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nection with invariants and invariant notions of different geometries. In the present note we
present ten problems on Functional Equations in Geometry, hoping that such a collection might
help to stimulate research in this specific discipline.
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1. Functional equations are playing an important role in geometry, especially in
connection with invariants and invariant notions of different geometries (see, for
instance, J. Aczél [1], J. Aczél and J. Dhombres [2], W. Benz [3], J. A. Lester [9], A.
Schleiermacher [14]). In the present note we present ten problems on Functional
Equations in Geometry, hoping that such a collection might help to stimulate
research in this specific discipline.

2. A conditional functional equation. Let L be the set of all lines of R3. By
d (l1, l2) designate the distance of the lines l1, l2 ∈ L.

Problem 1. Prove or disprove that every mapping f : L → L satisfying

d
(
f (l1), f (l2)

)
= 1, whenever d (l1, l2) = 1 (1)

holds true for l1, l2 ∈ L, must be induced by a euclidean isometry of R3.

The best known result in this direction is the following theorem of June A.
Lester [10].

Theorem. If f : L → L is a bijection satisfying

∀l1,l2∈L d
(
f (l1), f (l2)

)
= 1 ⇔ d (l1, l2) = 1,

then f is induced by a euclidean isometry of R3.
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Let X be a pre-Hilbert space, i.e. a real vector space equipped with an inner
product

δ : X ×X → R, δ (x, y) =: xy,

satisfying x2 > 0 for all x 6= 0 in X. If p, v are elements of X with v 6= 0, then

p + Rv := {p + λv | λ ∈ R}
is called a line of X. If li = pi + Rvi, i = 1, 2, are lines, define

d (l1, l2) := inf
λ1,λ2∈R

E (p1 + λ1v1, p2 + λ2v2)

with E (x, y) :=
√

(x− y)2 for x, y ∈ X. Assume v2
1 = 1 = v2

2 , without loss of
generality, and put a := p1 − p2. Then, obviously,

[d (l1, l2)]2 = a2 − (av1)2

for v2 ∈ {v1,−v1}, and

[1− (v1v2)2] · [d (l1, l2)]2 =

∣∣∣∣∣∣
a2 av1 av2

av1 1 v1v2

av2 v1v2 1

∣∣∣∣∣∣
for v2 6∈ {v1,−v1}. Note (v1v2)2 ≤ v2

1v2
2 = 1 and, moreover, that (v1v2)2 = 1 =

v2
1v2

2 would imply v2 ∈ {v1,−v1}.
Suppose now that X is a pre-Hilbert space of dimension at least 3. Of course,

the dimension of X might be infinite. By L denote the set of all lines of X.

Problem 2. Determine all f : L → L satisfying (1) for all l1, l2 ∈ L.

3. The isomorphism equation for geometries. Let X be a pre-Hilbert space
of dimension at least 2 and let O (X) be its orthogonal group. Suppose that e is
a fixed element of X with e2 = 1. Define

H := e⊥ = {x ∈ X | xe = 0}.
If % : H × R → R satisfies

For all h ∈ H and ξ ∈ R there exists exactly one t = t (h, ξ) ∈ R
with % (h, t) = ξ,

(∗)

then
∀h∈H ∀t,τ∈R Tt

(
h + % (h, τ) e

)
:= h + % (h, τ + t) e

defines a translation group of X with axis e. For translation groups and their
characterization via the translation equation see [5]. In the case

∀h∈H ∀t∈R % (h, t) = t (2)
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we get the classical translations, and in the case

∀h∈H ∀t∈R % (h, t) = sinh t ·
√

1 + h2 (3)

the translations of hyperbolic geometry. The geometry (see [3])

Γ (T ) := (X,G), (4)

where T denotes a translation group {Tt | t ∈ R} and G the group generated by T
and O (X), will now be of interest. In the case (2), Γ (T ) is the euclidean geometry,
and in the case (3) the hyperbolic geometry (see [5]).

The isomorphism equation for two geometries Γ (T i), i = 1, 2, is given (see [3])
by

∀g∈G1 τ (g)σ = σg. (5)

A pair σ, τ is called a solution of (5) if σ is a bijection of X and τ : G1 → G2 an
isomorphism between the groups G1 and G2 such that (5) holds true.

Problem 3. Given two functions %1 and %2 satisfying (∗) and given their corre-
sponding groups T 1 and T 2. Find necessary and sufficient conditions on %1 and
%2 such that the isomorphism equation has at least one solution, i.e. such that
Γ (T 1), Γ (T 2) are isomorphic.

For the geometries based on (2), (3), respectively, the isomorphism equation
(5) has no solution.

There exist geometries (4) where G is generated by O (X) and the translation
group T with axis e such that

G = O (X) · T ·O (X) (6)

does not hold true (see [5]). However, in the cases (2), (3) equation (6) is satisfied.
I think that it is important to classify all geometries (4) fulfilling (6). This is
again a functional equations problem. If t, s ∈ R and ω ∈ O (X) are given, we are
interested in α, β ∈ O (X) and r ∈ R such that

Tt · ω · Ts = α · Tr · β (7)

holds true. α = α (t, s, ω), β = β (t, s, ω), r = r (t, s, ω) will be called a solution of
(7).

Problem 4. Find all geometries (4) where G is generated by O (X) and T such
that (7) is solvable for all t, s ∈ R and ω ∈ O (X).

4. Lorentz transformations. Let X be a pre-Hilbert space of dimension at
least 2 and t ∈ X be a fixed element with t2 = 1. If x ∈ X, there exist uniquely
determined elements x ∈ H := t⊥ and x0 ∈ R satisfying

x = x + x0t,
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namely x = x− (xt) t and x0 = xt. The Lorentz–Minkowski distance of x, y ∈ X
is defined by

l (x, y) = (x− y)2 − (x0 − y0)2.

A mapping f : X → X is called a Lorentz transformation if, and only if,

∀x,y∈X l (x, y) = l
(
f (x), f (y)

)
holds true. All Lorentz transformations can explicitly be determined ([6]) by means
of Lorentz boosts. Up to euclidean translations they all must be linear mappings
of X.

Problem 5. Let % 6= 0 be a fixed real number. Determine all f : X → X satisfying

∀x,y∈X l (x, y) = % ⇒ l
(
f (x), f (y)

)
= %. (8)

The best known result in the direction of this problem is the following theorem.

Theorem. If dimX < ∞, then exactly the Lorentz transformations f of X are
the solutions of the conditional functional equation (8).

For % > 0 this was proved by J. A. Lester, and for % < 0 by W. Benz (see [4]).

5. Relativistic addition. Adding velocities p, q in mechanics, we get the usual
vector addition p+q as the result. A characterization of this phenomenon by means
of functional equations is presented in [2]. Adding p and q in Special Relativity
Theory, we get (see, for instance, [4])

p ∗ q =
p + q

1 + pq
+

1

1 +
√

1− p2

(pq) p− p2q

1 + pq
. (9)

Problem 6. For a pre-Hilbert space X of dimension at least one, define

V := {x ∈ X | x2 < 1}.
Observe p ∗ q ∈ V for all p, q ∈ V . Find a functional equations approach to the
relativistic addition (9).

We would like to mention a possible solution of Problem 6 (Benz [7]). The
Weierstrass map µ : V → X,

µ (x) :=
x√

1− x2
,

is a bijection between V and X. Define the separation S (p, q) of p, q ∈ V by means
of

S (p, q) :=
1− pq√

1− p2
√

1− q2
.
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Theorem. Suppose dimX ≥ 2. Then f : V × V → V is of the form

f (p, q) = p ∗ q

for all p, q ∈ V if, and only if,

(i) S (p, q) = S
(
f (x, p), f (x, q)

)
,

(ii) [f (p, 0)]2 = p2,
(iii) µ

(
f (p, q)

)− µ (q) ∈ R>0 · p
hold true for all x, p, q ∈ V , where R>0 designates the set of all positive real
numbers.

In the case dimX = 1, where x · y is defined as the usual product of x, y ∈ R,
a characterization of f (p, q) = p ∗ q is given ([7]) by (i) for all x, p, q ∈ V and by

(ii)∗ ∀p∈V f (p, 0) = p,
(iii)∗ ∃p∈V f (p, p) 6= 0.

Another result of [7] is that two of the properties (i), (ii), (iii) do not imply the
third one. It might also be mentioned that the properties (i), (ii) and

(iv) µ
(
f (p, q)

)− µ (q) ∈ R · p
for all x, p, q ∈ V do not characterize f (p, q) = p ∗ q.

Of course, other solutions of Problem 6 would be appreciated.

6. Another conditional functional equation. Let R be a commutative and
associative ring with identity element 1 such that 1 + 1 is a unit in R. Designate
R×R by R2 and define

F (a, b, c) :=
1
2

∣∣∣∣∣∣
a1 a2 1
b1 b2 1
c1 c2 1

∣∣∣∣∣∣
for the elements a = (a1, a2), b = (b1, b2), c = (c1, c2) of R2.

Problem 7. Determine all functions ϕ,ψ : R2 → R such that
[
F

(
f (a), f (b), f (c)

)]2 = 1

holds true for all a, b, c ∈ R2 satisfying
[
F (a, b, c)

]2 = 1,

where we put f (x) :=
(
ϕ (x1, x2), ψ (x1, x2)

)
for x = (x1, x2) ∈ R2.

The solution of this problem in the case R := R is the following theorem of
G. Martin (see [3], section 5.3.1).
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Theorem. Let f : R2 → R2 be a mapping satisfying

∀a,b,c∈R2 4(a, b, c) = 1 ⇒4(
f (a), f (b), f (c)

)
= 1 (10)

where 4(a, b, c) denotes the area of the triangle with vertices a, b, c. Then f is an
equiaffine mapping of R2.

7. Generalizations of the theorem of Beckman and Quarles. F. Radó
[12], [13] has presented extensions of the theorem of Beckman and Quarles (see
[4], chapter 1) to the case of Galois fields.

Problem 8. Find and study a general version of the theorem of Beckman and
Quarles for the field case.

8. Area 1 preserving mappings. June Lester proved ([11], see also [3], section
5.1.2) that a mapping f : Rn → Rn, n ≥ 3, satisfying (10) for Rn must be a
euclidean isometry.

Problem 9. Generalize this result to the case of an arbitrary pre-Hilbert space X
of dimension at least 3.

Let X be a pre-Hilbert space X with dimX ≥ 3 and designate by L the set
of all lines of X. Wen-ling Huang ([8], see also [3], section 6.4.2) proved that a
mapping π : L → L, dimX < ∞, satisfying

Whenever a, b, c ∈ L are lines which are sides of a triangle of area 1,
then also π (a), π (b), π (c) are sides of a triangle of area 1

must be induced by a euclidean isometry of X.

Problem 10. Generalize the theorem of Wen-ling Huang to the infinite-dimen-
sional case.
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