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0. I N T R O D U C T I O N  

Let  ~z be a projective plane [1, 6] with the incidence relation I and coordinatized by a 

ternary ring (R,F) chosen in rc relative to a coordinatizing quadrangle (X, Y, Q, E). The 

points of~z are the elements (x,y) (x, y e R) esp. Q -- (0,0) E = (1,1), the (m) (m ~ R), 

esp. X = (0), and Y ; the lines of  ~ are the [m,k] (m, k ~ R), [c] (c E R), L; the incidence 

relation I is determined by: y = F(x,m,k) ~ (x,y) I [m,k], V x,m,k ~ R; (x,y) I Ix]; (x,x) 

I [1,0]; (m) I [m,k]; (m) I L; (0,k) I [m,k]; (l,m) I [m,0]; Y I L. Using the notation of[3]  

the intersection of  two different lines a, b is denoted by a~b, the join of  two different 

points A, B by [AB], while by (A B C) we denote the collinearity of  the points A, B, C. 

Using the two elements 0, 1 (0, 1 are two distinct elements in the coordinatizing set R) 

three binary operations, namely, + , . ,  * were defined out of the ternary ring (R,F) (see 

[1,p. 50], [2] and [3]) as follows: a+b = F(a, 1, b), a.b = F(a, b, 0), a .b  = F(1, a, b), V a,b 

R. A fourth binary operation, denoted by "o" has been defined as follows [3]: 

ao b = F(a,b,1), 'v' a,b ~ R. 

In this paper we introduce on (R,F) three binary operations by fixing any element p in R 

as follows: 
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aopb = F(a,b,p), V a,b ~ R, 

a+pb -=- F(a,p,b), V a,b ~ R; p ~ 0, 

a*pb --- F(p,a,b), V a,b E R; p ~ 0. 

We shall develop some algebraic and geometric properties of  the groupoids (binary 

systems) (R, op), (R,+p) and (R,*p) in the presence o f  certain configurational propositions 

[7, p. 22-23]. 

1. T H E  G R O U P O I D  (R,op) 

Let p be any fixed element in R. Then, for any a,b ~ R, we define aopb = F(a,b,p). Thus 

(R,op) is a binary system (a groupoid). We write ao0 b = a'b and ao lb  = aobo 

L E M M A  1. For any a,b ~ R, aopb = p r a = 0 or b = 0. 

Proof aopb = p r F(a,b,p) = p r ( a, p)I[b,p] r [ a ], [ 0, p], [ b, p] are concurrent 

(0, b)I[a] or [0, p] = [b, p] <=~ a = 0 or b = 0. []  

L E M M A  2. For any a,b a R, the two equations aopx = b and yopa = b have unique 

solutions in R if, and only if, a ~ 0. 

Proof Let a,b e R; a ~ 0, then aopx = b r F(a,x,p) = b r (a,b)I[x,p] ~ (x) -- L ~ [(a,b) 

(0,p)], which shows that there exists exactly one solution x in R. Similarly, yopa = b r 

F(y,a,p) = br (y,b)I[a,p] e:~ (y,b) = [0,b]c~[a,p], which shows that there exists exactly one 

solution y in R. By Lemma 1, there are no solutions in the case a = 0 for b ~ p and every 

element o f  R is a solution i f b  = p. [] 

R E M A R K .  From Lemma 2 follow the following two cancellation laws in the groupoid 

(R,op): 

(i) aopb = aOpC ~ b = c, V a,b,c ~ R; a ~: 0, 

(ii) bopa = copa ~ b = c, V a,b,c ~ R; a ~ 0. 

It follows, from Lemma 2, that (R, op) is not a quasigroup (in particular (R, ") and (R, 0) are 

not quasigroups). We also note that if  p = 0, i.e., aopb = a.b, then (R\{0},') is a loop [1, 
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p.50]. But  i f p  ;~ 0 (esp. p = 1), then the equation pOpX = 0 has a unique solution x ,which is 

0, since pop0 = p. Also, the equation yopp = 0, has a unique solution y, which is ~ 0, 

since 0opp = p. Hence,  the pair (R\{0},Op) is not a groupoid, i.e., the exclusion o f  0 doesn ' t  

help in the case p a 0 (esp. p = 1). Moreover,  in the system (R,op), p ~e 0, there is no right 

or !eft identity element because the two equations XOp0 = p and 0Opy = p hold true for any 

x,y E R. The following lemma shows that the exclusion of  0 again doesn ' t  help (for the 

case p = 1, compare [3]). 

L E M M A  3. Let p be a fixed element in R\{0}(esp. p = I). Then, unless R = {0,1}, there is 

no x, y e R such that: 

(i) XOpa = a, V a ~ R\{0}, 

(ii) aopy = a, V a e R\{0}. 

Proof For a = p, in equation (i) as well as (ii), we obtain x = 0, y = 0, respectively. Now 

for any a ~e p, we have 0Opa = a ~ a = p, also, aOp0 = a ~ a = p. In particular for a = 1, 

we get p = 1 and hence R = {0,1}. Conversely, i f R  = {0,1},i.e., p = 1, the two equations 

xol  = 1 and 1 oy = 1, have, by Lemma 1, the solution x = y = 0. []  

L E M M A  4. For p ;e 0, the groupoid (R, op) is non-associative in any ternary ring (R,F). 

Proof. 0 o p ( l o p l )  = p, but (0op l )op l  = popl  = F(p, 1, p) # p since (p, p) ( ~ Q) is on [1, 0] 

and therefore not on [I, p]. []  

However ,  a weak form of  associativity, namely (aopa)Opa = aop(aOpa), ~' a ~ R, may hold 

in those projective planes in which the following condition, denoted by C 1, is satisfied. 

The condit ion C 1. 

I f  1, 2, 3, 4 are four points, no three o f  which are col l inear ,  0 a point not on the lines [1 2], 

[I 3], [1 4], [2 3], [2 4] and 3 "= [1 3]n[2  4], 4 '= [1 4 ]~[2  3], 5 = [0 3In[1  2], 0" = [0 2] n 

[4 5], 6 = [0 4"In[1 2], 7 = [0 3"]~[1 4], 8 = [0"6]c~[2 4], 9 = [0 '4 ]n [2  7], then (1 8 9). 

T H E O R E M  1. C 1 holds, in a projective plane if, and only if, (aopa)Opa = aop(aOpa), V a 

R in every coordinatizing (R, F). 
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Proof." In the incomplete Cl-configuration set (X, Y, Q, E) so that (see Fig. I ): 1= X, 2= 

Y, 0 = Q and E = [2 3]~[[0 3"], (1,a) = 3, (a,b) = 4 with b = aopa. Thus, 3 "= (a,a),  4"= 

(l,b), 5 = (a), 0 "= (0,p), 6 = (b), 7 = (b,b), 8 = (a,aopb), 9 = (b,bopa) and hence (1 8 9) r 

aopb = bopa. [] 

c4 

2--Y 

Fig. 1 

It is to be noted that with the condition (0 3 4), C1 is nothing else than the hexagon 

condition [6, p. 54] for the (0, 1, 2) - net. This condition for all non - collinear point triples 

0, 1, 2 is equivalent with a 2 . a = a .  a 2. We remark also that if (R,F) is linear ternary ring 

(i,e., F(x,m,k) = x.m+k ), then lopa = F(1,a,p) = a*p = a+p = F(a,l,p) = aopl. We write 

{(1,2,3), (I ",2',3')}0(4 5 6) for two triangles (1,2,3), (1 ',2",3") perspective from a point 0 

and from a line [4 5]=[4 6]. An incomplete configuration [3] is a confi~maration with one 

missing incidence. We denote by D 1 the little Desargues proposition in which the center 

of  perspectivity of D I is incident with the axis of  perspectivity [4, p. 330]. The following 

theorem shows that the little Desargues proposition is the geometric representation of the 

algebraic identity l opa = aopl (equivalently, a*p = a+p). 

T H E O R E M  2. In any projective plane = the proposition D 1 holds if, and only if, lopa = 

aopl, g.a  s R; p ~ R\ {0} for every coordinatizing (R, F). 
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Proof. Let (1,2,3), (1 ",2 ",3 ") be two triangles generating an inco: tplete D 1-configuration in 

which {(1,2,3), (1 ",2',3")} 0 and (0 4 5) (see Fig. 2). Choose the coordinatizing quadrangle- 

(X, Y, Q, E) so that X = [2 3]~[4 5], 0 = Y, 1 = Q, E = [1 3]n[0 2], 2 = (1,a) and 1" = (0,p) ; 

p:z 0, thus 3 = (a.a), 2 "= (1, F(1,a,p)), 3 "= (a, F(a,l,p)) and therefore (2"3"X) , ~  (6 1 [4 5]) 

r F(I,a.p) = F(a. 1,p). [] 

f4 \ /  

I 

Fig. 2 

It is to be noted that ifp = 0, then i-a = a.1 = a, V a ~ R, and i fp  = 1, then a special case of  

the little Desarques is shown to be the configurational representation of  the algebraic 

identity Ioa = aol,  V a ~ R, (see theorem 1 in [3]). 

Let (1, 2, 3) and (1",2",3") be any two triangles in a projective plane rc with 4 = [1 2]~  

[I "2 "], 5 = [I 3]c7[1 '3 "], 6 = [2 3]n[2"3"]. Special forms of  Desargues proposition denoted 

by D l(the little Desargues proposition), D 2 and D 3 arise when one requires one, two and 

three vertices of  one triangle to lie on the sides of  the other triangle [4, p.330]. We may 

reformulate D 2 and D 3 as follows: 

The proposition D 2. 

If {(1,2,3), (I ",2",3")}0; with 1I[2" 3"] and 1"I[2 3], then (4 5 6). 

Tile proposition D 3. 
tf {(1,2,3), (I ",2",3 ")}0; with 3I[1 "2"] and 5I[2"2] and 6I[1"1] then (4 5 6) (see Fig. 6). 
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Now, a special form of the proposition D 2 may be formulated as follows: 

The proposition (D2)*. 
If the triangles (1, 2, 3) and (1 ",2",3") are perspective from 0, 1"I[2 3], 1I[2"3"], 4 = [I 2 b  

[I "2"], 5 = [1 3 b [ 1  "3'], 6 = [2 3 b [ 2 ' 3 ' ]  and the lines [1 2], [1 "3% [0 6] are concurrent, 

then (4 5 6) (see Fig. 3). 

T H E O R E M  5. (D2)* is valid in a projective plane i f ,  and only if, in every coordinatizing 

(R, F) of the plane the element a determined by aol = 0 fulfils also the equation loa = 0~ 

Proof Let (1,2,3), (1",2",3") be two triangles generating an incomplete (D2)*-configuration 

as depicted in Fig. 3. Assume that aol = 0, then we may set 6 = (0), 1 = Y, 1" = Q and 7 = 

(1,1). It follows that 3 "= (1), 0 = (0,1), 2 = (1,0) and (x,0)I[1,1] ~ xol = 0 ~ x = a. 

3 

2 J & "  

6 

Fig. 3 

Therefore, 5 = (a,a), 4 = (1,a) and 2 "= (a). Now, the configuration is complete <::> (0 2"2) 

hoIds true r (1,0)I[a,l] <=> loa = 0. [] 

The question which presents itself is: under what condition is the groupoid (R,op) 

commutative ? the question is answered for the two special cases: p = 0 and p = 1. In fact, 

it has been shown that the proposition of  Pappus charcterizes the commutativity of  
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multiplication "-" [7, p.39] and the commutativity of  the operation "o" [3~ p.6]. Now a 

general answer is given in the following theorem. 

T H E O R E M  6. The proposition of Pappus holds in a projective plane if, and only if, 

aopb = bopa, V a,b ~ R; p ~ R in all coordinatizing (R, F) of  the plane. 

Proof The result follows by observing that the proof of  Theorem 16 in [5] remains valid 

by putting c = p, i.e., when we set 1 "= (0,p) and E = (1,1) I[1 2]. [] 

The relationships of the two configurational propositions D 1 and D 2 with the groupoid 

(R,op) are explained in the following sequence of theorems and their corollaries. 

T H E O R E M  7. D 1 holds in a projective plane if, and only if, in every coordinatizing 

ternary ring (R,F), a.b = c.d ~ aopb = copd, V a,b,c,d ~ R; p ~ R\{0}. 

Proof" Let (1, 2, 3) and (1% 2", 3") be two triangles generating an incomplete D 1- 

configuration with center ofperspectivity 0 and (0 4 5). Putting (see Fig. 4) 0 = Y, 2 '= Q, 2 

= (0,p); p r 0, [3"_3]= [a], 4 = (d), 5= (b), X = [4 5]c~[1 "3"], thus 3"= [a]~[b,0] = (a,a.b), l'---- 

[d,0]~[0,a'b] = (c,a'b), 1 = (c,F(c,d,p)), 3 = (a,F(a,b,p)) and hence (4 5 6) <=> (1 3 X)<=:, 

F(c,d,p) = F(a,b,p). [] 

s 

0 

3 j 

l s 
. J  

Fig.4 

C O R O L L A R Y  1. D 1 holds in a projective plane if, and only if, in every coordinatizing 

ternary ring (R,F), aopb = (a'b)opl, V a,b E R; p ~ R\{0}. 
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Proof." This result follows from the fact that the two algebraic identities given in Theorem 

7 and the preceding corollary are equivalent. To establish this we suppose first that: for any 

a,b,c,d ~ R, a'b = c'd ~ aopb = copd. Then putting d = 1, we obtain a'b = c ~ aopb = 

copl = (a-b)opl. For the converse, assume that: aopb = (a-b)opl, "v' a,b ~ R. Then, a.b = 

c.d ~ (a.b)opl = (c.d)opl ~ aopb = copd. [] 

THE O R E M  8. D 2 holds in a projective plane if, and only if, in every coordinatizing (R, F) 

a'b = c'd = p ~ aopb = copd, V a,b,c,d ~ R; p ~ R\{0}. 

Proof." Follow the proof of Theorem 13 in [5] by setting e = p .[~ 

When E = (1,i), in the proof of Theorem 13 in [5], is restricted to be incident with [1"2], 

we obtain the the following result. 

COROLLARY 2. D 2 holds in a plane i~ and only if, in every (R,F) a.b = c'd = 1 ~ aob = 

cod, V a,b,c,d ~ R. 

TH E O R E M  9. D 2 holds in a plane if, and only if, in every coordinatizing (R, F) a-b = p 

aopb =popl ,  V a,b ~ R;p  e R\{0}. 

Proof Since the two algebraic conditions of Theorem 8 and Theorem 9 are equivalent, we 

conclude this result. [] 

Similarly, the following result is a consequence of Corollary 2. 

COROLLARY 3. D 2 holds in a plane if, and only if, a-b = 1 ~ aob = lol ,  V a,b,c,d ~ R, 

for every coordinatizing (R, F). 

FinaI1y, the relationship of the proposition F, which states that the diagonai points of a 

complete quadrangle form a collinear triple [4, p. 329], with the groupoid (R,op); p ~ 0, is 

explained in the following theorem. 

THEOREM 10. The proposition F holds, in any projective plane n, if, and only if, in 

every coordinatizing (R, F) of n, a'b = p ~ aopb = 0, V a,b ~ R; p e R\{0}. 
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Proof Observing the validity of the proof of  Theorem 8 in [5], when c is taken to be any 

element p in R\{0}, this result can be established. [] 

For the special case p = 1, i.e., E = (1,1)I[2 4], we state the following result obtained also in 

[3, p. 8]. 

C O R O L L A R Y  4. The proposition F holds in ~ if, and only if, in every coordinatizing 

(R, F), a.b = 1 ~ aob = 0, V a,b e R. 

Finally, we generalize the results obtained in the two theorems 6, 7, given in [3], to be 

satisfied in any groupoid (R,op); such that p is taken to be any fixed element in R\{0}. In 

fact, we prove analogously the following theorem. 

T H E O R E M  11. In any groupoid (R,op); p ~ 0, the following properties are equivalent: 

(1) aopb = (a'b)opl, V a,b ~ R, 

(2) a.b = c'd ~ aopb = copd, k/a,b,c,d ~ R, 

(3) aopb = copd ~ a'b = c'd, V a,b,c,d ~ R, 

(4) 3 fp, gp: R --~ R; aopb = fp(a'b) + gp(a+b), V a,b ~ R, 

(5) 3 q~p, Up: R --~ R; a'b = q~p(aopb) + ~p(a+b), V a,b ~ R. 

Proof For (1) <=> (2), see the proof of  Corollary 1. Now to show (1) <=> (3), we assume first 

(1) holds true. Then, aopb = copd ~ (a-b)opl = (c-d)opl, and hence by Lemma 2, we get 

a'b = c.d, i.e., (3) holds true. Suppose (3) holds true. Then, by Lemma 2, the equation xopl 

= aopb has unique solution in R and by (3), it follows that x = x.1 = a.b, i.e., aopb = 

(a.b)opl .Thus (1) holds true. Now we show (1) implies (4). In fact, we let: fp(x): = x and 

gp(X): = p, g x e R. By (1), for any a,b e R, we have aopb = (a-b)opl = a.b+p.Thus, aopb 

= fp(a.b) + gp(a+b). Hence (4) holds true. For the converse, we suppose (4). Putting a = 0 

in (4), then p = fp(0) + gp(b), V b e R. Since (R,+) is a loop, it follows that there exists 

k e Rwi th  gp(X): = k, g x ~ R. Since a.b = (a.b)'l, we have 

aopb = fp(a'b) + gp(a+b) 

= fp(a'b) + k 

�9 = fp((a'b)-l) + k 

= (a'b)op 1. 

Thus (4) ~ (1). We conclude this proof by showing (1) r (5). Suppose that (1) holds true, 

i.e., aopb = (a.b)opl, for any a,b in R. Then we may put q0p(X): = y such that y is the unique 
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solution of  the equation y+p = x. Also, put ~Vp(X): : 0.Thus, from a'b : q~p(a-b+p) and 

a.b+p = aopb (by (1)), we obtain that 

a'b = q~p(aopb) + 0 

= q0p(aopb) + qJp(a+b). 

Hence (5) is valid. 

Remains to show that: (5) ~ (1). Now putting a = 0 in (5), we obtain 

0 = q~p(p) + Wp(b), V b e R. 

Consequently, since (R,+) is a loop, there exists t ~ R with tgp(X): = t, V x e R. Thus, for 

any a,b e R ,we have 

a.b = q~p(aopb) + qJp(a+b) 

= q~p(aopb) + t 

= q0p((a.b)opl) + t. 

Therefore, q~p(aopb) = q~p((a'b)opl). But, q~p is one-to-one function and hence, aopb = 

(a.b)opl. This completes the proof. [] 

T H E O R E M  12. The following properties are equivalent in any groupoid (R, op); p r 0. 

(1) 3 f: R -+ R; f(aop(b.c)) = (a.b)opc, V a,b,c ~ R, 

(2) aopb = (a.b)opl and (a.b).c = a'(b'c), V a,b,c e R, 

(3) aop(b'c) = (a.b)opC, V a,b,c s R. 

Proof It is easy to show that (2) and (3) are equivalent and (1) follows from (3). Remains 

to show (1) ~ (3). Putting c = 1 in (1), we have f(aopb) = (a.b)opl and therefore (a.b)opC 

= f(aop(b'c)) = a.(b.c)opl. Also, a = 1 gives bopc = (b.c)opl and thus aop(b.c) = a'(b'c)Opl 

= (a.b)opC. [] 

2. THE QUASIGROUPS (R,+p) and (R,*p) 

Let ~ be any projective plane coordinatized by the ternary ring (R,F). Fixing an element p 

0 in R, and using the ternary operation F, two binary operations, denoted by +p and *p, 

are to be defined as follows: 

a+pb = F(a,p,b), 

a*pb = F(p,a,b), V a,b ~ R. 

We may write a+lb = a+b and a*lb = a*b. 
First we prove the following sequence oflemmas concerning the system (R,+p). 
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L E M M A  5. (R,+p) is a quasigroup with left identity element 0. 

Proof. Since, a+pb = F(a,p,b) , the system (R,+p) is a groupoid (binary system). Now 

consider the equation a+pX = b, a,b s R. In fact, a+pX = b r F(a,p,x) = b r (a,b)I[p,x] r 

(0,x) = [0]r Hence the equation has a unique solution. Also, y+pa = b r 

F(y,p,a) = b r (y,b)I[p,a] r (y,b) = [0,b]m[p,a] and consequently the equation y+pa = b 

has a unique solution. Finally, for any a u R, 0+pa = F(0,p,a) = a. This shows that 0 is the 

left identity of  the groupoid (R,+p). [] 

By Lemma 5, we have proved the following result. 

L E M M A  6. The following two laws hold for all a,b,c a R: 

(i) a+pb = a+pc ~ b = c, 

(ii) b+pa = c+pa ~ b = c. 

We remark that since a+p0 = F(a,p,0) = a.p, then a+p0 = a r a = 0 or p = 1. Consequently, 

unless p = 1, 0 is not the right identity o f  (R,+p). In fact, i f p  ~ 1, the system (R,+p) has no 

right identity; because i f e  is a right identity, then a+pe = a, V a ~ R, which implies 0+pe = 

0, i.e., e = 0; but l+p0 = 1 ~ (1,1)I [1, 0] ~ p = 1. Thus we have proved the following 

lemma. 

LEMMA 7. Unless p = 1, (R,+p) is not a loop. 

L E M M A  8. Unless p = 1, the operation +p is non-commutative in any ternary ring (R,F) 

associated with a projective plane r~. 

Proof. For p r 1, we get 0+pl = 1 and l+p0 = p. In case p = 1, it has been shown that, the 

loop (R,+) is abelian in those planes where the first minor proposition of  Pappus, P1, is 

valid [7, p.25]. [] 

L E M M A  9. Unless p = I, the operation +p is non-associative in any ternary ring (R,F) 

associated with a projective plane n. 

Proof Taking a = 1 and b = c = 0, we get (l+p0)+p0 = p.p and l+p(0+p0) = p. But p 2 ,  p 

(as p * 1). For the special case p = 1, the loop (R,+) is a group; i.e., + is associative 
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operation, if in the plane coordinatized by (R, F) the Reidemeister proposition for the (X, 

Y, (1)) - net is valid [6]. [] 

It is to be noted that 0+p(b+pc) = (0+pb)+pC, holds for any b,c in R. While, a+p(0+pC) = 

(a+p0)+pC <=> a+pC = (a'p)+pC r a = a'p r a = 0 or p = 1 

Now, for the system (R,*p), we prove the following lemmas. 

LEMNIA 10. (R,*p) is a quasigroup with left identity element 0. 

Proof Since, a*pb = F(p,a,b), (R,*p) is a binary system (a groupoid). Now, a*pX = b 

F(p,a,x) = b ~ (p,b) I [a,x] ~ (0,x) = [0] ~ [(a) (p,b)]; thus x is unique in R. Also, y*pa = 

b ~ F(p,y,a) = b ~ (p,b)I[y,a] ~ (y) = L n [(p,b) (0,a)]. Thus, y is unique in R. Since 

0*pb = F(p,0,b) = b, for any b e R, we conclude that 0 is the left identity of the quasigroup 

(R,*p). [] 

Immediately, we obtain the result in Lemma 11. 

LEMMA 11. The following two laws hold for any a,b,c in R: 

(1) a*pb = a'pC ~ b = c; 

(2) b*pa = c*pa ~ b = c. 

L E M M A  12. Unless p = 1, (R,*p) is not a loop. 

Proof By the preceding lemma, (R,*p) is a quasigroup with the left identity element 0~ 

Now, since a 'p0 = p'a, then a 'p0 = a <=> p = 1 or a = 0. Thus we conclude that, tmless p = 

1, 0 is not the right identity of (R,*p). In fact, a*pe = a, g a e R implies, 0*pe = 0,i.e., e = 

0. Hence, unless p = I, the system (R,*p) has no right identity and hence (R,*p) is not a 

loop. D 

LEMNIA 13. Unless p = 1, the quasigroup (R,*p) is not abelian. 

Proof I fp  r 1, we establish the result by taking a = 0 and b = 1 and then we obtain 0*p! = 

1, while l ' p0  = p. In the case p = 1, the system (R,*) is an abelian group if the second 

minor proposition of Pappus is valid in the projective plane coordinatized by R [2]. [] 
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Now, the_question presents itself is: are the two operations +p and *p dual ?. The question 

is answered for the the special case p = 1 [2]. Moreover, it has been shown [4] that the two 

dual operations + and * are equal if, and only if, the little proposition of  Desargues is valid 

(see theorem 6 in[4]). In fact, it is not known yet i f+p  and *p, p ~ 0,1, are dual. However, 

the following interesting theorem gives a necessary and sufficient condition that the two 

operations +p and *p,  p a 0,1, are equal in any projective plane coordinatized by a ternary 

ring (R,F). 

T H E O R E M  13. In any projective plane n, the proposition of  Pappus holds in n if, and 

only if, in every coordinatizing (R,F), a*pb = a+pb, for any a,b s R; p ~ R\{0, 1}. 

Proof Since the proof of Theorem 16 in [5] is true when we take the element a(or b) to be 

any element p ;~ 0,1, we conclude this result. [] 

T H E O R E M  14. D 1 is equivalent to each of the following conditions each in every ternary 

ring (R,F): 

(i) a'p = p.a ~ a*pb = a+pb, ~' a,b e R; p ~ R\{0, 1 } 

(ii) l*pb = l+pb, V b s R; p ~ R\{0, 1} 

Proof Assume D 1 holds, then (R,F) is linear and hence, a'p = p'a ~ a'p+b = p'a+b 

F(a,p,b) = F(p,a,b), i.e., a+pb = a*pb. Thus (i) holds true. (i) ~ (ii) is obvious as 1.p = p. 1. 

Remains to show (ii) implies the validity of  D 1. Now, since l+pb = p*b and l*pb = p+b 

and by setting a = p ;e 0, 1, Theorem 6 in [4] gives D1, [] 

The influence of the configurational proposition D2, D 3 and finally F on the quasigroups 

(R,+p) and (R,*p) is explained in the following Theorems. 

T H E O R E M  15. D 2 holds in a projective plane if, and only if, in every coordinatizing 

(R,F) a*pa = 0, V a ~ R with p ~ 0 determined by p + 1 = 0. 

Proof. Let (1,2,3), (1",2",3") be two triangles, in n, generating an incomplete D 2- 

configuration. Set (X,Y,Q,E) as depicted in Fig. 5. Assume that p+l  = 0; p ~ 1 (this means 

that F is not valid in n). Now, for a e R\{0,1 }(excluding the trivial cases), we may set 5 = 

(a) and hence we find 3 = (1), 2 = (0,1), 1" = (1,a), 4 = (0,a) and 6 = (x,0)I[1,1] ~ x+l = 0 

x = p. Now, D2-configuration is complete <=> (5 4 6) <=> (p,0)I[a,a] <:* a*pa = 0.[] 
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O---E 

2.r 

Fig. 5 

T H E O R E M  16. D 3 holds in a projective plane if, and only if, in every coordinatizing 

(R, F), (1 + 1 )*p(I + I) = 0 wi thp ~ 1 determined by p + 1=0. 

Proof Let (1,2,3) and (t',2",3") be two triangles, in r~, generating an incomplete D 3- 

configuration (see Fig. 6). Choose the coordinate quadrangle as in the preceding theorem. 

Then, we get 1" = (l), 2 "= (0,1), 3 = [1]~[1,1] = (1,1+1) = (1,a) and hence 2 = (0,a) and t 

= (a). CalcuIating the coordinates of  4, we find that 4 = (x,0)I[1,1] ~ x+l = 0 and hence x 

= p. Now, the configuration is complete ~ (p,0)I[a,a] r a*pa = 0. [] 

0 

6 
5 

Fig. 6 

It is to be noted that the proposition F follows, in n, only if 1 + 1 = 0 is valid in every 
coordinatizing (R,F) and consequently D 2 and D 3 hold, in n, (see Theorem 2 in [4]). 

Therefore, the preceding two theorems give a necessary and sufficient conditions for the 

two propositions D2 and D 3 to be valid in a non-Fano plane ~ (i.e., a plane where F is not 

valid ). 
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Finally, we remark that the proof of Theorem 8 in [5] remains true when we take the 

element a or b to be any element p e R\{0} and consequently we may state the following 

two result.s that explain the influence of the proposition F on the quasigroups (R,+p) and 

(R,*p), respectively. 

THEOREM 17. F holds, in a projective plane ~ if, and only if, in every coordinatizing 

(R,F), a+pa.p  = 0, Va ~R.  

COROLLARY 5. F holds, in a projective plane % if, and only if, in every coordinatizing 

(R,F), a*pp.a  = 0, V a c R .  
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