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Finite Laguerre planes of order 8 are ovoidal

Günter F. Steinke

Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800,

Christchurch, New Zealand

Received 24 September 2002

Abstract

Using the uniqueness of the Desarguesian projective plane of order 8 and the classification

of its ovals it is shown that a Laguerre of order 8 must be ovoidal.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction and preliminaries

A Laguerre plane consists of a set P of points, a set C of circles and a set G of
generators (subsets of P) such that the following four axioms on generators (G),
joining (J), touching (T) and richness (R) are satisfied, compare [2, 5.6]:

(G) G partitions P and each circle intersects each generator in precisely one point.
(J) Three points no two of which are on the same generator can be uniquely joined

by a circle.
(T) Given a point p on a circle C and a point q not on the same generator as p; there

is a uniquely determined circle that contains both points and touches C at p;
that is, intersects C only in p or coincides with C:

(R) There are at least two circles and each circle contains at least three points.

All known models of finite Laguerre planes are of the following form. Let O be an
oval in the Desarguesian projective plane P2 ¼ PGð2; qÞ; q a prime power. Embed
P2 into a 3-dimensional projective space P3 ¼ PGð3; qÞ and let v be a point of P3

not belonging to P2: Then P consists of all points of the cone with base O and vertex
v except the point v: Generators are the traces of lines of P3 through v that are
contained in the cone. Circles are obtained by intersecting P with planes of P3 not
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passing through v: In this way, one obtains an ovoidal Laguerre plane of order q: If
the oval O one starts off with is a conic, one obtains the Miquelian Laguerre plane of

order q: All known finite Laguerre planes of odd order are Miquelian and all known
finite Laguerre planes of even order are ovoidal. In fact, it is a long-standing problem
whether or not these are the only finite Laguerre planes.
The internal incidence structure Ap at a point p of a Laguerre plane has the

collection of all points not on the generator through p as point set and, as lines, all
circles passing through p (without the point p) and all generators not passing through
p: From the definition of a Laguerre plane it readily follows that each internal
incidence structure is an affine plane, the derived affine plane at p. We say that a
Laguerre plane is finite if P is finite and that it has order n if a derived affine plane has
order n: It now readily follows that a Laguerre plane of order n has n þ 1 generators,
that every generator contains n points and every circle has n þ 1 points, that there are

nðn þ 1Þ points and n3 circles. Hence, Laguerre planes of order n are precisely the
transversal designs TDð3; n þ 1; nÞ:
A circle K not passing through the distinguished point p at which the derived

affine plane is formed induces an oval in the projective extension of the derived affine
plane at p: This oval intersects the line at infinity in the point corresponding to lines
that come from generators of the Laguerre plane; in Ap one has a parabolic curve.

(The derived affine planes of the Miquelian Laguerre planes are Desarguesian and
the parabolic curves are parabolae whose axes are the verticals, i.e., the lines that
come from generators of the Laguerre plane.) A Laguerre plane can thus be
described in one derived affine plane A by the lines of A and a collection of
parabolic curves. This planar description of a Laguerre plane is then extended by the
points of one generator where one has to adjoin a new point to each line and to each
parabolic curve of the affine plane. We call the geometry induced on the complement
of a generator the affine part of the Laguerre plane.
It follows from [8] that every parabolic curve in a finite Desarguesian affine

plane of odd order is in fact a parabola. Furthermore, using this result, it was
shown in [1] or [7, VII.2], that a finite Laguerre plane of odd order that admits
a Desarguesian derivation is Miquelian. In particular, Laguerre planes of
orders 3, 5 and 7 are Miquelian. The same argument applies for Laguerre planes
of orders 2 and 4. Since there is no projective plane of order 6 (cf. [12]), there is no
Laguerre plane of order 6 either. In [11], using the classification of projective planes
of order 9 and their ovals, it was shown that a Laguerre plane of order 9 must be
Miquelian.
In this note, we consider the case of order 8. From the classification of ovals in the

Desarguesian projective plane of order 8 all ovoidal Laguerre planes of order 8 are
well known. The same classification can even be used to show that all Laguerre
planes of order 8 are indeed ovoidal. We prove the following.

Theorem 1. A finite Laguerre plane L of order 8 is ovoidal. More precisely, L is

Miquelian or isomorphic to the ovoidal Laguerre plane L2 over a proper translation

oval, see Section 2 for a description of L2:

G.F. Steinke / Journal of Combinatorial Theory, Series A 102 (2003) 143–162144



As mentioned before all other finite Laguerre planes of order at most 9 are
Miquelian. Since there is no affine plane of order 10 by [6], we have the following.

Theorem 2. A finite Laguerre plane L of order at most 10 is ovoidal.

2. The hyperovals in PG(2,8) and the ovoidal Laguerre planes of order 8

LetL be a finite Laguerre plane of order 8 and let p be a point ofL: The internal
incidence structure Ap extends to a projective plane P: By [3], a projective plane of

order 8 is Desaguesian. Hence P ¼ PGð2; 8Þ can be described over the Galois field
F8 ¼ GFð8Þ of order 8. We use the representation ofP as an affine plane plus the line
W at infinity, that is, P has point set ðF8 � F8Þ,fðmÞ j mAF8,fNgg; where ðmÞ
represents the point at infinity of lines of slope m: Then the generators of L are
represented by the vertical lines.
Every circle not passing through p induces an oval in P: An oval O in a finite

projective plane of even order has a nucleus, that is, all the tangents to the oval
pass through a common point n: Adjoining this point n leads to a hyperoval O,fng;
cf. [5, Lemma 12.10], [13, Theorem 4.1], or [4, Sections 8.1, 8.4]. We can now remove

any point of O,fng and obtain again an oval. There are 26 	 7 	 73 ¼ 32; 704

hyperovals and 26 	 32 	 7 	 73 ¼ 294; 336 ovals in PGð2; 8Þ; see [4, Table 14.10].
In fact, every hyperoval in PGð2; 8Þ is a conic plus its nucleus, see [9,10], and thus

all hyperovals in PGð2; 8Þ are projectively equivalent. However, removing a point
from such a hyperoval does not always yield a conic. Substituting a point of a conic
by its nucleus yields a translation oval which is not a conic. Recall that an oval O
of PGð2; 8Þ is a translation oval if there is a point q of O such that the translations
in PGð2; 8Þ with axis the tangent to O at q that fix O are transitive on O\fqg;
see [4, Section 8.5].
For our purpose, we are only interested in hyperovals that pass through a

particular point, the point ðNÞ; and there are three cases for such a hyperoval H to
be written as a conic plus its nucleus n:

1. n is a point aðNÞ on the line W at infinity; in this case, the affine part of the
corresponding conic is a parabola in its usual representation and

H2
a;b;c ¼ fðx; ax2 þ bx þ cÞ j xAF8g,fðNÞ; ðbÞg

for a; b; cAF8; aa0:
2. n ¼ ðNÞ; in this case, the affine part of the corresponding conic is described by a
parabola with axis a non-vertical line. Describing it in the usual way as the graph
of a function one finds

H4
a;b;c ¼ fðx; ax4 þ bx þ cÞ j xAF8g,fðNÞ; ðbÞg

for a; b; cAF8; aa0: Note that H\fðbÞg is a conic whereas H\fðNÞg is not. In fact,
the latter is a proper translation oval (i.e., not a conic).
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3. n is a point not on W ; in this case one finds the following algebraic description:

H
6;d
a;b;c ¼ fðx; aðx þ dÞ6 þ bx þ cÞ j xAF8g,fðNÞ; ðbÞg

for a; b; c; dAF8; aa0: The affine part of the corresponding conic is a ‘hyperbola’
with centre ðd; bd þ cÞ: (This point is also the nucleus.)

We call a hyperoval of type n if the highest power of x occurring as in the above list
is n: In case n ¼ 6; if we want to specify the parameter d; we more precisely say that
the hyperoval is of type ð6; dÞ and call d the subtype of the hyperoval.
From the above description of hyperovals, one sees that there are 4480 hyperovals

in PGð2; 8Þ through the point ðNÞ: Of these 4480 hyperovals, we have to select 448
that together with the 64 lines not passing through ðNÞ basically form the circles of a
Laguerre plane. Since the 448 hyperovals come from circles of a Laguerre plane, we
have the following restriction on the number of points any two such hyperovals can
have in common.

Lemma 1. Two hyperovals in P that come from circles of the Laguerre plane intersect

in at most three points of P:

Proof. Let H1 and H2 be two different hyperovals that come from circles C1 and C2:
Since the circles intersect in at most two points, H1 and H2 can have at most two
affine points in common. Both hyperovals pass through the point ðNÞ so there can
be at most one further common point on the line W at infinity.
Suppose that H1 and H2 also pass through ðmÞAW and that they intersect in the

affine point q: In the Laguerre plane, this means that C1 and C2 pass through q and
touch a common circle at q: But then C1 and C2 touch each other at q and, because
C1aC2; thus have no point in common except q: This shows that H1-H2 ¼
fðNÞ; ðmÞ; qg consists of three points. &

In the proof of Theorem 1, we are mainly interested in hyperovals through the

points ðNÞ; (0) and (0,0), that is, hyperovals of the form H2
a;0;0; H4

a;0;0 and H
6;d
a;0;ad6

;

where aAF
8 and dAF8: When dealing with these hyperovals and how they intersect,

two kinds of collineations of P will prove to be useful. There is the collineation s
defined on the affine part of P by ðx; yÞ/ðy; xÞ: It fixes the point ð0; 0Þ and
interchanges the points ðNÞ and (0). Therefore, the family of hyperovals through
these points is left invariant. More precisely, hyperovals of types 2 and 4 get
interchanged and

sðH2
a;0;0Þ ¼ H4

a3;0;0; sðH4
a;0;0Þ ¼ H2

a5;0;0; sðH6;d
a;0;ad6

Þ ¼ H
6;ad6

a;0;d :

The second kind of collineations are the collineations dr;s defined on the affine part of

P by ðx; yÞ/ðrx; syÞ; where r; sAF
8: Each dr;s fixes the points ðNÞ; (0) and (0,0). A
hyperoval of type n is mapped onto a hyperoval of the same type. In particular, for
s ¼ r we obtain the homotheties dr ¼ dr;r: Each dr fixes each point on W ; and one

finds that drðH6;d
a;b;cÞ ¼ H6;rd

r2a;b;rc
:
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We conclude this section with a brief description of the ovoidal Laguerre planes of
order 8. We extend the spatial model of an ovoidal Laguerre plane by starting from a
hyperoval H and a point v: We then consider the cone with base H and vertex v

except the point v: Circles are obtained by intersecting this cone with planes of the 3-
dimensional projective space not passing through v: Removing any generator of the
cone yields a Laguerre plane. Each such Laguerre plane is ovoidal, but, in general,
two Laguerre planes obtained in this way are not isomorphic. Alternatively, we can
use the different ovals and construct the ovoidal Laguerre planes associated with
them.
In coordinates, the point set of all these Laguerre planes is P ¼ ðF8,fNgÞ � F8

and generators are the verticals fcg � F8 for cAF8,fNg: By starting from a conic

we obtain the Miquelian Laguerre plane L1 whose circles are of the form

fðx; ax2 þ bx þ cÞ j xAF8g,fðN; aÞg

for a; b; cAF8: By starting from the oval H4
1;0;0; we obtain a non-Miquelian ovoidal

Laguerre plane L2 whose circles are of the form

fðx; ax4 þ bx þ cÞ j xAF8g,fðN; aÞg
for a; b; cAF8: Note that one can, essentially, also use parabolae to describe the
circles of the latter Laguerre plane as

fðx; ax2 þ bx þ cÞ j xAF8g,fðN; bÞg
for a; b; cAF8: In particular, this shows that the affine part consisting of the graphs of
all polynomials of degree at most 2 can be extended in two ways to different
Laguerre planes.

One obtains the seemingly different Laguerre plane L3;d from the oval H6;d
1;0;0;

dAF8; whose circles are of the form

fðx; aðx þ dÞ6 þ bx þ cÞ j xAF8g,fðN; aÞg

for a; b; cAF8: Clearly, L
3;d is isomorphic to L3 ¼ L3;0: Furthermore, the trans-

formation of P given by

ðx; yÞ/
ðx2; xyÞ; if xAF8; xa0;

ðN; yÞ; if x ¼ 0;

ð0; yÞ; if x ¼ N;

8><
>:

takes a circle fðx; ax6 þ bx þ cÞ j xAF8g,fðN; aÞg of the Laguerre plane L3 to the

circle fðu; cu4 þ bu þ aÞ j uAF8g,fðN; cÞg of L2 so that one obtains an isomorph-

ism from L3 onto L2:

3. Proof of Theorem 1

LetL be a finite Laguerre plane of order 8, let p be a point ofL and let Gp be the

generator containing p: The internal incidence structure Ap is an affine plane of
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order 8 and extends to the Desarguesian projective plane P ¼ PGð2; 8Þ: We
always denote the line at infinity by W : Every circle not passing through
the distinguished point p induces an oval in P that passes through the point ðNÞ
and extends to a hyperoval. We use the list of hyperovals through ðNÞ given in
Section 2.
For the Galois field F8; we use

F8 ¼fc0 þ c1oþ c2o2 j ci ¼ 0; 1g

¼f0g,foi j i ¼ 0; 1;y; 6g;

where o3 ¼ oþ 1: We further denote F8\f0g by F
8:
If aAF8 and aa0; 1; then a is a generator of the multiplicative group F
8 and either

a3 þ a þ 1 ¼ 0 or a3 þ a2 þ 1 ¼ 0: The former case occurs for aAS; where

S ¼ fo;o2;o4g

and the latter for aAfo3;o5;o6g: Note that the latter set equals S�1 ¼ fs�1 j sASg;
that is,

S�1 ¼ fo3;o5;o6g

and that ða þ 1Þ3 þ ða þ 1Þ þ 1 ¼ a3 þ a2 þ 1 so that

1þ S ¼ S�1:

Furthermore, S2 ¼ fs2 j sASg ¼ S; ðS�1Þ2 ¼ S�1 and F
8 ¼ f1g,S,S�1: (Note

that S and S�1 are the non-trivial orbits in the action of the automorphism
group of F8 on F
8:) To prove Theorem 1 we try to identify the circles in certain

tangent bundles of circles. In particular, we look at collections of circles that
touch a circle C at a point qAC\Gp: This bundle consists of eight circles, seven of

which do not pass through p: In P; we thus obtain one line L and seven hyperovals
that in the affine part only intersect in the point q and have two points in common on
W ; the points ðNÞ and L-W : We call a collection of seven hyperovals a tangent

bundle and more specifically an ððmÞ; ðu; vÞÞ-bundle, where m; u; vAF8 if each
hyperoval contains ðNÞ; ðmÞ and ðu; vÞ and any two of the hyperovals intersect in
precisely these points.
The affine parts of hyperovals of type n in a ((0),(0,0))-bundle are described by

y ¼
ax2 ðn ¼ 2Þ;
ax4 ðn ¼ 4Þ;
ax2ðx2 þ dx þ d2Þ2 ðn ¼ 6Þ

8><
>:

for some a; dAFq; aa0:

For points of intersection, we frequently encounter one particular polynomial
which we deal with in the following lemma; compare [4, 1.1.4]. Although the result of
the lemma is well known we include a short proof.
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Lemma 2. The polynomial x2 þ x þ r; where rAF8 is irreducible over F8 if and only if

rAf1g,S�1: For rAf0g,S; the polynomial has the roots r2 and r2 þ 1:

Proof. The map F8-F8 given by u/u2 þ u has range f0;o;o2;o4g ¼ f0g,S:

Hence, u2 þ u þ ra0 for any uAF8 if r does not belong to the above set, that is,

rAF
8\S ¼ f1g,S�1:

If r ¼ 0; then we clearly have the roots 0 and 1. For rAS; one finds ðr2Þ2 þ r2 þ r ¼
rðr3 þ r þ 1Þ ¼ 0 so that r2 is a root. But then r2 þ 1 is also a root. &

In case a ((0),(0,0))-bundle comes from a tangent bundle of circles in an
ovoidal Laguerre plane all hyperovals are of the same type and have the same
subtype d in case of type 6. We want to show that this is true for any such bundle of
hyperovals. To this end we first show that types 2 and 4 cannot both occur in
such a bundle.

Lemma 3. Let Hn; n ¼ 2; 4; be two hyperovals of type n through the points ðNÞ; (0)
and ð0; 0Þ: Then H2 and H4 intersect in two affine points.

Proof. The affine part of Hn is given by y ¼ anxn for some anAF
8: Then a2x
2 ¼ a4x

4

has the solutions x ¼ 0 and x ¼ ða2=a4Þ4a0:Hence, H2 and H4 intersect in the affine

points ð0; 0Þ and ðða2=a4Þ4; a22=a4Þ: &

We are now ready to show that all hyperovals in a tangent bundle Bmust have the
same type. The case of type 6 hyperovals and their subtypes will be dealt with
separately.

Proposition 1. Let B be a ((0),(0,0))-bundle. Then all members of B are of the

same type.

Proof. Lemma 3 shows that types 2 and 4 cannot both occur in B: We first
assume that only hyperovals of types 2 and 6 occur in B and that there is at least one

of each type. If the affine points of these hyperovals are given by y ¼ a2x
2 and

y ¼ a6x
2ðx2 þ dx þ d2Þ2 for a2; a6AF
8; the points of intersection of these affine parts

are ð0; 0Þ and ðu; a2u
2Þ; where ua0 is a root of x2 þ dx þ d2 þ r2 and r ¼

ða2=a6Þ2a0: Since by our assumption no such u can exist, this polynomial has no

root except 0. This implies that da0; r; otherwise ra0 is a root. Hence, x2 þ dx þ
d2 þ r2 and thus x2 þ x þ 1þ ðr=dÞ2 must be irreducible. By Lemma 2, we therefore
obtain that 1þ ðr=dÞ2Af1g,S�1; that is, ðr=dÞ2AS: But then ðr=dÞ4AS too. This

yields a2Aa6d
4S: In particular, there can be at most three a2’s, that is, B contains at

most three type 2 hyperovals. Furthermore, a6d
4Aa2S

�1 so that at most three values

for a6d
4 can occur and there can be at most three hyperovals of subtype d for any

given d:

G.F. Steinke / Journal of Combinatorial Theory, Series A 102 (2003) 143–162 149



Assume that there are a6; a0
6; d; d 0AF
8; dad 0; such that a6d

4 ¼ a0
6ðd 0Þ4 ¼ c; in

particular d; d 0a0: Then a6 ¼ cd3 and a0
6 ¼ cðd 0Þ3 and the affine points of

intersection of the associated type 6 hyperovals correspond to roots of ðd5 þ
ðd 0Þ5Þx2 þ ðd6 þ ðd 0Þ6Þx; which has a non-zero root—a contradiction.

This shows that dad 0 for type 6 hyperovals in B implies a6d
4aa0

6ðd 0Þ4: Since at
most three values for a6d

4 can occur, we see that at most three d’s can occur.
More precisely, if there is a d for which there are three hyperovals of that subtype in
B; then no other subtype can occur and we have three hyperovals of type 6 in B: If
there is a d; for which there are two hyperovals of that subtype in B; then there is at
most one further subtype possible and one associated hyperoval of type 6 and there
are at most three hyperovals of type 6 in B: If for each d; there is at most one
hyperoval of that subtype in B; then again B contains at most three type 6
hyperovals. In any case, we find thatB has at most three type 6 hyperovals. But since
there are also at most three type 2 hyperovals in B; we cannot make up the seven
hyperovals.
This shows that all hyperovals in B are either of type 2 or of type 6 if only types 2

and 6 occur in B:
If only hyperovals of types 4 and 6 occur in B we use the collineation s from

Section 2. We then obtain a bundle containing only hyperovals of types 2 and 6.
From the previous case, we know that all hyperovals are of the same type. Hence, all
hyperovals in B are either of type 4 or of type 6. &

Proposition 2. Let B be a ((0),(0,0))-bundle all whose hyperovals are of type 6. Then

there are dAF8 and mAf0; 1; 4g such that B ¼ fH6;amd

a;0;a1�md6
j aAF
8g:

Proof. It is readily verified that the stated collections of type 6 hyperovals are indeed
((0),(0,0))-bundles.

Assume that the hyperovals H6;d
a;0;ad6

and H6;c
b;0;bc6

are in B; where a; bAF
8 and

c; dAF8; cad: Then the equation ax2ðx2 þ dx þ d2Þ2 ¼ bx2ðx2 þ cx þ c2Þ2 has the
only solution x ¼ 0: Hence, the polynomial aðx2 þ dx þ d2Þ2 þ bðx2 þ cx þ c2Þ2 and
thus the polynomial

f ðxÞ ¼ a4ðx2 þ dx þ d2Þ þ b4ðx2 þ cx þ c2Þ

¼ ða4 þ b4Þx2 þ ða4d þ b4cÞx þ ða4d2 þ b4c2Þ

has no root except possibly 0.
Since cad no two of the coefficients of f ðxÞ can be equal to 0. If one of the

coefficients is zero, then f ðxÞ has a non-zero root—a contradiction. This shows that

aab; a4dab4c; a4d2ab4c2 and thus

aab; ad2abc2; ad4abc4: ð1Þ
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In particular, 0 is not a root of f ðxÞ and f ðxÞ must be irreducible. Lemma 2 then
implies that

a4d2þb4c2

ðaþbÞ4 =ða4dþb4c

ðaþbÞ4 Þ
2 ¼ ðaþbÞ4ða4d2þb4c2Þ

ða4dþb4cÞ2 ¼ 1þ a4b4ðcþdÞ2

ða4dþb4cÞ2Af1g,S�1:

But then

a4b4ðc þ dÞ2

ða4d þ b4cÞ2
AS

because a; b; c þ da0: However, S is invariant under squaring so that we further
obtain

a2b2ðc þ dÞ
a4d þ b4c

AS: ð2Þ

In fact, (2) implies (1) because in the case that a ¼ b; ad2 ¼ bc2 or ad4 ¼ bc4; the

expression a2b2ðc þ dÞ=ða4d þ b4cÞ becomes 1 or is undefined.
We first assume that a hyperoval of type (6,0) occurs in B: If there also is a

hyperoval of subtype da0 in B; then (2) with c ¼ 0 becomes b2=a2AS and thus
b=aAS: Hence,

bAaS

and there can be at most three hyperovals of subtype 0 in B:
It readily follows that the cosets of S in F
8 form the lines of a projective plane of

order 2. (The set of exponents f1; 2; 4g is a cyclic (7,3,1) difference set modulo 7.) In
particular, any two distinct cosets have exactly one point in common and the
intersection of mutually distinct four cosets is empty. From this observation we see
that, if there are at least two hyperovals of type ð6; 0Þ in B; then the ‘leading
coefficients’ a of all the other hyperovals must be the same and there is at most one
hyperoval of subtype d in B for each da0: However, aaa0 by (1)—a contradiction
since there must be at least four different d’s. If there is only one hyperoval of

subtype 0 in B we may assume that H6;0
1;0;0AB; that is, b ¼ 1: Then aAS�1 and for

each da0 there are at most three hyperovals of type ð6; dÞ in B: Furthermore, at
least two different subtypes da0 must occur. But the leading coefficients for
different d’s are distinct by (1). This together with the above restrictions imply that
there can be at most three hyperovals in B of type ð6; dÞ with da0: In total, we
therefore obtain at most four hyperovals in B—a contradiction.
This shows that either all hyperovals in B or none are of type ð6; 0Þ: In the former

case, the bundle clearly has the stated form.
We now assume that no hyperoval of type (6,0) is in B: Using a homothety dr

from Section 2 we may assume that B contains a hyperoval of subtype 1. Then (1)

and (2) for c ¼ 1 give us aab; bd3; bd5 and a2b2ðd þ 1Þ=ða4d þ b4ÞAS; where

a; dAF
8; da1: Since d is a generator of F
8; we find that aAbfd; d2; d4; d6g: We
distinguish whether dAS or dAS�1: In the former case, we obtain d3 þ d þ 1 ¼ 0

and d5 þ d4 þ 1 ¼ 0: In the latter case, we find d3 þ d2 þ 1 ¼ 0 and d5 þ d þ 1 ¼ 0:
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Evaluating a2b2ðd þ 1Þ=ða4d þ b4Þ for all possible a’s yields the values in the table
below.
From this table we see that in any case

aAbfd; d2g:

In particular, there can be at most two hyperovals of type ð6; dÞ in B for each da0
and at least four different subtypes must occur in B:

If there are two hyperovals of type (6,1) in B; say without loss of generality, H6;1
1;0;1

and H
6;1
b;0;b for some ba0; 1; then fd; d2g-bfd; d2g is non-empty for each da0; 1 for

which there is a hyperoval of that subtype in B: But this condition implies that

d ¼ bd2 or d2 ¼ bd; that is dAfb; b6g: This shows that there can be at most two such
d’s, that is, at most three different subtypes can occur in B: This is a contradiction to
what we found before. Hence, either all hyperovals in B are of type 1 or there is
exactly one hyperoval of type (6,1) in B: (After applying homotheties, the former
case yields those bundles with m ¼ 0:) Furthermore, using the homothety dr again,
we see that in the latter case there must be exactly one hyperoval of type ð6; dÞ in B
for each da0:

We may assume that the hyperoval H6;1
1;0;1 is in B: For each da0; 1 then there is

precisely one aAfd; d2g such that H6;d
a;0;ad6

is in B:

If there is a da0; 1 such that H
6;d
d;0;1AB (that is, a ¼ d), we apply the collinea-

tion s from Section 2. The bundle B is taken to a ðð0Þ; ð0; 0ÞÞ-bundle sðBÞ that
contains sðH6;1

1;0;1Þ ¼ H
6;1
1;0;1 and sðH6;d

d;0;1Þ ¼ H
6;1
d;0;d : Thus, sðBÞ contains two

hyperovals of type (6,1). From what we have seen above this implies that all

hyperovals in sðBÞ must be of type (6,1), that is, sðBÞ ¼ fH
6;1
a;0;a j aAF
8g; and thus

B ¼ fH6;a
a;0;1 j aAF
8g: (After applying homotheties we obtain those bundles with

m ¼ 1:) If no such d exists we have a ¼ d2 for all dAF
8 and therefore B ¼
fH

6;d
d2;0;d

j dAF
8g ¼ fH
6;a4

a;0;a4
j aAF
8g: (After applying homotheties this case yields those

bundles with m ¼ 4:) &

The two preceding Propositions 1 and 2 give us an explicit description of all
possible ðð0Þ; ð0; 0ÞÞ-bundles of hyperovals which can readily be generalised to
bundles that have a different tangent line at ð0; 0Þ:

a a2b2ðd þ 1Þ=ða4d þ b4Þ if dAS if dAS�1

bd d2ðd þ 1Þ=ðd5 þ 1Þ ¼ dAS ¼ d6AS

bd2 d4=ðd þ 1Þ ¼ dAS ¼ d6AS

bd4 dðd þ 1Þ=ðd3 þ 1Þ ¼ d3AS�1 ¼ d4AS�1

bd6 d5=ðd þ 1Þ3 ¼ d3AS�1 ¼ d4AS�1
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Corollary 1. Let B be a ððbÞ; ð0; 0ÞÞ-bundle. Then B has the following form.

* fH2
a;b;0 j aAF
8g in case of hyperovals of type 2;

* fH4
a;b;0 j aAF
8g in case of hyperovals of type 4;

* there are dAF8 and mAf0; 1; 4g such that B is

B6
d;m ¼ fH6;amd

a;b;a1�md6
j aAF
8g

* in case of hyperovals of type 6.

Proof. The hyperovals in a ((0),(0,0))-bundle all have the same type by Proposition 1
and the bundles of type 6 are determined in Proposition 2. The collineation given on
the affine part by ðx; yÞ/ðx; y þ bxÞ fixes ðNÞ and ð0; 0Þ and maps (0) to ðbÞ and the
form of the hyperovals in bundle B follows. &

We say that a ððbÞ; ð0; 0ÞÞ-bundle B is of type n if all hyperovals in B are of type n:
In case of type 6, we further say that the bundle is of co-type mAf0; 1; 4g and subtype

d; or simply of type ð6; d;mÞ; if B ¼ B6
d;m as in Corollary 1. Note that in the case of

subtype 0 the bundle does not depend on the co-type, that is, B6
0;m ¼ B6

0;0 for each

mAf0; 1; 4g: Apart from this case however, subtype and co-type uniquely determine
the bundle.
We now compare different bundles and determine how the hyperovals contained

in them intersect. Again we encounter a particular kind of polynomial in the process.

Lemma 4. The polynomial x5 þ ax3 þ bx þ 1 has at least two roots in F8 for a ¼ 0;

b ¼ 1; or aAS; bAf0; ag; or aAS�1; bAfa; a3g:

Proof. For a ¼ ba0; 1; the above polynomial has the two roots 1 and a2 in F8 and in

case aAS; b ¼ 0 one finds the roots a and a3: In the remaining two cases where a ¼ 0;

b ¼ 1 or aAS�1; b ¼ a3; the polynomial has the three roots o3;o5;o6 and a3; a4; a5;
respectively. &

In fact, in all other cases for a and b not listed in the lemma, the polynomial

x5 þ ax3 þ bx þ 1 has no or precisely one root in F8: Note that a ¼ 1 does not occur
among the possible coefficients for which the polynomial has more than one root.
This is at the core of the problem that leads to the exceptional cases in the following
proposition.

Proposition 3. Let B be a ((0),(0,0))-bundle and B0 be a ðð1Þ; ð0; 0ÞÞ-bundle. Assume

that each hyperoval in B intersects each hyperoval in B0 in at most three points. Then

all members of B,B0 are of the same type unless one bundle is of type (6,1,4) and the

other bundle is of type 2.
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Proof. Note that all hyperovals in B and B0 have the points ðNÞ and ð0; 0Þ in
common. Hence, by our assumption each member ofB intersects each member ofB0

in at most one affine point different from (0,0).
From Proposition 1, we know that all members of B are of the same type n and all

members of B0 are of the same type n0 and we also know the explicit form of the

hyperovals in B and B0 by Corollary 1. We distinguish several cases depending on
the types n and n0 and exclude all situations except the ones in the statement. Since
the collineation given on the affine part by ðx; yÞ/ðx; y þ xÞ fixes ð0; 0Þ and ðNÞ
and interchanges the points (0) and (1), we can interchange the roles of B and B0;
that is, we may assume that nXn0: Finally note that, irrespective of the co-type m; a

bundle of the form B6
d;m contains the hyperoval H6;d

1;0;d6
:

Case 1: n ¼ 4 and n0 ¼ 2:

In this case H4
1;0;0AB and H2

1;1;0AB0 by Corollary 1. The affine points of

intersection of these hyperovals correspond to the roots of

x4 þ x2 þ x ¼ xðx3 þ x þ 1Þ ¼ xðx þ oÞðx þ o2Þðx þ o4Þ:

Hence, H4
1;0;0-H2

1;1;0 contains five points—four affine points associated with the

roots and the point ðNÞ: This contradicts our assumption on the number of points
of intersection members of B with members of B0: Therefore, types 2 and 4 both
occurring is not possible.

Case 2: n ¼ 6 and n0 ¼ 2:

By Corollary 1, there is a dAF8 such that H
6;d
1;0;d6

AB and H2
a0;1;0AB0 for all a0AF
8:

The affine points of intersection of these hyperovals correspond to the roots of

x2ðx2 þ dx þ d2Þ2 þ a0x2 þ x ¼ xðx5 þ d2x3 þ ðd4 þ a0Þx þ 1Þ:

We distinguish the cases d ¼ 0; d ¼ 1; dAS and dAS�1: In the first and last cases, we
let a0 ¼ 1 and in the third cases, we let a0 ¼ d: The resulting polynomials then have at
least three different roots by Lemma 4 (root 0 and at least two roots from the quintic
factor). Hence, the hyperovals intersect in at least four points.
Finally, in the case d ¼ 1 we have to use the full bundle B: There is an mAf0; 1; 4g

such that B ¼ B6
1;m: The affine points of intersection of H

6;am

a;0;a1�mAB with H2
a0;1;0

correspond to the roots of

xðax5 þ a2mþ1x3 þ ða4mþ1 þ a0Þx þ 1Þ

¼ xððbxÞ5 þ a2m�1ðbxÞ3 þ ða4m�2 þ a4a0ÞðbxÞ þ 1Þ;

where a ¼ b5; that is, b ¼ a3: If r ¼ a2m�1 the second factor on the right-hand side
becomes

u5 þ ru3 þ ðr2 þ tÞu þ 1;

where u ¼ bx and t ¼ a4a0: Note that for m ¼ 0; 1; 4 we obtain r ¼ a6; a; 1;
respectively. Therefore, the map a/r is a permutation of F
8 for m ¼ 0; 1 and is
constant for m ¼ 4:
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For rAS we let t ¼ r2 and for rAS�1 we let t ¼ 1: Then the resulting quintic
polynomial in u has at least two roots by Lemma 4. Hence, the corresponding
hyperovals have at least four points in common. This shows that m ¼ 0 or 1 is not
possible.

For m ¼ 4 however, we obtain u5 þ u3 þ ð1þ tÞu þ 1 which has precisely one zero
for each tAF8; ta1 and is irreducible for t ¼ 1:
This shows that types 2 and 6 both occurring is not possible except when d ¼ 1

and m ¼ 4:
Case 3: n ¼ 6 and n0 ¼ 4:

By Corollary 1, there is a dAF8 such that H
6;d
1;0;d6

AB and H4
a0;1;0AB0 for all a0AF
8:

The affine points of intersection of these hyperovals correspond to the roots of

x2ðx2 þ dx þ d2Þ2 þ a0x4 þ x ¼ xðx5 þ ðd2 þ a0Þx3 þ d4x þ 1Þ:

We distinguish the cases d ¼ 0; d ¼ 1; dAS and dAS�1: In the respective cases, we
let a0AS; a0 ¼ 1; a0 ¼ d and a0 ¼ d þ 1: The resulting polynomials then have at least
three roots, 0 and at least two roots from the quintic factor, by Lemma 4. Hence, the
hyperovals have at least four points in common.
This shows that types 4 and 6 both occurring is not possible. &

We next show that in case of two type 6 bundles only co-types 0 and 4 can occur
and that all hyperovals in the two bundles must have the same subtype. Note that

since, in the notation of Section 2, the Laguerre planesL3;d exist, the bundles of co-
type 0 exist as stated in the following proposition.

Proposition 4. Let B be a ((0),(0,0))-bundle and B0 be a ((1),(0,0))-bundle, both of type

6. Assume that each hyperoval in B intersects each hyperoval in B0 in at most three

points. Then B and B0 are both of co-type 0 and subtype d for some dAF8 or both

bundles are of co-type 4 and have subtypes d and d 0; where either d ¼ d 0 ¼ 1 or

ðd þ 1Þðd 0 þ 1Þ ¼ 1; d; d 0a0:

Proof. From Corollary 1, we know the explicit form of the hyperovals in B and B0:
We assume that B and B0 are of type ð6;m; dÞ and ð6;m0; d 0Þ; respectively. As in the
proof of Proposition 3 we see that the roles ofB andB0 can be interchanged and that
each member of B intersects each member of B0 in at most one affine point different
from ð0; 0Þ: Hence, we may assume that d 0 ¼ 0 if one of d; d 0 is 0 or that mXm0: Also

note that a ð6;m0; d 0Þ bundle is taken by a homothety dr to a ð6;m0; r1�2m0
d 0Þ bundle

so that we may assume that d 0 ¼ 0; 1 for m0a4:

The affine points of intersection of H
6;amd

a;0;a1�md6
AB and H

6;am0
d 0

a0;1;ða0Þ1�m0 ðd 0Þ6
AB0 corres-

pond to the roots of

xðða þ a0Þx5 þ ða2mþ1d2 þ ða0Þ2m0þ1ðd 0Þ2Þx3 þ ða4mþ1d4 þ ða0Þ4m0þ1ðd 0Þ4Þx þ 1Þ
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so that by our assumptions on the number of points of intersection the polynomial

ða þ a0Þx5 þ ða2mþ1d2 þ ða0Þ2m0þ1ðd 0Þ2Þx3 þ ða4mþ1d4 þ ða0Þ4m0þ1ðd 0Þ4Þx þ 1

ð3Þ

can have at most one root in F8:

If aaa0 we let u ¼ ða þ a0Þ3x: Then the above polynomial (3) becomes
u5 þ au3 þ bu þ 1;

where

a ¼ ða2mþ1d2 þ ða0Þ2m0þ1ðd 0Þ2Þða þ a0Þ5;

b ¼ ða4mþ1d4 þ ða0Þ4m0þ1ðd 0Þ4Þða þ a0Þ4:

This polynomial too can have at most one root in F8:

Similarly, if a ¼ a0 and t ¼ a2mþ1d2 þ a2m0þ1ðd 0Þ2a0 we let v ¼ t5x: Then the
polynomial (3) becomes

v3 þ gv þ 1;

where

g ¼ ða4mþ1d4 þ a4m0þ1ðd 0Þ4Þða2mþ1d2 þ a2m0þ1ðd 0Þ2Þ2:

This polynomial in v has more than one root in F8 if and only if g is equal to 1.
We distinguish several cases depending on the co-types and subtypes and exclude

all situations except the ones in the statement. The strategy is to find suitable a’s and
a’s in those cases we want to exclude so that polynomial (3) has at least two roots,
that is, g ¼ 1 if a ¼ a0 or a and b satisfy the conditions from Lemma 4 for aaa0:

Case 1: mo4; da0 ¼ d 0:

Let a ¼ a0 ¼ d3mþ2: Then t ¼ d6�ma0 and g ¼ 1:
Case 2: m ¼ 4; da0 ¼ d 0:
If d ¼ 1; we let a ¼ a0 ¼ 1: Then t ¼ 1a0 and g ¼ 1: For da1 we let a ¼ 1 and

a0 ¼ 1þ d2: Then a0a0; a and a ¼ b ¼ d5a0; 1:
Case 3: m ¼ 44m0; da0; d 0 ¼ 1:

We choose aAðd5�3m0 þ dSÞ; aa0: Let a0 ¼ ða3d4Þ2m0þ1 ¼ a3�m0
dm0þ4: Then a0a0

and a þ a0 ¼ ad4þm0 ða2�m0 þ d3�m0 Þ ¼ ad4þm0 ða þ d5�3m0 Þ2�m0
Þa0: (Note that ðm0Þ2 ¼

m0 in this case.) Furthermore, a ¼ d3þ2m0 ða þ ðd5�3m0 Þ4�2m0
AS; b ¼ 0:

Case 4: m ¼ 1; m0 ¼ 0; da0; d 0 ¼ 1:

We choose rAd6S-S: Such an r exists because the cosets of S in F
8 form the lines

of a projective plane of order 2; compare the proof of Proposition 2. Let a ¼ r2d6

and a0 ¼ r3d6: Then a; a0a0 and a þ a0 ¼ r2ðr þ 1Þd6 ¼ r5d6a0: Moreover,
a ¼ rdAS and b ¼ 0:

Case 5: m ¼ m0 ¼ 0; dad 0:

Let a ¼ a0 ¼ ðd þ d 0Þ2: Then aa0; t ¼ ðd þ d 0Þ6a0 and g ¼ 1:
Case 6: m ¼ m0 ¼ 1; da0; d 0 ¼ 1:
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We choose rAS such that rad2; d4; d6: Such an r exists because S has three

members of which at most two are excluded. (Note that d2 and d6 cannot be both in

S:) Let a0 ¼ ðr þ 1Þðr3 þ d5Þðr5 þ d3Þ6d5 and a ¼ ra0: By our choice of r we have

a; a0; a þ a0a0: Furthermore, a ¼ b ¼ ðr þ 1Þ6ðr3 þ d5Þ2ðr5 þ d3Þ6a0; 1:
Case 7: m ¼ m0 ¼ 4; d ¼ d 0a0; 1:

Let a0 ¼ 1 and a ¼ d5 if dAS or a ¼ d2 if dAS�1: Then a ¼ d2 and b ¼ a for dAS

and b ¼ a3 for dAS�1:
Case 8: m ¼ m0 ¼ 4; d; d 0a0; dad 0; ðd þ 1Þðd 0 þ 1Þa1:

For d þ d 0 ¼ 1 we let a ¼ a0 ¼ 1: Then t ¼ ðd þ d 0Þ2a0 and g ¼ d þ d 0 ¼ 1: For

d þ d 0AS we let a0 ¼ 1 and a ¼ dðd 0Þ6: Then a þ a0 ¼ ðd þ d 0Þðd 0Þ6a0 and a ¼
ðd þ d 0Þ2AS; b ¼ 0: If d þ d 0AS�1; we distinguish the cases d ¼ 1; d 0 ¼ 1; dd 0 ¼ 1: In

the first case, we have d 0AS and we let a ¼ ðd 0Þ3; a0 ¼ 1: Then a þ a0a0 and a ¼
b ¼ ðd 0Þ5AS: If d 0 ¼ 1; we have dAS and we let a ¼ d2; a0 ¼ 1: Then a þ a0a0 and

a ¼ b ¼ d4AS: In the last case where dd 0 ¼ 1 we let a ¼ d4; a0 ¼ 1: Then

a ¼ d3ðd þ 1ÞAS�1 and b ¼ a3: The remaining possibilities for d and d 0 such that

d þ d 0AS�1 then are ðd þ 1Þðd 0 þ 1Þ ¼ 1:
Note that conversely ðd þ 1Þðd 0 þ 1Þ ¼ 1 implies that either d ¼ d 0 ¼ 0 or d; d 0a0;

dad 0 and d þ d 0AS�1: &

The existence of the exceptional cases of co-type 4 bundles in the two preceding
propositions is intriguing and remarkable. In fact, we can form bundles of
hyperovals and lines through (0,0) that look like the collection of all circles through a
point in a Laguerre plane. We call a collection B0 of hyperovals a point bundle or
more specifically a p-bundle, where p is an affine point if B0 is made up of ððbÞ; pÞ-
bundles such that B0 contains a ððbÞ; pÞ-bundle for each bAF8 and such that any two
distinct members of B0 intersect in at most three points.

Proposition 5. Let B0 be a (0,0)-bundle. Then all tangent bundles in B0 are of the same

type or there is a cAF8 such that B0 consists of all hyperovals

fðx; x2ða6 þ b6xÞ6 þ cxÞ j xAF8g,fðNÞ; ðb þ cÞg
for a; bAF8; aa0:

Proof. By applying a collineation gt;s given on the affine part by ðx; yÞ/ðx; ty þ sxÞ
for s; tAF8; ta0 we can achieve that any particular tangent bundle in B0 passes
through the points at infinity (0) and (1), respectively. Such a transformation does
not change the type or co-type of a tangent bundle and a ð6; 4; dÞ-type bundle is
taken to a bundle of type ð6; 4; t3dÞ: Hence, by Proposition 3, any two tangent
bundles in B0 are of the same type or one of the transformed tangent bundles is of
type 2 and the other is of type (6,4,1).
We first exclude the case that B0 contains two type 2 bundles and one tangent

bundle of type 6. Using a transformation gt;s we may assume that the ðð0Þ; ð0; 0ÞÞ-
bundle in B0 is of type 6 and that the ðð1Þ; ð0; 0ÞÞ- and ððrÞ; ð0; 0ÞÞ-bundles for some
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ra0; 1 in B0 are of type 2. The ðð0Þ; ð0; 0ÞÞ-bundle then is of type (6,4,1) and using
gr6;0 we see that the ðð0Þ; ð0; 0ÞÞ-bundle must also be of type ð6; 4; r3Þ—a

contradiction because ra1:
This shows that if different types occur in B0; then one tangent bundle must be of

type 2 and all the others must be of type 6. We may assume that the ðð0Þ; ð0; 0ÞÞ-
bundle is of type 2. An ððrÞ; ð0; 0ÞÞ-bundle, where ra0 is taken under gr6;0 to an

ðð1Þ; ð0; 0ÞÞ-bundle which then must be of type (6,4,1) by Proposition 3. Hence,

the original ððrÞ; ð0; 0ÞÞ-bundle has type ð6; 4; r4Þ: The hyperovals in these

tangent bundles are then of the form H
6;a4r4

a;r;a4r3
: In the affine part, these bundles are

described by

y ¼ aðx þ a4r4Þ6 þ rx þ a4r3

¼ ax6 þ a2rx4 þ a3r2x2 þ rx8

¼ x2ðrx6 þ ax4 þ a2r2x2 þ a3r2Þ

¼ x2ðr6x þ a4r5Þ6:

Hence, we obtain the form as stated. &

Note that x2ða6 þ b6xÞ6 þ cx ¼ ax2 þ a3b5x5 þ a5b3x6 þ ðb þ cÞx for xAF8:

Hence, we obtain the hyperoval H2
a;c;0 for b ¼ 0 and H

6;a6b
a5b3;bþc;a6b2

AB6
b3;4 for ba0:

Furthermore, for a ¼ 0 we obtain on the affine part the line y ¼ ðb þ cÞx: So B0

extended by the lines through ð0; 0Þ looks very much like the bundle of circles

through (0,0). Indeed, the transformation ðx; yÞ/ðx6; xðy þ cxÞ6Þ for xAF
8 maps

y ¼ x2ða6 þ b6xÞ6 þ cx onto y ¼ a6x þ b6 so that lines and hyperovals in the
extended bundle intersect in the right number of points.

Proposition 6. Let B0 be a (0,0)-bundle such that all tangent bundles in B0 are of type

6. Then all tangent bundles are of co-type 0 and have the same subtype.

Proof. Let ð6;mr; drÞ be the type of the ððrÞ; ð0; 0ÞÞ-bundle in B0 for rAF8: By
Proposition 4, the tangent bundles are either all of co-type 0 or all of co-type 4.
Suppose the latter. The transformation d1;r6 ; where ra0; takes the ððrÞ; ð0; 0ÞÞ-

bundle to a ((1),(0,0))-bundle of subtype r4dr and the ((0),(0,0))-bundles is

transformed into one of subtype r4d0: By applying Proposition 2, we obtain that

either dr ¼ d0 ¼ r3 or ðr4dr þ 1Þðr4d0 þ 1Þ ¼ 1; that is, dr ¼ d0 þ d20 ðr3 þ d0Þ6 in both
cases. Note that the map r/dr is injective so that the dr’s are mutually distinct
for ra0:

Let sAF
8 be the unique element such that d0 ¼ s3: The transformation gðrþsÞ6;s

given on the affine part by ðx; yÞ/ðx; ðr þ sÞ6y þ sxÞ for ra0; s maps the
ððsÞ; ð0; 0ÞÞ-and ðrÞ; ð0; 0ÞÞ-bundles onto ((0),(0,0))- and ((1),(0,0))-bundles,
respectively. For the transformed subtypes we thus have by Proposition 4
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that ððr þ sÞ4ds þ 1Þððr þ sÞ4dr þ 1Þ ¼ 1: Since ds ¼ d0 ¼ s3 we find ðr þ sÞ4dr ¼
1þ r3s4 ¼ r3ðr þ sÞ4; that is, dr ¼ r3: However, the formula for dr found above yields

dr ¼ s3 þ s6ðr3 þ s3Þ6 ¼ ðr þ sÞ3ar3: This shows that co-type 4 is not possible.
Hence, all tangent bundles in B0 are of co-type 0. In this case, d1=r;1 does not

change the subtype and Proposition 4 finally yields that all tangent bundles have the
same subtype. &

We call a circle ofL an H-circle if it does not pass through the distinguished point
p and an L-circle if it passes through p: Such a circle then induces a hyperoval and a
line in P; respectively. In transferring the notions of type, subtype and co-type to
circles we say that an H-circle of L is of type nAf2; 4; 6g; subtype d or co-type
mAf0; 1; 4g if the associated hyperoval in P is of that type, subtype or co-type. With
this notation, we have the following.

Proposition 7. All H-circles are of the same type. In case of type 6 all H-circles are

furthermore of the same subtype and of co-type 0.

Proof. Let C be a circle of type n not passing through p and let qAC be a point of
Ap:We consider the collection Bq of all H-circles inL through q: InAp; any two of

these circles intersect in q and at most one further point. Furthermore, for each such
circle C0ABq there is a circle L through p and q that touches C0 at q: Hence, Bq is the

union of tangent bundles BL to L-circles through q:

We now look at the situation induced in P:We obtain a bundle B0
q of hyperovals

through q and this bundle contains an hyperoval of type n (associated with the circle
C). Using an elation of P with axis W ; we may assume that q ¼ ð0; 0Þ: Note that
collineations of P that fix ðNÞ and W preserve the type. Hence, B0

q represents a

(0,0)-bundle in P: By Propositions 5 and 6, all hyperovals in B0
q are of type n unless

we have the exceptional point bundle from Proposition 5.

Suppose that there is a point q such that the point bundle B0
q is of mixed type.

Then every point bundle Bq0 must be of mixed type. In particular, we have ð0; iÞ-
bundles Bi; i ¼ 0; 1; in P: Using the translation ðx; yÞ/ðx; y þ 1Þ; we see from
Proposition 5 that there must be ciAF8 such that the hyperovals in Bi are given by

Hi
a;b ¼ fðx; x2ða6 þ b6xÞ6 þ cix þ iÞ j xAF8g,fðNÞ; ðb þ ciÞg

for a; bAF8; aa0:
We first assume that c0ac1: Let c ¼ c0 þ c1a0 and sAS: But then

H0
c2s4;cs3

-H1
c2s;cs

¼ fðNÞ; ðcs þ c1Þ; ðc6s5; c1c
6s5Þ; ðc6s3; s2 þ c1c

6s3Þg in contradiction

to Lemma 1. This shows that c0 ¼ c1: However, then H0
1;1 and H1

1;0 have the five

points ðNÞ; (1,0) and ðs; s6Þ for sAS in common—again a contradiction to Lemma 1.
This shows that no point bundles of mixed type can occur, that is, all hyperovals in

B0
q are of the same type. In case of type 6, Proposition 6 further shows that all

hyperovals in B0
q must have co-type 0 and the same subtype.
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Let C be a circle not passing through p: All H-circles that intersect C in at least
one point ofAp have the same type as C by what we have seen above. Now every H-

circle intersects at least one of these circles in at least one point and thus must have
the same type as C again by the above. The same argument applies for subtypes and
co-types in case of type 6. &

Proposition 7 gives us an explicit description of the affine part of a Laguerre plane
with respect to a point p: The Laguerre plane ‘almost’ looks like an ovoidal Laguerre
plane.

Corollary 2. Let L be a Laguerre plane of order 8 and let G be a generator of L: Then

the geometry L\G induced by L on the complement of G is isomorphic to the geometry

induced by an ovoidal Laguerre plane Lk; k ¼ 1; 2; 3; see Section 2, on the complement

of the generator fNg � F8:

Proof. Let p be a point on G: From Proposition 7, we know that all H-circles of L
have the same type and, in case of type 6, the same subtype and co-type 0. Together
with the non-vertical lines of the derived affine plane Ap at p we thus find that the

traces of circles on Ap are represented by the sets Ca;b;c ¼ faðx þ dÞn þ bx þ
c j xAF8g for a; b; cAF8; where n ¼ 2; 4 or 6 and dAF8 are fixed and d ¼ 0 unless

n ¼ 6: There are 83 ¼ 512 of these sets and there are 512 circles inL: Since any two
of these sets intersect in at most two points, we obtain that each Ca;b;c in fact occurs

as the trace of a circle of L: But the collection of all Ca;b;c’s is just the affine part of

an ovoidal Laguerre plane L1; L2 or L3;d as described in Section 2 when the
generator GN ¼ fNg � F8 is deleted.
As already mentioned at the end of Section 2, in case n ¼ 6 the transformation of

F8 � F8 given by ðx; yÞ/ðx þ d; yÞ provides and isomorphism from L3;d
\GN onto

L3;0
\GN: Hence, we can assume that d ¼ 0 and we obtain the affine part of the

Laguerre plane L3 ¼ L3;0: &

The remaining problem now is how the affine part extends to a Laguerre plane,
that is, how the extra generator fits in. From Section 2, we know that, in general,

this can be done in at least two ways for Lk; where k ¼ 1; 2: In our situation
however, we already know from the way we obtained the affine part what the H- and
the L-circles are.
We use the notation

Ck
a;b;c ¼ fax2k þ bx þ c j xAF8g

for a; b; cAF8; where k ¼ 1; 2 or 3 and call Ck
a;b;c a trace of a circle or simply a

T-circle. Then fCk
0;b;c j b; cAF8g is the collection of traces of L-circles so that each

Ck
0;b;c is to be augmented by the point at infinity ðN; 0Þ:
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Lemma 5. The polynomial ax2k þ bx þ c; where a; b; cAF8 and kAf1; 2; 3g has

precisely one root in F8 if and only if a ¼ 0; ba0 or aa0; b ¼ 0:

Proof. Since the map u/u2k is a permutation of F8 it readily follows that

f ðxÞ ¼ ax2k þ bx þ c has precisely one root in F8 if a ¼ 0; ba0 or aa0; b ¼ 0:

For a; ba0; let dAF
8 be defined by d2k�1 ¼ b=a: Then

f ðxÞ ¼ ad2k x

d

� �2k

þx

d
þ c

bd

� �
:

The map F8-F8 given by u/u2k þ u has range f0g,S for kAf1; 2g and f1g,S�1

for k ¼ 3: Moreover, each value occurs precisely twice. (For k ¼ 1 or 2, the map is
additive and u and u þ 1 have the same image.) Hence, f ðxÞ has either two roots or
none if a; ba0: &

From Corollary 1, we know that the collection fCk
a;0;0 j aAF8g of T-circles forms a

tangent bundle to Ck
0;0;0 at the point ð0; 0Þ: Since the corresponding circles in L

cannot intersect in any point other than ð0; 0Þ; each Ck
a;0;0 must be augmented by a

different point at infinity and there is no loss of generality to assume that Ck
a;0;0 is

augmented by the point ðN; aÞ:

Proposition 8. Under the assumptions above a T-circle, Ck
a;b;c must be augmented by

the point at infinity ðN; aÞ:

Proof. The statement is certainly true for a ¼ 0 or b ¼ c ¼ 0:
For aa0; all H-circles through ðN; aÞ essentially form the lines of an affine plane,

the derived affine plane AðN;aÞ at that point. In particular, all these lines except the

eight lines parallel to Ck
a;0;0 intersect Ck

a;0;0 in precisely one point. Furthermore, of

these, different lines have at most one point in common.
From Lemma 5, we obtain that there are precisely two kinds of T-circles that

intersect Ck
a;0;0 in precisely one point. The first kind consists of the T-circles Ck

a;b;c for

b; cAF8; ba0 and then there are the T-circles, Ck
a0;0;c for a0; cAF8; a0aa: For the latter

kind of T-circles we further obtain that a0a0 so that there are 6 	 8 ¼ 48 circles of
this kind.

There must be 56 T-circles that have precisely one point in common with Ck
a;0;0:

Since there are only 48 T-circles of the second kind we need at least eight T-circles of

the first kind. Suppose that there is a T-circle Ck
a0;0;c of the second kind in AðN;aÞ:

Lemma 5 then shows that Ck
a0;0;c meets each T-circle of the first kind in no or two

points. Since the latter alternative cannot occur in the derived affine plane we see that

Ck
a0;0;c must have no point in common with any T-circle of the first kind in AðN;aÞ;

that is, each T-circle of the first kind in AðN;aÞ is a parallel to Ck
a0;0;c: From what we

said before this implies that there are at least eight lines aCk
a0;0;c parallel to Ck

a0;0;c:
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Since this cannot occur in an affine plane of order 8, we conclude that there cannot
be any T-circle of the second kind in AðN;aÞ: Hence, each of the 56 T-circles of the

second kind must belong to AðN;aÞ; that is, each Ck
a;b;c for b; cAF8; ba0 must be

augmented by ðN; aÞ:
Regarding the remaining lines in AðN;aÞ; that is, the lines parallel to Ck

a;0;0; we

repeat the argument above for the T-circle Ck
a;1;0 to conclude that Ck

a;0;c for cAF8 is

also augmented by ðN; aÞ: &

Proof of Theorem 1. LetL be a Laguerre plane of order 8 and let p be a point ofL:

Corollary 2 shows thatL\G is isomorphic toLk
\GN for some kAf1; 2; 3g; where G

is the generator inL that contains the point p: On the complement of G circles ofL

are therefore represented as T-circles Ck
a;b;c for a; b; cAF8: Given that the point p has

coordinates ðN; 0Þ; Proposition 8 then shows that Ck
a;b;c passes through the point at

infinity ðN; aÞ and we obtain the same circles as in the ovoidal Laguerre plane Lk;

that is, L is isomorphic to Lk: As seen in Section 2, the plane L3 is isomorphic to

L2: In summary, this shows that L is isomorphic to either L1; the Miquelian

Laguerre plane of order 8, or the ovoidal Laguerre planeL2: In particular, L itself
is ovoidal. &
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