GROUPOIDS ASSOCIATED WITH THE TERNARY RING OF A PROJECTIVE PLANE

Dedicated to Helmut Karzel on the occasion of his 70th birthday

Walter Benz and Khuloud Ghalieh

0. INTRODUCTION

Let π be a projective plane [1, 6] with the incidence relation I and coordinatized by a ternary ring (R,F) chosen in π relative to a coordinatizing quadrangle (X, Y, Q, E). The points of π are the elements (x,y) (x, y \in R) esp. Q = (0,0) E = (1,1), the (m) (m \in R), esp. X = (0), and Y ; the lines of π are the [m,k] (m, k \in R), [c] (c \in R), L; the incidence relation I is determined by: y = F(x,m,k) \Leftrightarrow (x,y) I [m,k], \forall x,m,k \in R; (x,y) I [x]; (x,x) I [1,0]; (m) I [m,k]; (m) I L; (0,k) I [m,k]; (1,m) I [m,0]; Y I L. Using the notation of [3] the intersection of two different lines a, b is denoted by a \cap b, the join of two different points A, B by [AB], while by (A B C) we denote the collinearity of the points A, B, C. Using the two elements 0, 1 (0, 1 are two distinct elements in the coordinatizing set R) three binary operations, namely, +, \cdot , * were defined out of the ternary ring (R,F) (see [1,p. 50], [2] and [3]) as follows: a+b = F(a, 1, b), a b = F(a, b, 0), a*b = F(1, a, b), \forall a,b \in R. A fourth binary operation, denoted by "o" has been defined as follows [3]:

ao b = F(a,b,1),
$$\forall$$
 a,b \in R.

In this paper we introduce on (R,F) three binary operations by fixing any element p in R as follows:

$$ao_{p}b = F(a,b,p), \forall a,b \in R,$$
$$a+_{p}b = F(a,p,b), \forall a,b \in R; p \neq 0,$$
$$a*_{p}b = F(p,a,b), \forall a,b \in R; p \neq 0.$$

We shall develop some algebraic and geometric properties of the groupoids (binary systems) (R,o_p), ($R,+_p$) and ($R,*_p$) in the presence of certain configurational propositions [7, p. 22-23].

1. THE GROUPOID (R,op)

Let p be any fixed element in R. Then, for any $a,b \in R$, we define $ao_pb = F(a,b,p)$. Thus (R,o_p) is a binary system (a groupoid). We write $ao_0b = a \cdot b$ and $ao_1b = aob$.

LEMMA 1. For any $a,b \in R$, $ao_pb = p \Leftrightarrow a = 0$ or b = 0.

Proof. $ao_p b = p \Leftrightarrow F(a,b,p) = p \Leftrightarrow (a, p)I[b,p] \Leftrightarrow [a], [0, p], [b, p] are concurrent \Leftrightarrow (0, b)I[a] or [0, p] = [b, p] \Leftrightarrow a = 0 \text{ or } b = 0.$

LEMMA 2. For any $a,b \in R$, the two equations $ao_p x = b$ and $yo_p a = b$ have unique solutions in R if, and only if, $a \neq 0$.

Proof. Let $a, b \in R$; $a \neq 0$, then $ao_p x = b \Leftrightarrow F(a, x, p) = b \Leftrightarrow (a, b)I[x, p] \Leftrightarrow (x) = L \cap [(a, b) (0, p)]$, which shows that there exists exactly one solution x in R. Similarly, $yo_p a = b \Leftrightarrow F(y, a, p) = b \Leftrightarrow (y, b)I[a, p] \Leftrightarrow (y, b) = [0, b] \cap [a, p]$, which shows that there exists exactly one solution y in R. By Lemma 1, there are no solutions in the case a = 0 for $b \neq p$ and every element of R is a solution if b = p. \Box

REMARK. From Lemma 2 follow the following two cancellation laws in the groupoid (R,o_p) :

(i) $ao_p b = ao_p c \Longrightarrow b = c, \forall a,b,c \in R; a \neq 0,$

(ii) $bo_p a = co_p a \Longrightarrow b = c, \forall a,b,c \in R; a \neq 0.$

It follows, from Lemma 2, that (R,o_p) is not a quasigroup (in particular (R, \cdot) and (R, o) are not quasigroups). We also note that if p = 0, i.e., $ao_p b = a \cdot b$, then $(R \setminus \{0\}, \cdot)$ is a loop [1,

p.50]. But if $p \neq 0$ (esp. p = 1), then the equation $po_p x = 0$ has a unique solution x, which is $\neq 0$, since $po_p 0 = p$. Also, the equation $yo_p p = 0$, has a unique solution y, which is $\neq 0$, since $0o_p p = p$. Hence, the pair (R\{0}, o_p) is not a groupoid, i.e., the exclusion of 0 doesn't help in the case $p \neq 0$ (esp. p = 1). Moreover, in the system (R, o_p), $p \neq 0$, there is no right or left identity element because the two equations $xo_p 0 = p$ and $0o_p y = p$ hold true for any x, y $\in R$. The following lemma shows that the exclusion of 0 again doesn't help (for the case p = 1, compare [3]).

LEMMA 3. Let p be a fixed element in $R \setminus \{0\}$ (esp. p = 1). Then, unless R = $\{0,1\}$, there is no x, y $\in R$ such that:

- (i) $xo_p a = a, \forall a \in R \setminus \{0\},\$
- (ii) $ao_p y = a, \forall a \in \mathbb{R} \setminus \{0\}.$

Proof. For a = p, in equation (i) as well as (ii), we obtain x = 0, y = 0, respectively. Now for any $a \neq p$, we have $0o_p a = a \Rightarrow a = p$, also, $ao_p 0 = a \Rightarrow a = p$. In particular for a = 1, we get p = 1 and hence $R = \{0,1\}$. Conversely, if $R = \{0,1\}$, i.e., p = 1, the two equations xo1 = 1 and 1oy = 1, have, by Lemma 1, the solution x = y = 0. \Box

LEMMA 4. For $p \neq 0$, the groupoid (R,o_p) is non-associative in any ternary ring (R,F).

Proof. $0o_p(1o_p1) = p$, but $(0o_p1)o_p1 = po_p1 = F(p, 1, p) \neq p$ since $(p, p) (\neq Q)$ is on [1, 0] and therefore not on [1, p]. \Box

However, a weak form of associativity, namely $(ao_p a)o_p a = ao_p(ao_p a)$, $\forall a \in \mathbb{R}$, may hold in those projective planes in which the following condition, denoted by C₁, is satisfied.

The condition C_1 .

If 1, 2, 3, 4 are four points, no three of which are collinear, 0 a point not on the lines [1 2], [1 3], [1 4], [2 3], [2 4] and $3' = [1 3] \cap [2 4]$, $4' = [1 4] \cap [2 3]$, $5 = [0 3] \cap [1 2]$, $0' = [0 2] \cap [4 5]$, $6 = [0 4'] \cap [1 2]$, $7 = [0 3'] \cap [1 4]$, $8 = [0'6] \cap [2 4]$, $9 = [0'4] \cap [2 7]$, then (1 8 9).

THEOREM 1. C₁ holds, in a projective plane if, and only if, $(ao_p a)o_p a = ao_p(ao_p a)$, $\forall a \in R$ in every coordinatizing (R, F).

Proof: In the incomplete C₁-configuration set (X, Y, Q, E) so that (see Fig. 1): 1 = X, 2 = Y, 0 = Q and $E = [2 3] \cap [[0 3'], (1,a) = 3, (a,b) = 4$ with $b = ao_pa$. Thus, 3' = (a,a), 4' = (1,b), 5 = (a), 0' = (0,p), 6 = (b), 7 = (b,b), $8 = (a,ao_pb)$, $9 = (b,bo_pa)$ and hence (1 8 9) $\Leftrightarrow ao_pb = bo_pa$. \Box

Fig. 1

It is to be noted that with the condition $(0 \ 3 \ 4)$, C_1 is nothing else than the hexagon condition [6, p. 54] for the (0, 1, 2) - net. This condition for all non - collinear point triples 0, 1, 2 is equivalent with $a^2 \cdot a = a \cdot a^2$. We remark also that if (R,F) is linear ternary ring (i.e., F(x,m,k) = x.m+k), then $1o_pa = F(1,a,p) = a^*p = a+p = F(a,1,p) = ao_p1$. We write $\{(1,2,3), (1',2',3')\}^0(4 \ 5 \ 6)$ for two triangles (1,2,3), (1',2',3') perspective from a point 0 and from a line $[4 \ 5]=[4 \ 6]$. An incomplete configuration [3] is a configuration with one missing incidence. We denote by D_1 the little Desargues proposition in which the center of perspectivity of D_1 is incident with the axis of perspectivity [4, p. 330]. The following theorem shows that the little Desargues proposition is the geometric representation of the algebraic identity $1o_pa = ao_p1$ (equivalently, $a^*p = a+p$).

THEOREM 2. In any projective plane π the proposition D₁ holds if, and only if, $1o_pa = ao_p 1$, $\forall a \in R$; $p \in R \setminus \{0\}$ for every coordinatizing (R, F).

Proof. Let (1,2,3), (1',2',3') be two triangles generating an incomplete D₁-configuration in which $\{(1,2,3), (1',2',3')\}^0$ and (0 4 5) (see Fig. 2). Choose the coordinatizing quadrangle (X, Y, Q, E) so that X= [2 3] \cap [4 5], 0= Y, 1 = Q, E = [1 3] \cap [0 2], 2 = (1,a) and 1' = (0,p) ; $p \neq 0$, thus 3 = (a,a), 2' = (1, F(1,a,p)), 3' = (a, F(a,1,p)) and therefore (2'3'X) \Leftrightarrow (6 I [4 5]) \Leftrightarrow F(1,a,p) = F(a,1,p). \Box

It is to be noted that if p = 0, then $1 \cdot a = a \cdot 1 = a$, $\forall a \in R$, and if p = 1, then a special case of the little Desarques is shown to be the configurational representation of the algebraic identity $1 \circ a = a \circ 1$, $\forall a \in R$, (see theorem 1 in [3]).

Let (1, 2, 3) and (1', 2', 3') be any two triangles in a projective plane π with $4 = [1 \ 2] \cap [1'2']$, $5 = [1 \ 3] \cap [1'3']$, $6 = [2 \ 3] \cap [2'3']$. Special forms of Desargues proposition denoted by D₁(the little Desargues proposition), D₂ and D₃ arise when one requires one, two and three vertices of one triangle to lie on the sides of the other triangle [4, p.330]. We may reformulate D₂ and D₃ as follows:

The proposition D₂.

If $\{(1,2,3), (1',2',3')\}^0$; with 1I[2'3'] and 1'I[23], then (456).

The proposition D₃.

If $\{(1,2,3), (1',2',3')\}^0$; with 3I[1'2'] and 5I[2'2] and 6I[1'1] then (4 5 6) (see Fig. 6).

Now, a special form of the proposition D_2 may be formulated as follows:

The proposition $(D_2)^*$. If the triangles (1, 2, 3) and (1',2',3') are perspective from 0, 1'I[2 3], 1I[2'3'], $4 = [1 2] \cap [1'2']$, $5 = [1 3] \cap [1'3']$, $6 = [2 3] \cap [2'3']$ and the lines [1 2], [1'3'], [0 6] are concurrent, then (4 5 6) (see Fig. 3).

THEOREM 5. $(D_2)^*$ is valid in a projective plane if, and only if, in every coordinatizing (R, F) of the plane the element a determined by ao1 = 0 fulfils also the equation 1oa = 0.

Proof. Let (1,2,3), (1',2',3') be two triangles generating an incomplete $(D_2)^*$ -configuration as depicted in Fig. 3. Assume that ao1 = 0, then we may set 6 = (0), 1 = Y, 1' = Q and 7 = (1,1). It follows that 3'= (1), 0 = (0,1), 2 = (1,0) and (x,0)I[1,1] \Rightarrow xo1 = 0 \Rightarrow x = a.

Fig. 3

Therefore, 5 = (a,a), 4 = (1,a) and 2' = (a). Now, the configuration is complete $\Leftrightarrow (0\ 2'2)$ holds true $\Leftrightarrow (1,0)I[a,1] \Leftrightarrow 10a = 0$. \Box

The question which presents itself is: under what condition is the groupoid (R,o_p) commutative? the question is answered for the two special cases: p = 0 and p = 1. In fact, it has been shown that the proposition of Pappus charcterizes the commutativity of

multiplication "•" [7, p.39] and the commutativity of the operation "o" [3, p.6]. Now a general answer is given in the following theorem.

THEOREM 6. The proposition of Pappus holds in a projective plane if, and only if, $ao_pb = bo_pa$, $\forall a, b \in R$; $p \in R$ in all coordinatizing (R, F) of the plane.

Proof. The result follows by observing that the proof of Theorem 16 in [5] remains valid by putting c = p, i.e., when we set 1' = (0,p) and E = (1,1) I[1 2].

The relationships of the two configurational propositions D_1 and D_2 with the groupoid (R,o_p) are explained in the following sequence of theorems and their corollaries.

THEOREM 7. D₁ holds in a projective plane if, and only if, in every coordinatizing ternary ring (R,F), $a \cdot b = c \cdot d \Longrightarrow ao_p b = co_p d$, $\forall a, b, c, d \in R$; $p \in R \setminus \{0\}$.

Proof: Let (1, 2, 3) and (1', 2', 3') be two triangles generating an incomplete D₁-configuration with center of perspectivity 0 and (0 4 5). Putting (see Fig. 4) 0= Y, 2'= Q, 2 = (0,p); $p \neq 0$, [3'3]= [a], 4= (d), 5= (b), X= [4 5] \cap [1'3'], thus 3'= [a] \cap [b,0] = (a,a·b), 1'= [d,0] \cap [0,a·b] = (c,a·b), 1= (c,F(c,d,p)), 3= (a,F(a,b,p)) and hence (4 5 6) \Leftrightarrow (1 3 X) \Leftrightarrow F(c,d,p) = F(a,b,p). \square

Fig.4

COROLLARY 1. D₁ holds in a projective plane if, and only if, in every coordinatizing ternary ring (R,F), $ao_{p}b = (a \cdot b)o_{p}1, \forall a, b \in R; p \in R \setminus \{0\}.$

Proof: This result follows from the fact that the two algebraic identities given in Theorem 7 and the preceding corollary are equivalent. To establish this we suppose first that: for any $a,b,c,d \in R$, $a \cdot b = c \cdot d \Rightarrow ao_p b = co_p d$. Then putting d = 1, we obtain $a \cdot b = c \Rightarrow ao_p b = co_p 1 = (a \cdot b)o_p 1$. For the converse, assume that: $ao_p b = (a \cdot b)o_p 1$, $\forall a,b \in R$. Then, $a \cdot b = c \cdot d \Rightarrow (a \cdot b)o_p 1 = (c \cdot d)o_p 1 \Rightarrow ao_p b = co_p d$. \Box

THEOREM 8. D₂ holds in a projective plane if, and only if, in every coordinatizing (R, F) $a \cdot b = c \cdot d = p \Rightarrow ao_p b = co_p d$, $\forall a, b, c, d \in R$; $p \in R \setminus \{0\}$.

Proof: Follow the proof of Theorem 13 in [5] by setting $e = p . \Box$

When E = (1,1), in the proof of Theorem 13 in [5], is restricted to be incident with [1'2'], we obtain the the following result.

COROLLARY 2. D₂ holds in a plane if, and only if, in every (R,F) $a \cdot b = c \cdot d = 1 \implies aob = cod$, $\forall a,b,c,d \in \mathbb{R}$.

THEOREM 9. D₂ holds in a plane if, and only if, in every coordinatizing (R, F) $a \cdot b = p$ $\Rightarrow ao_p b = po_p 1, \forall a, b \in R; p \in R \setminus \{0\}.$

Proof. Since the two algebraic conditions of Theorem 8 and Theorem 9 are equivalent, we conclude this result. \Box

Similarly, the following result is a consequence of Corollary 2.

COROLLARY 3. D₂ holds in a plane if, and only if, $a \cdot b = 1 \Rightarrow aob = 1o1$, $\forall a, b, c, d \in \mathbb{R}$, for every coordinatizing (R, F).

Finally, the relationship of the proposition \overline{F} , which states that the diagonal points of a complete quadrangle form a collinear triple [4, p. 329], with the groupoid (R,o_p); $p \neq 0$, is explained in the following theorem.

THEOREM 10. The proposition \overline{F} holds, in any projective plane π , if, and only if, in every coordinatizing (R, F) of π , $a \cdot b = p \Rightarrow ao_p b = 0$, $\forall a, b \in R$; $p \in R \setminus \{0\}$.

Proof. Observing the validity of the proof of Theorem 8 in [5], when c is taken to be any element p in $\mathbb{R} \setminus \{0\}$, this result can be established. \Box

For the special case p = 1, i.e., E = (1,1)I[2 4], we state the following result obtained also in [3, p. 8].

COROLLARY 4. The proposition \overline{F} holds in π if, and only if, in every coordinatizing (R, F), $a \cdot b = 1 \Rightarrow aob = 0$, $\forall a, b \in R$.

Finally, we generalize the results obtained in the two theorems 6, 7, given in [3], to be satisfied in any groupoid (R,o_p) ; such that p is taken to be any fixed element in $R\setminus\{0\}$. In fact, we prove analogously the following theorem.

THEOREM 11. In any groupoid (R,o_p) ; $p \neq 0$, the following properties are equivalent:

- (1) $ao_p b = (a \cdot b)o_p 1, \forall a, b \in \mathbb{R},$
- (2) $a \cdot b = c \cdot d \Longrightarrow ao_p b = co_p d, \forall a, b, c, d \in R,$
- (3) $ao_p b = co_p d \Longrightarrow a \cdot b = c \cdot d, \forall a, b, c, d \in \mathbb{R},$
- (4) $\exists f_p, g_p: R \rightarrow R; ao_p b = f_p(a \cdot b) + g_p(a + b), \forall a, b \in R,$
- (5) $\exists \phi_p, \psi_p: R \rightarrow R; a \cdot b = \phi_p(ao_pb) + \psi_p(a+b), \forall a, b \in R.$

Proof. For (1) \Leftrightarrow (2), see the proof of Corollary 1. Now to show (1) \Leftrightarrow (3), we assume first (1) holds true. Then, $ao_pb = co_pd \Rightarrow (a \cdot b)o_p1 = (c \cdot d)o_p1$, and hence by Lemma 2, we get $a \cdot b = c \cdot d$, i.e., (3) holds true. Suppose (3) holds true. Then, by Lemma 2, the equation $xo_p1 = ao_pb$ has unique solution in R and by (3), it follows that $x = x \cdot 1 = a \cdot b$, i.e., $ao_pb = (a \cdot b)o_p1$. Thus (1) holds true. Now we show (1) implies (4). In fact, we let: $f_p(x) := x$ and $g_p(x) := p$, $\forall x \in R$. By (1), for any $a, b \in R$, we have $ao_pb = (a \cdot b)o_p1 = a \cdot b + p$. Thus, $ao_pb = f_p(a \cdot b) + g_p(a + b)$. Hence (4) holds true. For the converse, we suppose (4). Putting a = 0 in (4), then $p = f_p(0) + g_p(b)$, $\forall b \in R$. Since (R, +) is a loop, it follows that there exists $k \in R$ with $g_p(x) := k$, $\forall x \in R$. Since $a \cdot b = (a \cdot b) \cdot 1$, we have

$$ao_p b = f_p(a \cdot b) + g_p(a + b)$$
$$= f_p(a \cdot b) + k$$
$$= f_p((a \cdot b) \cdot 1) + k$$
$$= (a \cdot b)o_p 1.$$

Thus (4) \Rightarrow (1). We conclude this proof by showing (1) \Leftrightarrow (5). Suppose that (1) holds true, i.e., $ao_p b = (a \cdot b)o_p 1$, for any a,b in R. Then we may put $\phi_p(x)$: = y such that y is the unique

solution of the equation y+p = x. Also, put $\psi_p(x)$: = 0.Thus, from $a \cdot b = \varphi_p(a \cdot b+p)$ and $a \cdot b+p = ao_p b$ (by (1)), we obtain that

$$\begin{aligned} \mathbf{a} \cdot \mathbf{b} &= \phi_p(\mathbf{a} \mathbf{o}_p \mathbf{b}) + \mathbf{0} \\ &= \phi_p(\mathbf{a} \mathbf{o}_p \mathbf{b}) + \psi_p(\mathbf{a} + \mathbf{b}). \end{aligned}$$

Hence (5) is valid.

Remains to show that: $(5) \Rightarrow (1)$. Now putting a = 0 in (5), we obtain

$$0 = \varphi_p(p) + \psi_p(b), \forall b \in \mathbb{R}.$$

Consequently, since (R,+) is a loop, there exists $t \in R$ with $\psi_p(x) := t, \forall x \in R$. Thus, for any $a, b \in R$, we have

$$\begin{aligned} \mathbf{a} \cdot \mathbf{b} &= \phi_p(\mathbf{a} \mathbf{o}_p \mathbf{b}) + \psi_p(\mathbf{a} + \mathbf{b}) \\ &= \phi_p(\mathbf{a} \mathbf{o}_p \mathbf{b}) + \mathbf{t} \\ &= \phi_p((\mathbf{a} \cdot \mathbf{b}) \mathbf{o}_p \mathbf{1}) + \mathbf{t}. \end{aligned}$$

Therefore, $\varphi_p(ao_pb) = \varphi_p((a \cdot b)o_p1)$. But, φ_p is one-to-one function and hence, $ao_pb = (a \cdot b)o_p1$. This completes the proof. \Box

THEOREM 12. The following properties are equivalent in any groupoid (R,o_D) ; $p \neq 0$.

- (1) $\exists f: R \to R; f(ao_p(b \cdot c)) = (a \cdot b)o_p c, \forall a, b, c \in R,$
- (2) $ao_p b = (a \cdot b)o_p 1$ and $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in \mathbb{R}$,
- (3) $ao_p(b \cdot c) = (a \cdot b)o_p c, \forall a, b, c \in \mathbb{R}.$

Proof. It is easy to show that (2) and (3) are equivalent and (1) follows from (3). Remains to show (1) \Rightarrow (3). Putting c = 1 in (1), we have $f(ao_pb) = (a \cdot b)o_p1$ and therefore $(a \cdot b)o_pc = f(ao_p(b \cdot c)) = a \cdot (b \cdot c)o_p1$. Also, a = 1 gives $bo_pc = (b \cdot c)o_p1$ and thus $ao_p(b \cdot c) = a \cdot (b \cdot c)o_p1 = (a \cdot b)o_pc$. \Box

2. THE QUASIGROUPS $(R,+_p)$ and $(R,*_p)$

Let π be any projective plane coordinatized by the ternary ring (R,F). Fixing an element p $\neq 0$ in R, and using the ternary operation F, two binary operations, denoted by $+_p$ and $*_p$, are to be defined as follows:

$$a+_{p}b = F(a,p,b),$$

 $a*_{p}b = F(p,a,b), \forall a,b \in \mathbb{R}.$

We may write $a+_1b = a+b$ and $a*_1b = a*b$.

First we prove the following sequence of lemmas concerning the system $(R,+_p)$.

LEMMA 5. $(R,+_p)$ is a quasigroup with left identity element 0.

Proof. Since, $a+_pb = F(a,p,b)$, the system $(R,+_p)$ is a groupoid (binary system). Now consider the equation $a+_px = b$, $a,b \in R$. In fact, $a+_px = b \Leftrightarrow F(a,p,x) = b \Leftrightarrow (a,b)I[p,x] \Leftrightarrow (0,x) = [0] \cap [(p)(a,b)]$. Hence the equation has a unique solution. Also, $y+_pa = b \Leftrightarrow F(y,p,a) = b \Leftrightarrow (y,b)I[p,a] \Leftrightarrow (y,b) = [0,b] \cap [p,a]$ and consequently the equation $y+_pa = b$ has a unique solution. Finally, for any $a \in R$, $0+_pa = F(0,p,a) = a$. This shows that 0 is the left identity of the groupoid $(R,+_p)$. \Box

By Lemma 5, we have proved the following result.

LEMMA 6. The following two laws hold for all $a,b,c \in R$:

(i) $a+_{p}b = a+_{p}c \Rightarrow b = c$,

(ii) $b+_{p}a = c+_{p}a \Longrightarrow b = c$.

We remark that since a+p0 = F(a,p,0) = a.p, then $a+p0 = a \Leftrightarrow a = 0$ or p = 1. Consequently, unless p = 1, 0 is not the right identity of (R,+p). In fact, if $p \neq 1$, the system (R,+p) has no right identity; because if e is a right identity, then a+pe = a, $\forall a \in R$, which implies 0+pe = 0, i.e., e = 0; but $1+p0 = 1 \implies (1,1)I[1, 0] \implies p = 1$. Thus we have proved the following lemma.

LEMMA 7. Unless p = 1, $(R,+_p)$ is not a loop.

LEMMA 8. Unless p = 1, the operation $+_p$ is non-commutative in any ternary ring (R,F) associated with a projective plane π .

Proof. For $p \neq 1$, we get 0+p1 = 1 and 1+p0 = p. In case p = 1, it has been shown that, the loop (R,+) is abelian in those planes where the first minor proposition of Pappus, P₁, is valid [7, p.25].

LEMMA 9. Unless p = 1, the operation $+_p$ is non-associative in any ternary ring (R,F) associated with a projective plane π .

Proof. Taking a = 1 and b = c = 0, we get (1+p0)+p0 = p.p and 1+p(0+p0) = p. But $p^2 \neq p$ (as $p \neq 1$). For the special case p = 1, the loop (R,+) is a group; i.e., + is associative

operation, if in the plane coordinatized by (R, F) the Reidemeister proposition for the (X, Y, (1)) - net is valid [6]. \Box

It is to be noted that 0+p(b+pc) = (0+pb)+pc, holds for any b,c in R. While, $a+p(0+pc) = (a+p0)+pc \Leftrightarrow a+pc = (a+p)+pc \Leftrightarrow a = a+p \Leftrightarrow a = 0$ or p = 1

Now, for the system $(R,*_p)$, we prove the following lemmas.

LEMMA 10. $(R,*_p)$ is a quasigroup with left identity element 0.

Proof. Since, $a^*pb = F(p,a,b)$, $(R,^*p)$ is a binary system (a groupoid). Now, $a^*px = b \Rightarrow F(p,a,x) = b \Rightarrow (p,b)$ I $[a,x] \Rightarrow (0,x) = [0] \cap [(a) (p,b)]$; thus x is unique in R. Also, $y^*pa = b \Rightarrow F(p,y,a) = b \Rightarrow (p,b)I[y,a] \Rightarrow (y) = L \cap [(p,b) (0,a)]$. Thus, y is unique in R. Since $0^*pb = F(p,0,b) = b$, for any $b \in R$, we conclude that 0 is the left identity of the quasigroup $(R,^*p)$. \Box

Immediately, we obtain the result in Lemma 11.

LEMMA 11. The following two laws hold for any a,b,c in R:

- (1) $a*_{p}b = a*_{p}c \Longrightarrow b = c;$
- (2) $b*_{p}a = c*_{p}a \Longrightarrow b = c.$

LEMMA 12. Unless p = 1, $(R, *_p)$ is not a loop.

Proof. By the preceding lemma, $(R, *_p)$ is a quasigroup with the left identity element 0. Now, since $a*_p 0 = p \cdot a$, then $a*_p 0 = a \Leftrightarrow p = 1$ or a = 0. Thus we conclude that, unless p = 1, 0 is not the right identity of $(R, *_p)$. In fact, $a*_p e = a$, $\forall a \in R$ implies, $0*_p e = 0$, i.e., e = 0. Hence, unless p = 1, the system $(R, *_p)$ has no right identity and hence $(R, *_p)$ is not a loop. \Box

LEMMA 13. Unless p = 1, the quasigroup $(R, *_p)$ is not abelian.

Proof. If $p \neq 1$, we establish the result by taking a = 0 and b = 1 and then we obtain $0^*p! = 1$, while $1^*p0 = p$. In the case p = 1, the system (R,*) is an abelian group if the second minor proposition of Pappus is valid in the projective plane coordinatized by R [2]. \Box

Now, the question presents itself is: are the two operations $+_p$ and $*_p$ dual ? The question is answered for the the special case p = 1 [2]. Moreover, it has been shown [4] that the two dual operations + and * are equal if, and only if, the little proposition of Desargues is valid (see theorem 6 in[4]). In fact, it is not known yet if $+_p$ and $*_p$, $p \neq 0,1$, are dual. However, the following interesting theorem gives a necessary and sufficient condition that the two operations $+_p$ and $*_p$, $p \neq 0,1$, are equal in any projective plane coordinatized by a ternary ring (R,F).

THEOREM 13. In any projective plane π , the proposition of Pappus holds in π if, and only if, in every coordinatizing (R,F), $a^*_p b = a_p^+ b$, for any $a, b \in \mathbb{R}$; $p \in \mathbb{R} \setminus \{0, 1\}$.

Proof. Since the proof of Theorem 16 in [5] is true when we take the element a(or b) to be any element $p \neq 0,1$, we conclude this result.

THEOREM 14. D₁ is equivalent to each of the following conditions each in every ternary ring (R,F): (i) $a \cdot p = p \cdot a \Rightarrow a^* p b = a + p b, \forall a, b \in R; p \in R \setminus \{0, 1\}$ (ii) $1^* p b = 1 + p b, \forall b \in R; p \in R \setminus \{0, 1\}$

Proof. Assume D₁ holds, then (R,F) is linear and hence, $a \cdot p = p \cdot a \Rightarrow a \cdot p + b = p \cdot a + b \Rightarrow F(a,p,b) = F(p,a,b)$, i.e., a + p b = a * p b. Thus (i) holds true. (i) \Rightarrow (ii) is obvious as $1 \cdot p = p \cdot 1$. Remains to show (ii) implies the validity of D₁. Now, since 1 + p b = p * b and 1 * p b = p + b and by setting $a = p \neq 0, 1$, Theorem 6 in [4] gives D₁. \Box

The influence of the configurational proposition D_2 , D_3 and finally \overline{F} on the quasigroups $(R,+_p)$ and $(R,*_p)$ is explained in the following Theorems.

THEOREM 15. D₂ holds in a projective plane if, and only if, in every coordinatizing (R,F) $a*_p a = 0$, $\forall a \in R$ with $p \neq 0$ determined by p + 1 = 0.

Proof. Let (1,2,3), (1',2',3') be two triangles, in π , generating an incomplete D₂-configuration. Set (X,Y,Q,E) as depicted in Fig. 5. Assume that p+1 = 0; p \neq 1 (this means that \overline{F} is not valid in π). Now, for a $\in \mathbb{R} \setminus \{0,1\}$ (excluding the trivial cases), we may set 5 = (a) and hence we find 3 = (1), 2= (0,1), 1' = (1,a), 4 = (0,a) and 6 = (x,0)I[1,1] \Rightarrow x+1 = 0 \Rightarrow x = p. Now, D₂-configuration is complete \Leftrightarrow (5 4 6) \Leftrightarrow (p,0)I[a,a] \Leftrightarrow a*_pa = 0.

THEOREM 16. D₃ holds in a projective plane if, and only if, in every coordinatizing (R, F), $(1 + 1)^* p(1 + 1) = 0$ with $p \neq 1$ determined by p + 1 = 0.

Proof. Let (1,2,3) and (1',2',3') be two triangles, in π , generating an incomplete D₃-configuration (see Fig. 6). Choose the coordinate quadrangle as in the preceding theorem. Then, we get 1' = (1), 2' = (0,1), 3 = [1] \cap [1,1] = (1,1+1) = (1,a) and hence 2 = (0,a) and 1 = (a). Calculating the coordinates of 4, we find that 4 = (x,0)I[1,1] \Rightarrow x+1 = 0 and hence x = p. Now, the configuration is complete \Leftrightarrow (p,0)I[a,a] \Leftrightarrow a*pa = 0.

Fig. 6

It is to be noted that the proposition \overline{F} follows, in π , only if 1 + 1 = 0 is valid in every coordinatizing (R,F) and consequently D₂ and D₃ hold, in π , (see Theorem 2 in [4]). Therefore, the preceding two theorems give a necessary and sufficient conditions for the two propositions D₂ and D₃ to be valid in a non-Fano plane π (i.e., a plane where \overline{F} is not valid).

Finally, we remark that the proof of Theorem 8 in [5] remains true when we take the element a or b to be any element $p \in \mathbb{R} \setminus \{0\}$ and consequently we may state the following two results that explain the influence of the proposition \overline{F} on the quasigroups $(\mathbb{R},+_p)$ and $(\mathbb{R},*_p)$, respectively.

THEOREM 17. \overline{F} holds, in a projective plane π if, and only if, in every coordinatizing (R, F), $a +_p a \cdot p = 0$, $\forall a \in \mathbb{R}$.

COROLLARY 5. \overline{F} holds, in a projective plane π , if, and only if, in every coordinatizing (R, F), $a *_p p.a = 0$, $\forall a \in R$.

REFERENCES

- [1] ALBERT, A.A. and SANDLER, R. : An Introduction to Finite Projective Planes Holt-Rinehart-Winston, NewYork 1968
- [2] AL-DHAHIR, M.W. and ABDUL-ELAH, M.S. : The Dual of Addition in the Ternary Ring of a Projective Plane. Arch. Math. <u>25</u> (1974), 536-539
- [3] AL-DHAHIR, M.W., BENZ, W. and GHALIEH, K. : A Groupoid of the Ternary Ring of a Projective Plane. J.of Geometry <u>42</u> (1991), 3-16
- [4] AL-DHAHIR, M.W. and GHALIEH, K. : On Minor Forms of Desargues and Pappus, Geometriae Dedicata <u>42 (1992)</u>, 329-344
- [5] GHALIEH, K. : Algebraic Properties of Some Configurational Propositions. J. of Geometry <u>59</u> (1997) 46-66.
- [6] PICKERT, G. : Projektive Ebenen. Springer-Verlag, Berlin-Heidelberg-New York 1975
- [7] SKORNYKOV, L.A. : Projective Planes. Amer. Math. Soc.. Transl. 99 (1953), 17-40.

Walter Benz Mathematisches Seminar Bundesstr. 55 D-20146 Hamburg Germany Khuloud Ghalieh Department of Mathematics Rustaq College for Education P. O. Box 48, Code 329 Rustaq-Oman

Eingegangen am 28. August 1996; in revidierter Fassung am 4. Juli 1997