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0. INTRODUCTION

Let m be a projective plane [1, 6] with the incidence relation I and coordinatized by a
ternary ring (R,F) chosen in n relative to a coordinatizing quadrangle (X, Y, Q, E). The
points of m are the elements (x,y) (x, ¥y € R) esp. Q = (0,0) E = (1,1), the (m) (m € R),
esp. X ={(0), and Y ; the lines of & are the [m,k] (m, k € R), [¢] (¢ € R), L; the incidence
relation I is determined by: y =F(x,m,k) <> (¢,y) I [m,k], ¥V x,mk € R; (x,y) I [x]; (x,x)
IIL0) (m) I [mk]; (m) IL; (0,k) I [m,k]; (1,m) I [m,0]; ¥ I L. Using the notation of [3]
the intersection of two different lines a, b is denoted by anb, the join of two different
points A, B by [AB], while by (A B C) we denote the collinearity of the points A, B, C.
Using the two elements 0, 1 (0, 1 are two distinct elements in the coordinatizing set R)
three binary operations, namely, +, -, * were defined out of the ternary ring (R,F) (see
[L.p. 50], [2] and [3]) as follows: atb =F(a, 1, b), ab=F(a, b, 0), axb=F(1, a, b), V a,b
€ R. A fourth binary operation, denoted by "o" has been defined as follows [3]:

aob=F(ab,1),VabeR.

In this paper we introduce on (R,F) three binary operations by fixing any element p in R

as follows:
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aopb =F(a,b,p), V a,b € R,
a+pb =F(a,p,b), VabeR;p=0,
a*pb =F(p,a,b), VabeR;p=0.

We shall develop some algebraic and geometric properties of the groupoids (binary
systems) (R,op), (R,+p) and (R,*p) in the presence of certain configurational propositions
[7, p- 22-23].

1. THE GROUPOID (R,op)

Let p be any fixed element in R. Then, for any a,b € R, we define aopb = F(a,b,p). Thus
(R,0p) is a binary system (a groupoid). We write aogb = a-b and ao1b = aob.

LEMMA 1. Forany a,b € R, aopb =p«a=0orb=0.

Proof. aopb =p < Flabp)=p<e (e plbp]l<[al [0, pl [ b, p] are concurrent <=
(0, b)[a] or [0, p] =[b,pl < a=0o0rb=0.0]

LEMMA 2. For any a,b € R, the two equations aopx = b and yopa = b have unique
solutions in R if, and only if, a # 0.

Proof. Letab € R;a#0, then aopx =b < F(a,x,p) =b < (ab)[xpl < x)=1L N [(a,b}
(0,p)], which shows that there exists exactly one solution x in R. Similarly, yopa = b
F(y,a,p) = b (y,b)I[a,p] < (y,b) =[0,b][a,p], which shows that there exists exactly one
solution y in R. By Lemma 1, there are no solutions in the case a = 0 for b # p and every
element of R is a solution if b= p. [

REMARK. From Lemma 2 follow the following two cancellation laws in the groupoid
R,0p):

(1) aopb =aopc = b=¢,VabceR;a=0,

(i) bopa = copa = b=c¢,VabceR;a=0.

It follows, from Lemma 2, that (R,op) is not a quasigroup (in particular (R, -} and (R, o) are
not quasigroups). We also note that if p = 0, i.e., aopb = ab, then (R\{0},") is a loop [1,
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p.50]. But if p # 0 (esp. p = 1), then the equation popx =0 has a unique solution x ,which is
# 0, since pop0 = p. Also, the equation yopp = 0, has a unique solution y, which is = 0,
since Qopp = p. Hence, the pair (R\{0},0p) is not a groupoid, i.e., the exclusion of 0 doesn’t
help in the case p # 0 (esp. p = 1). Moreover, in the system (R,op), p # 0, there is no right
or left identity element because the two equations xop0 = p and Oopy = p hold true for any
x,y € R. The following lemma shows that the exclusion of 0 again doesn’t help (for the

case p = 1, compare [3]).

LEMMA 3. Let p be a fixed element in R\{0}(esp. p = I). Then, unless R = {0,1}, there is
no X, y € R such that:

(i) xopa=a, v a € R\{0},

(if) aopy =a, V a € R\{0}.

Proof. For a = p, in equation (i) as well as (ii), we obtain x = 0, y = 0, respectively. Now
for any a# p, we have Qopa =a=a=p, also, aop0 =a=a=p. In particular for a = 1,
we get p = | and hence R = {0,1}. Conversely, if R = {0,1},i.e., p = 1, the two equations
xol =1 and loy = 1, have, by Lemma 1, the solution x =y = 0. [

LEMMA 4. For p = 0, the groupoid (R,0p) is non-associative in any ternary ring (R,F).

Proof. Oop(lopl) =p, but (Oopl)opl =popl = Flp, I, p)#psince (p, p) (2 Q)ison 1, 0]
and therefore not on [1, p].

However, a weak form of associativity, namely (aopa)opa = aop(aopa), Vv a € R, may hold
in those projective planes in which the following condition, denoted by C, is satisfied.

The condition Cj.
If 1, 2, 3, 4 are four points, no three of which are collinear , 0 a point not on the lines [1 2],

[13],[14],[23], [24] and 3'= [1 3]~[2 4], 4'= [1 4]~[2 3], 5=[0 3]~[1 2], 0" = [0 2] N
[4 5], 6= [0 4'J[1 2], 7= [0 3"1~[1 4], 8= [0"6]~[2 4], 9= [0"4]"[2 7], then (1 8 9).

THEOREM 1. C; holds, in a projective plane if, and only if, (aopa)opa = aop(aopa), ¥ a
e R in every coordinatizing (R, F).
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Proof: In the incomplete C|-configuration set (X, Y, Q, E) so that (see Fig. 1 }: 1= X, 2=
Y.0=Qand E=[23In[[03°], (1,a) =3, (a,b) =4 with b = aopa. Thus, 3'= (a,a) , 4=
(1,b), 5 =(a), 0'=(0,p), 6 = (b), 7= (b,b), 8 = (a,aopb), 9= (b,bopa) and hence (1 8 9) <

aopb = bopa. O

g 9
/ 1=X
M (
4 3 ‘
o > |-
=713
0=Q
A
Fig. 1

It is to be noted that with the condition (0 3 4), Cj is nothing else than the hexagon
condition [6, p. 54] for the (0, 1, 2) - net. This condition for all non - collinear point triples
0, 1, 2 is equivalent with al . a=a.a?. We remark also that if (R,F) is linear ternary ring
(i.e., F(x,mk) = x.m+k ), then lopa =TF(l,ap) = a*p = atp =F(a,l,p) = aopl. We write
{(1,2,3), (1,23 ')}0(4 5 6) for two triangles (1,2,3), (1 ",2",3") perspective from a point §
and from a line {4 5]=[4 6]. An incomplete configuration [3] is a configuration with one
missing incidence. We denote by D the little Desargues proposition in which the center
of perspectivity of Dy is incident with the axis of perspectivity [4, p. 330]. The following

theorem shows that the little Desargues proposition is the geometric representation of the
algebraic identity lopa =aopl (equivalently, a*p = a+p).

THEOREM 2. In any projective plane m the proposition D1 holds if, and only if, lopa =
aopl, VaeR;pe R\ {0} for every coordinatizing (R, F).
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Proof. Let (1.2,3), (17,27,3") be two triangles generating an inco: iplete D1-configuration in
which {(1,2,3), (1 "2°,3)}0 and (0 4 5) (see Fig. 2). Choose the coordinatizing quadrangle-
(X.Y.Q,E)sothat X=[23]n[45],0=Y,1=Q,E=[13]n[02],2=(l,a)and 1" =(0,p) ;
p= 0, thus 3 = (a.a), 2'= (1, F(1,a,p)), 3= (a, F(a,1,p)) and therefore (2°'3'X) <> (6 I [4 5})

> F(l.a.p) = F(a.l,p). U]

4! j [
R

It is to be noted that if p =0, then Ira=a'1 =2, V a € R, and if p = 1, then a special case of
the little Desarques is shown to be the configurational representation of the algebraic

identity loa=aol, V a € R, (see theorem 1 in [3]).

Let (1, 2, 3) and (17,2",3") be any two triangles in a projective plane n with 4 = [1 2]
[1°27],5=[13]n[137], 6 =[2 3]"[2°3"]. Special forms of Desargues proposition denoted
by D1(the little Desargues proposition), D and D3 arise when one requires one, two and
three vertices of one triangle to lie on the sides of the other triangle [4, p.330]. We may

reformulate D7 and D3 as follows:

The proposition D3.
If {(1,2,3), (1,2°,3)}0; with 11[2" 3"} and 1'I[2 3], then (4 5 6).

The proposition D3,
I {(1,2,3), (1 *,2,3°)}0; with 31{1°2°] and 5I[2"2] and 6I[1°1] then (4 5 6) (see Fig. 6).
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Now, a special form of the proposition D7 may be formulated as follows:

The proposition (Dz)*.
If the triangles (1, 2, 3) and (1°,2",3") are perspective from 9, 1'I{2 3], 1I[237], 4 = [1 2]~

[1'27],5=[13]n[1"3"], 6 =[2 3]n[2°3] and the lines [ 2], [1°37], [0 6] are concurrent ,
then (4 5 6) (see Fig. 3).

THEOREM 5. (D»)* is valid in a projective plane if , and only if, in every coordinatizing
(R, F) of the plane the element a determined by aol = 0 fulfils also the equation loa= 0.

Proof. Let (1,2,3), (17,27,3") be two triangles generating an incomplete (Dz)*—configuration
as depicted in Fig. 3. Assume that aol =0, then wemay set 6=(0), 1 =Y,1"=Qand 7=
(1,1). It follows that 3= (1), 0 =(0,1), 2 =(1,0) and (x,0)[[1,1] = x0l =0 => x =a.

Therefore, 5 = (a,a), 4 = (1,a) and 2"= (a). Now, the configuration is complete <> (0 272)

holds true <> (1,0)I[2,1] < loa=0. [

The question which presents itself is: under what condition is the groupoid (R,op)
commutative ? the question is answered for the two special cases: p =0 and p = 1. In fact,
it has been shown that the proposition of Pappus charcterizes the commutativity of
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multiplication "-" [7, p.39] and the commutativity of the operation "o" [3, p.6]. Now a
general answer is given in the following theorem.

THEOREM 6. The proposition of Pappus holds in a projective plane if, and only if|
aopb =bopa, VabeR;peR in all coordinatizing (R, F) of the plane.

Proof. The result follows by observing that the proof of Theorem 16 in [5] remains valid
by putting ¢ = p, i.e., when we set 1’=(0,p) and E = (1,1) I[1 2]. [J

The relationships of the two configurational propositions D1 and Dy with the groupoid
(R,0p) are explained in the following sequence of theorems and their corollaries.

THEOREM 7. Dy holds in a projective plane if, and only if, in every coordinatizing
ternary ring (R.F), a-b = ¢-d = aopb = copd, VabedeR;pe R\{0}.

Proof: Let (1, 2, 3) and (17, 2, 3") be two ftriangles generating an incomplete Dj-

configuration with center of perspectivity 0 and (0 4 5). Putting (see Fig. 4) 0=Y,2'=Q, 2

=(0,p); p= 0, [3°3]=[al], 4=(d), 5= (b), X=[4 51n[1"37], thus 3= [a]"\[b,0] = (a,ab), 1=

[{d.0]n[0.a-b] = (c,a'b), 1= (c,F(c,d,p)), 3= (a,F(a,b,p)) and hence (4 5 6) < (1 3 X)=

F(c,d,p) = F(a,b,p). U
S —

2’ 3

| 5

Fig.4

COROLLARY 1. D1 holds in a projective plane if, and only if, in every coordinatizing
ternary ring (R,F), aopb = (a'b)opl, V a,b € R; p e R\{0}.
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Proof: This result follows from the fact that the two algebraic identities given in Theorem
7 and the preceding corollary are equivalent. To establish this we suppose first that: for any
abcde R ab=cd= aopbv= copd. Then putting d = 1, we obtain ab =¢ = aopb =
copl = (a-b)opl. For the converse, assume that: aopb = (a-b)opl, ¥ ab € R. Then, a-b =
c-d = (a-b)op1 = (c'd)opl => aopb = copd. Ll

THEOREM 8. D> holds in a projective plane if, and only if, in every coordinatizing (R, F)
ab=cd=p= aopb = copd, ¥ a,b,c,d € R;p € R\{0}.

Proof: Follow the proof of Theorem 13 in [5] by setting e = p .[]

When E = (1,1), in the proof of Theorem 13 in [5], is restricted to be incident with [1°27],
we obtain the the following result.

COROLLARY 2. D holds in a plane if, and only if, in every (R,F)ab=c:'d=1 = ach =
cod, V a,b,c,d € R.

THEOREM 9. D7 holds in a plane if, and only if, in every coordinatizing (R, F) ab =p
= aopb =popl, Vv ab e R; p € R\{0}.

Proof. Since the two algebraic conditions of Theorem 8 and Theorem 9 are equivalent, we

conclude this result. []
Similarly, the following result is a consequence of Corollary 2.

COROLLARY 3. D holds in a plane if, and only if, ab =1 = aob = lol, V a,b,c,d € R,

for every coordinatizing (R, F).

Finally, the relationship of the proposition F, which states that the diagonal points of a
complete quadrangle form a collinear triple [4, p. 329], with the groupoid (R,op); p=0,is
explained in the following theorem.

THEOREM 10. The proposition ¥ holds, in any projective plane 7, if, and only if, in
every coordinatizing (R, F) of m, ab=p=aopb=0,VabeR;pe R\{0}.
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Proof. Observing the validity of the proof of Theorem 8 in [5], when ¢ is taken to be any

element p in R\{0}, this result can be established. [
For the special case p =1, i.e., E =(1,1)I[2 4], we state the following result obtained also in

(3, p. 8.

COROLLARY 4. The proposition F holds in 7 if, and only if, in every coordinatizing
(R, F),ab=1=>a0b=0,VabekR.

Finally, we generalize the results obtained in the two theorems 6, 7, given in [3], to be
satisfied in any groupoid (R,op); such that p is taken to be any fixed element in R\{0}. In
fact, we prove analogously the following theorem.

THEOREM 11. In any groupoid (R,op); p # 0, the following properties are equivalent:
(H aopb = (a-b)opl, VabeR,

2) ab=cd= aopb = copd, ¥ ab,c,d ek,

3) aopb = copd = ab=cd,VabedeR,

4y 3 fp, gp: R—->R; aopb = fp(a-b) + gp(a+b), VabeR,

5y 3 Ops Wp: R—R;ab= (pp(aopb) + wp(a+b), ¥ abeR.

Proof. For (1) & (2), see the proof of Corollary 1. Now to show (1) < (3), we assume first
(1) holds true. Then, aopb = copd = (a-b)opl = (c-d)opl, and hence by Lemma 2, we get
ab = c-d, i.e., (3) holds true. Suppose (3) holds true. Then, by Lemma 2, the equation xopl
= aopb has unique solution in R and by (3), it follows that x = x-1 = a'b, i.e., aopb =
(a-b)opI.ThuS (1) holds true. Now we show (1) implies (4). In fact, we let: f5(x): =x and
gp(x):=p, Vx e R. By (1), for any a,b € R, we have aopb = (ab)opl = ab+p.Thus, aopb
= fp(ab) + gp(atb). Hence (4) holds true. For the converse, we suppose (4). Putting a = 0
in (4), then p = £5(0) + gp(b), Vb e R. Since (R,+) is a loop, it follows that there exists
k € R with gp(x): =k, V x € R. Since a'b = (a-b)-1, we have

aopb = fp(ab) + gp(ath)
=fp(ab) +k
"= fp((ab)1) +k
= (a°b)op1.
Thus (4) = (1). We conclude this proof by showing (1) <> (§). Suppose that (1) holds true,
i.e., a0pb = (a'b)opl, for any a,b in R. Then we may put ¢p(x): =y such that y is the unique



26 Benz and Ghalieh

solution of the equation y+p = x. Also, put wp(x): = (.Thus, from a:b = (pp(a'b+p) and
ab+p= aopb (by (1)), we obtain that
ab= (pp(aopb) +0
= q)p(aopb) + Wp(a+b).
Hence (5) is valid.
Remains to show that: (5) = (1). Now putting a = 0 in (5), we obtain
0= (pp(p) + \pp(b), YbekR
Consequently, since (R,+) is a loop, there exists t € R with q/p(x): =t, V x € R. Thus, for
any a,b € R ,we have
ab= cpp(aopb) + qu(a+b)
= (pp(aopb) +1
= (pp((a'b)opl) +1.

Therefore, (pp(aopb) = q)p((a-b)opl). But, ®p is one-to-one function and hence, aopb =
(a-b)opl. This completes the proof. (]

THEOREM 12. The following properties are equivalent in any groupoid (R,op); p = 0.
(1) 3FI£R->R; f(aop(b-c)) = (a*b)opc, V¥ ab,c e R,

2) aopb = (a-b)opl and (a-b).c = a*(b'c), V a,b,c € R,

3) aop(b-c) = (a-b)opc, Vv a,b,c € R.

Proof It is easy to show that (2) and (3) are equivalent and (1) follows from (3). Remains
to show (1) = (3). Putting ¢ = 1 in (1), we have f(aopb) = (ab)opl and therefore (a-b)opc
= f(aop(bc)) = a(b-c)opl. Also, a=1 gives bope = (brc)opl and thus aop(b-c) = a(b-c)opl
= (a'b)ope.

2. THE QUASIGROUPS (R,+p) and (R,*p)

Let 7 be any projective plane coordinatized by the ternary ring (RF). Fixing an element p
#0 in R, and using the ternary operation F, two binary operations, denoted by +p and *p,
are to be defined as follows:

a+pb =F(a,p,b),
a*pb =F(p,a,b), VabekR
We may write at+1b =a+b and a*1b =a*b.
First we prove the following sequence of lemmas concerning the system (R, +p).
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LEMMA 5. (R,+p) is a quasigroup with left identity element 0.

Proof. Since, atpb = F(a,p,b) , the system (R,+p) is a groupoid (binary system). Now
consider the equation atpX = b, a,b € R. In fact, a+px =b < Fla,p,x) =b < (a,b)lp.x] <
(0,x) = [0]n[(p)(a,b)]. Hence the equation has a unique solution. Also, y+pa = b <
F(y,p,a) = b < (v.b)[p,a] < (y,b) = [0,b]"[p,a] and consequently the equation ytpa= b
has a unique solution. Finally, for any a € R, Otpa=F (0,p,2) = a. This shows that 0 is the
left identity of the groupoid (R, +p). [J

By Lemma 5, we have proved the following result.

LEMMA 6. The following two laws hold for all a,b,c € R:
()  atpb= é+pc =b=c,
(ii) b+pa =ctpa= b=c.

We remark that since a+p0 =F(a,p,0) = a.p, then a+p0 =a<>a=0orp=1. Consequently,
unless p = 1, 0 is not the right identity of (R,+p). In fact, if p # 1, the system (R,+p) has no
right identity; because if e is a right identity, then atpe =a, vV a € R, which implies 0+pe =
0, Le.,, e =0; but 1+p0 =1 = (1,DI[1, 0] = p= 1. Thus we have proved the following

lemma.
LEMMA 7. Unless p = 1, (R,¥p) is not a loop.

LEMMA 8. Unless p = 1, the operation +p is non-commutative in any ternary ring (R,F)

associated with a projective plane 7.

Proof. For p# 1, we get 0+pl =1 and 14,0 =p. In case p = 1, it has been shown that, the
loop (R,+) is abelian in those planes where the first minor proposition of Pappus, Pq, is
valid [7, p.25]. U

LEMMA 9. Unless p = 1, the operation +p is non-associative in any ternary ring (R,F)

associated with a projective plane 7.

Proof Takinga=1andb=c=0, we get (1+p0)+p0 =p.p and 1+p(0+p0) =p.ButpZ#p
(as p = 1). For the special case p = 1, the loop (R,+) is a group; i.e., + is associative
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operation, if in the plane coordinatized by (R, F) the Reidemeister proposition for the (X,
Y, (1)) - net is valid [6]. I

It is to be noted that O+p(btpc) = (O+pb)+pe, holds for any b,c in R. While, atp(O+pe) =
(a+p0)+pc & atpe = (a'p)+pc <a=apeoa=0orp=1

Now, for the system (R,*p), we prove the following lemmas.
LEMMA 10. (R,*p) is a quasigroup with left identity element 0.

Proof. Since, a*pb = F(p,a.b), (R,*p) is a binary system (a groupoid). Now, a*px =b =
F(p,ax) =b = (p,b) I[a.x] = (0,x) =[0] N [(a) (p,b)]; thus x is unique in R. Also, y*pa =
b = F(p.y,a) =b = (p.b)l]y.a] = (y) =L n [(p,b) (0,a)]. Thus, y is unique in R. Since
O*pb =F(p,0,b) = b, for any b € R, we conclude that 0 is the left identity of the quasigroup
R*p)- O

Immediately, we obtain the result in Lemma 11.

LEMMA 11. The following two laws hold for any a,b,c in R:
(1 a*pb=a*pc:b=c;
2) b*pa = c*pa =b=c.

LEMMA 12. Unless p = 1, (R,*p) is not a loop.

Proof. By the preceding lemma, R.*p) is a quasigroup with the left identity element 0.
Now, since a*pO =pa, then a*p0 =a < p =1 or a = 0. Thus we conclude that, unless p =
1, 0 is not the right identity of (R,*p). In fact, a*pe =3, ¥ a € R implies, O*pe ={,le., e=
0. Hence, unless p = 1, the system (R,*p) has no right identity and hence (R,*p) is not a
loop. [1

LEMMA 13. Unless p = 1, the quasigroup (R,*p) is not abelian.
Proof. If p # 1, we establish the result by taking a= 0 and b = 1 and then we obtain 0*pl =

1, while 1*50 = p. In the case p = 1, the system (R,*) is an abelian group if the second
minor proposition of Pappus is valid in the projective plane coordinatized by R [2]. []
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Now, the-question presents itself is: are the two operations +p and * dual ?- The question
is answered for the the special case p = 1 [2]. Moreover, it has been shown [4] that the two
dual operations + and * are equal if, and only if, the little proposition of Desargues is valid
(see theorem 6 in[4]). In fact, it is not known yet if +p and *o> D # 0,1, are dual. However,
the following interesting theorem gives a necessary and sufficient condition that the two
operations +p and *p , p # 0,1, are equal in any projective plane coordinatized by a ternary
ring (R,F).

THEOREM 13. In any projective plane m, the proposition of Pappus holds in = if, and
only if, in every coordinatizing (R,F), a*pb = atpb, forany a,b € R;p € R\{0, 1}.

Proof. Since the proof of Theorem 16 in [5] is true when we take the element a(or b) to be
any element p # 0,1, we conclude this result. []

THEOREM 14. D is equivalent to each of the following conditions each in every ternary
ring (R,F):

(i) ap=pa=a*pb=atpb, Vab e R;p e R\{0, 1}

(i) 1*pb=1+pb, Vb e R;p € R\{0, 1}

Proof. Assume D1 holds, then (R,F) is linear and hence, a'p = p-a = apth = path =
F(a,p,b) = F(p,a,b), i.e., a+pb = a*pb. Thus (i) holds true. (i) = (ii) is obvious as 1-p =p-1.
Remains to show (ii) implies the validity of Dj. Now, since 1+pb = p*b and l*pb =ptb
and by settinga=p #0, 1, Theorem 6 in [4] gives D1. [

The influence of the configurational proposition Dy, D3 and finally F on the quasigroups
(R,+p) and (R,*p) is explained in the following Theorems.

THEOREM 15. D7 holds in a projective plane if, and only if, in every coordinatizing
(RF) a*pa=0, ¥ a € R with p = 0 determined by p + 1 = 0.

Proof. Let (1,2,3), (17,2",3") be two triangles, in 7, generating an incomplete D»-
configuration. Set (X,Y,Q,E) as depicted in Fig. 5. Assume that p+1 =0; p # 1 (this means
that F is not valid in 7). Now, for a € R\{0,1}(excluding the trivial cases), we may set 5 =
(a) and hence we find 3 = (1), 2= (0,1), 1" =(1,a), 4 = (0,2) and 6 = (x,0)I[1,1] = x+1 =0
= x = p. Now, Dp-configuration is complete <> (5 4 6) < (p,0)I[a,a] © a*pa =0.0
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THEOREM 16. D3 holds in a projective plane if, and only if, in every cocrdinatizing
(R, B), (1+1 )*p(l +1)=0withp # I determined by p+ 1=0.

Proof. Let (1,2,3) and (1°,2",3") be two triangles, in 7, generating an incomplete D3-
configuration (see Fig. 6). Choose the coordinate quadrangle as in the preceding theorem.
Then, we get 1" = (1), 2'= (0,1), 3 = [1]n[1,1] = (1,1+1) = (1,a) and hence 2 = (0,2) and 1
= (a). Calculating the coordinates of 4, we find that 4 = (x,0)I[1,1] = x+1 = 0 and hence x
= p. Now, the configuration is complete <> (p,d)I[a,a] 1 a*pa =0.0]

It is to be noted that the proposition F follows, in 7, only if 1 + 1 = 0 is valid in every
coordinatizing (R,F) and consequently Dy and D3 hold, in m, (see Theorem 2 in [4]).

Therefore, the preceding two theorems give a necessary and sufficient conditions for the

two propositions D7 and D3 to be valid in a non-Fano plane © (i.e., a plane where F is not

valid ).
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Finally, we remark that the proof of Theorem 8 in [5] remains true when we take the
element a or b to be any element p € R\{0} and consequently we may state the following
two results that explain the influence of the proposition ¥ on the quasigroups (R;+p) and

(R,* p), respectively.

THEOREM 17. F holds, in a projective plane = if, and only if, in every coordinatizing
(R,F), atpap= 0,vVa ek

COROLLARY 5. F holds, in a projective plane =, if, and only if, in every coordinatizing
(R,F), a*ppa=0,Vae R.
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