. Also, $y+p^{a}=b \Leftrightarrow$ $F(y, p, a)=b \Leftrightarrow(y, b) I[p, a] \Leftrightarrow(y, b)=[0, b] \cap[p, a]$ and consequently the equation $y+{ }_{p} a=b$ has a unique solution. Finally, for any $a \in R, 0+{ }^{2} a=F(0, p, a)=a$. This shows that 0 is the left identity of the groupoid $\left(\mathrm{R},+_{\mathrm{p}}\right)$.

By Lemma 5, we have proved the following result.

LEMMA 6. The following two laws hold for all $a, b, c \in R$:

$$
\begin{equation*}
a+p b=a+p c \Rightarrow b=c \tag{i}
\end{equation*}
$$

(ii) $\mathrm{b}^{+} \mathrm{p}^{\mathrm{a}}=\mathrm{c}+{ }_{\mathrm{p}} \mathrm{a} \Rightarrow \mathrm{b}=\mathrm{c}$.

We remark that since $a+_{p} 0=F(a, p, 0)=a . p$, then $a+_{p} 0=a \Leftrightarrow a=0$ or $p=1$. Consequently, unless $p=1,0$ is not the right identity of $(R,+p)$. In fact, if $p \neq 1$, the system $(R,+p)$ has no right identity; because if e is a right identity, then $a{ }^{+} \mathrm{p}=a, \forall a \in R$, which implies $0{ }^{0}{ }_{p} e=$ 0 , i.e., $\mathrm{e}=0 ;$ but $1+\mathrm{p} 0=1 \Rightarrow(1,1) \mathrm{I}[1,0] \Rightarrow \mathrm{p}=1$. Thus we have proved the following lemma.

LEMMA 7. Unless $\mathrm{p}=1,\left(\mathrm{R},{ }_{\mathrm{p}}\right)$ is not a loop.

LEMMA 8. Unless $p=1$, the operation $+_{p}$ is non-commutative in any ternary ring (R, F) associated with a projective plane π.

Proof. For $\mathrm{p} \neq 1$, we get $0+{ }_{\mathrm{p}} 1=1$ and $1+{ }_{p} 0=\mathrm{p}$. In case $\mathrm{p}=1$, it has been shown that, the loop $(\mathrm{R},+)$ is abelian in those planes where the first minor proposition of Pappus, P_{1}, is valid [7, p.25].

LEMMA 9. Unless $\mathrm{p}=1$, the operation ${ }_{\mathrm{p}}$ is non-associative in any ternary ring (R, F) associated with a projective plane π.

Proof. Taking $\mathrm{a}=1$ and $\mathrm{b}=\mathrm{c}=0$, we get $(1+\mathrm{p} 0)+\mathrm{p} 0=\mathrm{p} \cdot \mathrm{p}$ and $1+\mathrm{p}(0+\mathrm{p} 0)=\mathrm{p}$. But $\mathrm{p}^{2} \neq \mathrm{p}$ (as $p \neq 1$). For the special case $p=1$, the loop $(R,+)$ is a group; i.e., + is associative
operation, if in the plane coordinatized by (R, F) the Reidemeister proposition for the (X, $\mathrm{Y},(1))$ - net is valid [6].

It is to be noted that $0{ }^{+} p(b+p c)=(0+p b)+p$, holds for any b, c in R. While, $a+p(0+p c)=$ $(a+p 0)+p c \Leftrightarrow a+p c=(a \cdot p)+p c \Leftrightarrow a=a \cdot p \Leftrightarrow a=0$ or $p=1$

Now, for the system ($\mathrm{R},{ }^{*}$) , we prove the following lemmas.

LEMMA 10. $\left(\mathrm{R},{ }^{*} \mathrm{p}\right)$ is a quasigroup with left identity element 0 .
Proof. Since, $a^{*}{ }^{p} b=F(p, a, b),\left(R,{ }^{*} p\right)$ is a binary system (a groupoid). Now, $a^{*}{ }^{*}{ }^{x}=b \Rightarrow$ $F(p, a, x)=b \Rightarrow(p, b) I[a, x] \Rightarrow(0, x)=[0] \cap[(a)(p, b)]$; thus x is unique in R. Also, $y^{*} p^{a}=$ $b \Rightarrow F(p, y, a)=b \Rightarrow(p, b) I[y, a] \Rightarrow(y)=L \cap[(p, b)(0, a)]$. Thus, y is unique in R. Since $0^{*} p b=F(p, 0, b)=b$, for any $b \in R$, we conclude that 0 is the left identity of the quasigroup ($\mathrm{R},{ }^{*} \mathrm{p}$).

Immediately, we obtain the result in Lemma 11.

LEMMA 11. The following two laws hold for any a, b, c in R :
(1) $\mathrm{a}^{*} \mathrm{p} b=\mathrm{a}^{*} \mathrm{p} \Rightarrow \Rightarrow \mathrm{b}=\mathrm{c}$;
(2) $b^{*} p^{a}=c^{*} p^{a} \Rightarrow b=c$.

LEMMA 12. Unless $\mathrm{p}=1,\left(\mathrm{R},{ }^{*} \mathrm{p}\right)$ is not a loop.
Proof. By the preceding lemma, $(\mathrm{R}, * \mathrm{p})$ is a quasigroup with the left identity element 0 . Now, since $a^{*} p=p \cdot a$, then $a^{*} p=a \Leftrightarrow p=1$ or $a=0$. Thus we conclude that, unless $p=$ 1,0 is not the right identity of $\left(R,{ }^{*} p\right)$. In fact, $a^{*} p e=a, \forall a \in R$ implies, $0^{*}{ }_{p} e=0$,i.e., $e=$ 0 . Hence, unless $p=1$, the system ($R, * p$) has no right identity and hence ($R, *$,) is not a loop. \square

LEMMA 13. Unless $\mathrm{p}=1$, the quasigroup $\left(\mathrm{R},{ }^{*} \mathrm{p}\right)$ is not abelian.
Proof. If $\mathrm{p} \neq 1$, we establish the result by taking $\mathrm{a}=0$ and $\mathrm{b}=1$ and then we obtain $0^{*} \mathrm{p} 1=$ 1 , while $1^{*}{ }_{p} 0=p$. In the case $p=1$, the system $\left(R,{ }^{*}\right)$ is an abelian group if the second minor proposition of Pappus is valid in the projective plane coordinatized by R [2].

Now, the -question presents itself is: are the two operations ${ }^{+}$p and ${ }^{*} p$ dual ?. The question is answered for the the special case $p=1$ [2]. Moreover, it has been shown [4] that the two dual operations + and * are equal if, and only if, the little proposition of Desargues is valid (see theorem 6 in[4]). In fact, it is not known yet if $+_{p}$ and ${ }^{*} p, p \neq 0,1$, are dual. However, the following interesting theorem gives a necessary and sufficient condition that the two operations ${ }^{+}$and ${ }^{*} p, p \neq 0,1$, are equal in any projective plane coordinatized by a ternary ring (R, F).

THEOREM 13. In any projective plane π, the proposition of Pappus holds in π if, and only if, in every coordinatizing (R, F), $a^{*} p^{b}=a+p b$, for any $a, b \in R ; p \in R \backslash\{0,1\}$.

Proof. Since the proof of Theorem 16 in [5] is true when we take the element $a(o r b)$ to be any element $\mathrm{p} \neq 0,1$, we conclude this result. \square

THEOREM 14. D_{1} is equivalent to each of the following conditions each in every ternary ring (R, F):
(i) $\mathrm{a} \cdot \mathrm{p}=\mathrm{p} \cdot \mathrm{a} \Rightarrow \mathrm{a}^{*} \mathrm{p}^{b}=\mathrm{a}^{+} \mathrm{p} b, \forall \mathrm{a}, \mathrm{b} \in \mathrm{R} ; \mathrm{p} \in \mathrm{R} \backslash\{0,1\}$
(ii) $1^{*}{ }^{p} b=1+{ }_{\mathrm{p}} \mathrm{b}, \forall \mathrm{b} \in \mathrm{R} ; \mathrm{p} \in \mathrm{R} \backslash\{0,1\}$

Proof. Assume D_{1} holds, then (R, F) is linear and hence, $\mathrm{a} \cdot \mathrm{p}=\mathrm{p} \cdot \mathrm{a} \Rightarrow \mathrm{a} \cdot \mathrm{p}+\mathrm{b}=\mathrm{p} \cdot \mathrm{a}+\mathrm{b} \Rightarrow$ $F(a, p, b)=F(p, a, b)$, i.e., $a+p b=a^{*} p$. Thus (i) holds true. (i) \Rightarrow (ii) is obvious as $1 \cdot p=p \cdot 1$. Remains to show (ii) implies the validity of D_{1}. Now, since $1+p b=p * b$ and $1^{*} p b=p+b$ and by setting $a=p \neq 0,1$, Theorem 6 in [4] gives D_{1}. \square

The influence of the configurational proposition D_{2}, D_{3} and finally \bar{F} on the quasigroups $\left(\mathrm{R},{ }^{+} \mathrm{p}\right)$ and $\left(\mathrm{R},{ }^{*} \mathrm{p}\right)$ is explained in the following Theorems.

THEOREM 15. D_{2} holds in a projective plane if, and only if, in every coordinatizing $(R, F) \mathrm{a}^{*} \mathrm{p}^{\mathrm{a}}=0, \forall \mathrm{a} \in \mathrm{R}$ with $\mathrm{p} \neq 0$ determined by $\mathrm{p}+1=0$.

Proof. Let $(1,2,3)$, ($1^{\prime}, 2^{\prime}, 3^{\prime}$) be two triangles, in π, generating an incomplete D_{2} configuration. Set (X,Y,Q,E) as depicted in Fig. 5. Assume that $\mathrm{p}+1=0 ; \mathrm{p} \neq 1$ (this means that \bar{F} is not valid in π). Now, for $a \in R \backslash\{0,1\}$ (excluding the trivial cases), we may set $5=$ (a) and hence we find $3=(1), 2=(0,1), 1^{\prime}=(1, a), 4=(0, a)$ and $6=(x, 0)[[1,1] \Rightarrow x+1=0$ $\Rightarrow x=p$. Now, D_{2}-configuration is complete $\Leftrightarrow(546) \Leftrightarrow(p, 0) I[a, a] \Leftrightarrow a^{*} p^{a}=0 . \square$

Fig. 5

THEOREM 16. D_{3} holds in a projective plane if, and only if, in every coordinatizing $(R, F),(1+1)^{*} p(1+1)=0$ with $p \neq 1$ determined by $p+1=0$.

Proof. Let ($1,2,3$) and ($1^{\prime}, 2^{\prime}, 3^{\prime}$) be two triangles, in π, generating an incomplete D_{3} configuration (see Fig. 6). Choose the coordinate quadrangle as in the preceding theorem. Then, we get $1^{\prime}=(1), 2^{\prime}=(0,1), 3=[1] \cap[1,1]=(1,1+1)=(1, a)$ and hence $2=(0, a)$ and 1 $=$ (a). Calculating the coordinates of 4 , we find that $4=(x, 0) I[1,1] \Rightarrow x+1=0$ and hence x $=p$. Now, the configuration is complete $\Leftrightarrow(\mathrm{p}, 0) \mathrm{I}[\mathrm{a}, \mathrm{a}] \Leftrightarrow \mathrm{a}^{*} \mathrm{p}^{\mathrm{a}}=0$.

Fig. 6

It is to be noted that the proposition \bar{F} follows, in π, only if $1+1=0$ is valid in every coordinatizing (R, F) and consequently D_{2} and D_{3} hold, in π, (see Theorem 2 in [4]). Therefore, the preceding two theorems give a necessary and sufficient conditions for the two propositions D_{2} and D_{3} to be valid in a non-Fano plane π (i.e., a plane where \bar{F} is not valid).

Finally, we remark that the proof of Theorem 8 in [5] remains true when we take the element a or b to be any element $p \in R \backslash\{0\}$ and consequently we may state the following two results that explain the influence of the proposition \bar{E} on the quasigroups $(R,+p)$ and ($\mathrm{R},{ }^{*}$ p), respectively.

THEOREM 17. \bar{E} holds, in a projective plane π if, and only if, in every coordinatizing $(R, F), a+p a \cdot p=0, \forall a \in R$.

COROLLARY 5. $\overline{\mathrm{F}}$ holds, in a projective plane π, if, and only if, in every coordinatizing $(R, F), a * p . a=0, \forall a \in R$.

REFERENCES

[1] ALBERT, A.A. and SANDLER, R. : An Introduction to Finite Projective Planes Holt-Rinehart-Winston, NewYork 1968
[2] AL-DHAHIR, M.W. and ABDUL-ELAH, M.S. : The Dual of Addition in the Ternary Ring of a Projective Plane. Arch. Math. 25 (1974), 536-539
[3] AL-DHAHIR, M.W., BENZ, W. and GHALIEH, K. : A Groupoid of the Ternary Ring of a Projective Plane. J.of Geometry 42 (1991), 3-16
[4] AL-DHAHIR, M.W. and GHALIEH, K. : On Minor Forms of Desargues and Pappus, Geometriae Dedicata 42 (1992), 329-344
[5] GHALIEH, K. : Algebraic Properties of Some Configurational Propositions. J. of Geometry $\underline{59}$ (1997) 46-66.
[6] PICKERT, G. : Projektive Ebenen. Springer-Verlag, Berlin-Heidelberg-New York 1975
[7] SKORNYKOV, L.A. : Projective Planes. Amer. Math. Soc.. Transl. 99 (1953), 1740.

Walter Benz
Mathematisches Seminar
Bundesstr. 55
D-20146 Hamburg
Germany

Khuloud Ghalieh
Department of Mathematics Rustaq College for Education P. O. Box 48, Code 329

Rustaq-Oman

