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Finite Laguerre Near-planes of Odd Order Admitting Desarguesian
Derivations
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We introduce finite Laguerre near-planes and investigate such planes of odd order that admit a
Desarguesian derivation.

(© 2000 Academic Press

1. INTRODUCTION AND RESULTS

A finite Laguerre plane of order vheren > 2 is an integer consists of a setof points,
a setC of circles and a sgf of generators (subsets Bf such that the following four axioms
are satisfied:

(P) P containsn(n + 1) points.

(G) G partitionsP and each generator contaimpoints.

(C) Each circle intersects each generator in precisely one point.

(J) Three points, no two of which are on the same generator can be uniquely joined by a
circle.

From this definition it readily follows that a Laguerre plane of orddrasn + 1 generators,
that every circle contains exactiy+ 1 points and that there aré circles.

All known models of finite Laguerre planes are of the following form. ebe an oval
in the Desarguesian projective plafe = PG(2, p™), p a prime. EmbedP; into three-
dimensional projective spade; = PG(3, p™ and letv be a point ofP3; not belonging to
P2. ThenP consists of all points of the cone with ba®eand vertexv except the poinb.
Circles are obtained by intersectifywith planes ofP3; not passing through. In this way
one obtains anvoidal Laguerre plane of order If the ovalO one starts off with is a conic,
one obtains théiquelian Laguerre plane of order™ All known finite Laguerre planes of
odd order are Miquelian.

Theinternal incidence structurelp at a pointp of a Laguerre plane has the collection of
all points not on the generator throughas point set and, as lines, all circles passing through
p (without the pointp) and all generators not passing throyghThis is an affine plane, the
derived affine plane at.pA circle K not passing through the distinguished pgminduces
an oval in the projective extension of the derived affine plangwhich intersects the line at
infinity in the point corresponding to lines that come from generators of the Laguerre plane;
in A, one has garabolic curve (The derived affine planes of the Miquelian Laguerre planes
are Desarguesian and the parabolic curves are parabolae whose axes are the verticals, i.e.,
the lines that come from generators of the Laguerre plane.) A Laguerre plane can thus be
described in one derived affine pladeby the lines of4 and a collection of parabolic curves.
This planar description of a Laguerre plane, which is the most commonly used representation
of a Laguerre plane, is then extended by the points of one generator where one has to adjoin a
new point to each line and to each parabolic curve of the affine plane. It follows rgrthpt
every parabolic curve in a finite Desarguesian affine plane of odd order is in fact a parabola.
Furthermore, using a simple counting argument, Chen and Kaerlein shajba{ a finite
Laguerre plane of odd order that admits a Desarguesian derivation is Miquelian.
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The spatial description of an ovoidal Laguerre plane as the geometry of plane sections of an
oval cone is related to the planar description in one derived plane by stereographic projection
from one point of the cone onto a plane not passing through the point of projection. In this
description all points of the Laguerre plane except the points on the generator through the
point of projection are covered.

In this note we consider the restriction of a finite Laguerre plane of arderone of its
derived affine planes. When verifying the axioms of a Laguerre plane in such a planar repre-
sentation one always has to consider special cases involving the extra points. We now ask to
what extend the description in a derived affine plane determines the Laguerre plane. To our
knowledge this problem has not yet been solved. To be more pretiaguarre near-plane of
order n> 3 is an incidence structure of points, circles and generators satisfying the axioms
(G), (C) and (J) from above. This definition extends the terminology for Minkowski planes
and Mbbius planes adopted it(] and [13], respectively, see Sectigh Laguerre near-planes
occur as special Laguerre semi-planeslit] out have not been further investigated there.
Also note that a Laguerre near-plane is not a restricted L1-space as defid@fisimfe the
restriction made ing8] on the number of points and lines in an internal incidence structure at
a point is not satisfied.

Clearly, there ar@ generators, every circle contains exactlpoints and there ane® cir-
cles. One obviously obtains a Laguerre near-plane of ardsr deleting a generator from a
Laguerre plane of ordar. Conversely, it is not clear how to extend circles in order to con-
struct a Laguerre plane from a Laguerre near-plane since all circles have the same length.
Even worse, if an extension exists, it may not be unique, see Exariple

Like for Laguerre planes, we have an internal incidence structure at each point of a Laguerre
near-plane defined in exactly the same way, that is, the internal incidence stifigtate
point p consists of all points not on the generator throygland the traces of all circles
throughp and all generators not passing throyglHowever,Z, is no longer an affine plane
but it can be extended to an affine plane by adjoining some points, see Th2@rémview of
Chen and Kaerlein's characterizatidj pf Miquelian Laguerre planes of odd order in terms
of a single derivation, we investigate Laguerre near-planes of odd order that contain a point
whose internal incidence structure can be extended to a Desarguesian affine plane. We prove
the following.

THEOREM 1. A finite Laguerre near-plane of odd order=n 7 that admits a point whose
internal incidence structure extends to a Desarguesian plane can be uniquely extended to the
Miguelian Laguerre plane of order n by adjoining the points of one generator.

Regarding Laguerre near-planes of small orders, we have the following.

THEOREM 2. A finite Laguerre near-plane of order & 7, n # 4, can be uniquely ex-
tended to the Miquelian Laguerre plane of order n by adjoining the points of one generator.
In particular, there is no Laguerre near-plane of order 6.

Laguerre near-planes of order 4 were studied and completely classifigf],iis¢e Theo-
rem3.2for a summary. We further have a brief look at Laguerre near-planes of even order and
at the other two kinds of circle near-planespbius near-planes and Minkowski near-planes,
see [] for a unifying algebraic description of &bius, Laguerre and Minkowski planes.

2. PROOF OFTHEOREMS1 AND 2

We look at the internal incidence structufg at a pointp of a Laguerre near-plane. We
remove the generator through If £ has ordem, then we are left witm(n — 1) points.
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Clearly, L, is a linear space and there are- 1 lines through each point. Lines 8%, that
come from a generator or a circle 6thave lengtin or n — 1, respectively. In particular, there
is a unique line of length through every point of ,. Furthermore, given a link and a point
g ¢ L, there are either 1 or 2 lines througfthat do not intersedt. Hence, we have a biaffine
(or 2-affine) plane. In the notation of][we have found the following.

LEMMA 2.1. The internal incidence structufg, at a point p of a Laguerre near-plane is
a biaffine plane of type II.

Oehler determined all finite biaffine planes of type Il, seeJatz 19 and Section 6].

THEOREM2.2. A biaffine plane of type Il and order i 5 can be obtained from an affine
plane of order n by removing all points on a line, that is, from a projective plane by removing
all points on two lines.

The above theorem deals with the circles through the ppiof derivation. They can be
extended in at least two ways. Next we investigate circles not passing thpucall that
ak-arcin a projective plane of orderis a collection ofk points, no three of which are on a
common line. The ovals are precisely ttre+ 1)-arcs, and théayperovalsare precisely the
(n + 2)-arcs. Note that hyperovals can only exishifs even.

LEMMA 2.3. Let p be a point of a Laguerre near-plane of order n andfdie a projective
extension of the biaffine plarfg,. A circle C not passing through p induces a n-arcRrby
removing the point of C on the same generator as p and adding the infinite point of lines that
come from generators af.

PROOF Letq be the point ofc on the same generator pgnd let(co) be the infinite point
of lines that come from generators©fLetC’ = C\ {q}. It follows from axiom (J) that every
line of P intersect<C’ in at most two points, i.eC’ is an(n — 1)-arc of P. Furthermore, lines
of P that come from generators gfintersectC’ in exactly one point. Thus we may adab)
to C’ and obtain am-arcC” = C’' U {(c0)} of P. ]

In general, am-arc in a projective plane of ordarcan becompletethat is, it is not prop-
erly included in an(n + 1)-arc. Examples of complete 9-arcs in projective planes of order 9
can be found in3] and [6]. For finite Desarguesian projective planes, however, we have the
following, cf. [17] or [4, Section 8.6].

THEOREM2.4. A g-arc in a finite Desarguesian projective plane of order a prime power q
can be extended to a conic by adjoining one point, if g is odd, or to a hyperoval by adjoining
two points, if g is even.

Let £ be afinite Laguerre near-plane of odd ordend letp be a point ofL. By Lemma2.1
and Theoren2.2the internal incidence structufg extends to a projective plarfe. We now
assume thaP is Desaguesian. In particular,= q is a power of an odd prime arfd can be
described over the Galois fiellig = GF(q) of orderg. We use the representation®fas an
affine plane plus the line at infinity, that i, has point seFg x Fq U {(m) | m € Fq U {oc}}
where(m) represents the infinite point of lines of slope We coordinatize” in such a way
that the lineW at infinity and they-axis Y are the two lines that have been adjoined’ to
in order to obtairiP. Then the generators df are represented by the vertical lingsY. By
Lemma2.3every circle not passing throughinduces aj-arc and each such arc extends to a
conic by Theoren2.4. Since each of thg-arcs passes througho) = WN'Y and hadV and
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Y as tangents, we find that the corresponding conics pass th(eaghnd have eithewW or
Y as a tangent. In a Desarguesian projective plane over dffiette readily determines these
two types of conics.

LEMMA 2.5. The conics in the Desarguesian projective plahever the Galois field =
GF(qg) that have W as a tangent are parabolae of the following form

{(x,ax® 4 bx +¢) | x € Fq} U {(c0)}

fora,b,ceFq,a#0.
The conics irP that have Y as a tangent are hyperbolae of the following form

r
{(X, — +SX+t>
X

forr, s, t € Fq, r # 0, where(s) denotes the infinite point on lines of slope s.
Correspondingly, we call circles df of parabola or hyperbola type if they induce parabolae
or hyperbolae, respectively, as above.

X € Fq, X # O} U {(c0), (5)}

We now assume that there is a cir€@lavhose corresponding conic fdis a parabola. Note
that we can always make this assumption by interchanging the roéaidY. The next
step is to make sure that every circle not passing thrquighof parabola type. We begin with
a special case.

LEMMA 2.6. Let g > 5 and let5 be a bundle of g- 1 parabolae or hyperbolae through
the points(1, 0) and (u, 0) for some ue Fq, u # 0, 1. Assume that two distinct members of
B only intersect in these two points or on WY . If B contains a parabola, then all members
of B are parabolae.

ProOF The affine parts of parabolae fare described by
y=ax—-1)Xx—-u

for somea € Fy, a # 0. Likewise, the affine parts of hyperbolaefirare described by

1 X 1 r
y=r<—+——l——> =—X-DHX—-u
X u u ux
for somer € Fq,r # 0.

We intersect parabolae and hyperbola of this form. Foxtgeordinates of affine points of
intersection one finds

x=1 or X=u or X=—.
au

By assumption we must have thgt = 0, 1 oru. This leads to

r=au or r=au’
Note that these relations must hold between aisyandr’s occurring for members oB.
Hence, at most two hyperbolae are possiblB.iSinceq > 5, there are at least three different
parabolae ir5. This in turn leads to at least three differerg and thus to three differemts
if there are any. As we have seen before, this is not possible. Theigfmaanot contain any
hyperbola. O
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LEMMA 2.7. For g > 5 all circles not passing through the point of derivation are of the
same type.

ProOOF. Let C be a circle of parabola type and Ipf, p> € C be two points ofZ, not on
the same generator. We consider the bundle of circles tinrough p; and p,. This bundle
containsq — 1 circle not passing througp. Furthermore, any two of these circles intersect
only in p; and p2. We now look at the situation induced We obtain a bundl®& of g — 1
conics throughp; and p, and this bundle contains a parabola (associated with the €icle
Using a collineation oP that fixesw andY, we may assume thgy = (1, 0) andpz = (u, 0)
for someu e g, u # 0, 1. Hence, all assumptions of Lemris5 are satisfied and we find
that all conics associated with circles througthand p, are parabolae.

We now repeat the above argument for each of the circles thrpughd p, (but not passing
throughp) and every pair of points on one of these circles (but none on the same generator
asp). Since every circle not passing throughntersects at least one of these circles in two
points, we obtain that all circles are of parabola type. m|

So far we have found an extensigh of the Laguerre near-plan& We addy \ {(co)} as a
new generato and each circle is extended naturally by the point of the associated parabola
onY. Clearly, the axioms (P), (G) and (C) of a Laguerre plane are satisfié#.iror L* to
be a Laguerre plane we still have to verify axiom (J). By definition, the axiom of joining is
satisfied inC and by construction also if* \ {G} because the latter is a Laguerre near-plane
obtained from the Miquelian Laguerre plane of ordeby deleting one generator. We now
have to determine how the points on the generator through the pahterivation fit into
this picture.

Let p’ # p be a point on the same generatormand letr € Z,. Let B be the bundle
of circles throughp’ andr. There areg circles in B and any two of them intersect ip’
andr only. We now look at the picture in the internal incidence struciiprat r and its
projective extensio®’. Let L1 andL» be the two lines added § in order to obtair®’ and
let (00’) = L3 N L2 be the infinite point of lines irP’ that come from generators 4f. Let
L3 be the line joining(co”) and p’. ThenB gives us a collection of lines passing through
neither(oco’) nor p such that any two of them intersect in a point.afu L, U L3. In the next
lemma we study this situation for arbitrary projective planes.

LEMMA 2.8. LetP’ be a projective plane of order r 5, let p; and p be two points of’
and let Ly, L, and Lg be three lines through ypsuch that I3 passes throughp Furthermore,
let B be a collection of n lines such that neither of them passes througtopthrough p
and such that any two of them intersect in a point @fLLL» U L3. Then the lines ifB must
pass through a common point on.L

PROOF Suppose there are two lind andM; in 5 that intersect in a point of L 1. Since
there aren lines in B but onlyn — 1 points they can intersetts in, there must be a lin#3
in B not passing through. This line cannot intersect bott; and M in a point of L3 and
likewise for L,. So we may assume that= M3 N M1 € Lz andw = M3z N Mz € L, see
Figurel.

Sincen > 5, there is a lineM4 € B\ {M1, M2, M3}. Now M4 cannot pass through
because otherwise it must med{ in a point not onL1 U Lo U L3. Similarly, M4 cannot pass
throughv or w either. HoweverM4 meetsM; in a point of L1 U Lo U L3. HenceM4 must
pass throughw’ = M1 N L. One likewise finds thatl; must pass through' = M3N L and
v/ = M2 N Ls. In particular,M4 is completely determined hy andv’ so that there can be at
most one such line. This result contradints 5.
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FIGURE 1.

The same argument shows that no two lineafan intersect in a point df,. Hence any
two lines of B must intersect in a point df, that is, all these lines pass through a common
pointonLs. O

Note that Lemma&.8 cannot be extended to= 4 because in this case the pointsv’ and
w’ can be collinear.

PROOF OFTHEOREM1. Let £ be a Laguerre near-plane of ordier>= 7 and letp be a
point of £ whose internal incidence structure can be extended to the Desarguesian projective
planeP of orderq. Then, by Lemma.7, all circles not passing through are of the same
type and we can choose an extensitinof £ in such a way that the generat@rthroughp
becomegoo} x Fq and circles of the extended plane are precisely the graphs of polynomials
of degree at most 2.

By construction, circles through are lines ofP, which are the graphs of polynomials of
degree at most 1. Thus can be identified with the poino, 0) in the Miquelian Laguerre
plane of ordeig. As for points onG different from p, Lemma2.8 states that the parabolae
associated with the circles through € G \ {p} andr ¢ G pass through a common point
in the corresponding Miquelian Laguerre plane. Hence we can labas (co, a) wherea
denotes the leading coefficient the quadratic polynomials describing the associated parabolae.
Hence,L* can be identified with the Miguelian Laguerre plane of orgler O

We now turn to Laguerre near-planes of small orders. We deal with orders 3 and 5 separately.

LEMMA 2.9. A Laguerre near-plane of order 3 is obtained from the Miquelian Laguerre
plane of order 3 by deleting one generator.

PrROOF We call a triple of pointadmissiblef and only if no two of the points are on the
same generator. In a Laguerre near-plane of order 3, every circle corresponds to an admissible
triple of points and each admissible triple of points must occur by axiom (J). This is exactly
the same as in the Miquelian Laguerre plane of order 3 with one generator deleted. O

LEmMMA 2.10. A Laguerre near-plane of order 5 is obtained from the Miquelian Laguerre
plane of order 5 by deleting one generator.



Finite Laguerre near-planes 549

PrROOF It is well known that a projective plane of order 5 is Desarguesian (compare the
remarks following 12.14 ing]). Thus, we can follow the same path as in the proof of Theo-
rem1 except for Lemma.6. We take a closer look at the proof of this lemma in the case of
order 5 and show that we can still obtain the result of LenZnfaAdopting the notation used
in the proof of Lemm&.6 we know that all conics in the bundlg are parabolae if there are
at least three parabolae / Furthermore, given a parabolafwith coefficienta there are
at most two hyperbolae if and these hyperbolae have coefficiants auorr = au?.

We therefore have two possible situations. Either all conids are parabolae—this is the
case that we want to have—or there are precisely two parabolae and two hyperklat in
the parabolae have coefficiersanday, then the coefficients; andry of the hyperbolae in
B must satisfyr; = aju, ro = aju?, r> = agu, r; = axu? up to relabelling. Hencey? = 1
and thusu = —1. Futhermorea, = —ay, rp = —rq1 andry = a;z. In particular, ifu # —1,
then all conics irB are parabolae.

Letu = —1 and letC be a parabola i with coefficienta. We now form a second bundle
B’ consisting of the conics associated with the circles through the pdir®s and(v, a(v? —

1)) wherev # 0,1, —1. This bundle contains the parabdla Using a collineation of the
Desarguesian plane that fixes the lWeat infinity, they-axisY and the poin{1, 0), we can
transform the pointv, a(v? — 1)) into a point(v, 0). Therefore, as we have seen above and
because # —1, the bundleé3’ consists of parabolae only.

Let w be the fourth non-zero elemestt 1, —1, v of Fs. Then the conics B’ cover all
but one point on the generat@,, = {(w,Yy) | y € Fs}. So if we assume thdf contains
two hyperbolae, at least one of them must inter§ggtin a point(w, h) which is also on a
parabola in3. But now the bundle consisting of the conics associated with the circles through
(1, 0) and(w, h) contains a parabola and a hyperbola althowgl —1. This is impossible.

This shows that all circles of are of parabola type and the statement now follows as in the
proof of Theorent. |

PROOF OFTHEOREM 2. Let £ be a Laguerre near-plane of order< 7, n # 4. By
LemmaZ2.1 and Theoren®.2 every internal incidence structure at a point/bis obtained
from a projective plane or order by removing all points on two lines. In particular, 6,
because there are no orthogonal Latin squares of order &@pywfhd consequently there is
no projective plane of order 6. Lemmas9 and2.10deal with order 3 and 5. Since every
projective plane of order 7 is Desarguesian, $é&\hhang 2], Theorem now readily yields
the desired result fan = 7. a

3. LAGUERRENEAR-PLANES OFEVEN ORDER

In this section we have a brief look at Laguerre near-planes of even order and give an
example that shows that a Laguerre near-plane of even order may be extended in more than
one way to a Laguerre plane of the same order. Furthermore, the case of order 4 provides
examples of Laguerre near-planes that cannot be extended to Laguerre planes.

ExaMPLE 3.1. Consider the ovoidal Laguerre plane over an afain PG(2, 2™). The
tangents o0 pass through a common point the nucleus ofO, so thatO U {v} becomes
a hyperoval; cf. , Lemma 12.10] or4, Section 8.1]. We can now remove any point of
O U {v} and obtain again an oval. Hence, if we delete a generator from the ovoidal Laguerre
over O, we obtain a Laguerre near-plane of ord&:. Blowever, we can now either add the
deleted generator or a generator formed from the line through the vertex and the nucleus of
O. In both cases we obtain a Laguerre plane. In general, the two Laguerre planes are not
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isomorphic. Substituting a point of a conic by its nucleus yields a translation oval which is not
a conic unlessn < 2. Hence, one extension is the Miquelian Laguerre plane whereas another
extension is an ovoidal non-Miquelian Laguerre plane. In coordinateBziet= GF(2™) be
the Galois field of order. We consider the following Laguerre near-plane of ordéméth
point setFom x Fom, generators being the verticdly x Fom for ¢ € Fom and circles being of
the form

{(X,ax? + bx+ ) | X € Fom}

for a, b, c € Fom. We extend this Laguerre near-plane by a generatoy x Fom. A circle
described bya, b, ¢ € Fom as above is adjoined the poifio, a). This yields the Miquelian
Laguerre plane of order"2 If we adjoin the point(co, b) however we obtain an ovoidal
non-Miquelian Laguerre plane of orde2f m > 3. (Form = 1 or 2 we obtain again the
Miquelian Laguerre plane.) Explicitly, lgt be the permutation qff'om U {oo}) x Fom defined
by ¢ (X, y) = (X2, y). Acircle {(x, ax? + bx+ ¢) | x € Fom} U {(00, b)} is taken undes to

(U, b +au+c) | u e Fom}U{(co, b))

This is the familiar representation of the ovoidal Laguerre pla¢@"1) over the translation
oval o
{6, X7 ) | x € Fan} U {(c0)}

in the Desarguesian plane ové&im.

The above example shows that it is possible for a Laguerre near-plane to be extended to
two non-isomorphic Laguerre planes. Moreover, it is also possible that two non-isomorphic
Laguerre near-planes can be extended to essentially the same Laguerre plane. To see this
consider the following Laguerre near-plane of ordet 2™, m > 3, whose circles are the
sets

{(x,ax372 + bx +¢) | x € Fq}

for a, b, c € Fq. Adjoining the point(co, a) to such a circle yields essentially the Laguerre
plane£(2™1) from above. The map

(X%, xy), if x e Fq,x #0,
X, ¥) = 1 (00,Y), if x =0,
(07 y)a If X = 0Q,

takes the seft(x, axd=2 + bx+c¢) | x € Fq} U {(o0, @)} to the set
{(u.ct®™ " +bu+a) | u e Fg}U{(co, )}
so that one obtains the circles 6{2M1). Note thatx4~1 = 1 for x € Fg, x # 0. As seen

above, this Laguerre plane is also the extension the Laguerre near-plane obtained from the
Miquelian Laguerre plane by deleting one generator. However, the two Laguerre near-planes
are not isomorphic. Under the map

(x,xy), ifxelFq,x#0,
X, y) =~ { ©.y), ifx=0

the set{(x,ax32 4+ bx+c) | x € Fq} is taken to the set

{(x,bx? 4 cx+a) | x € Fq, X # 0} U{(0, ¢)}
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so that one almost has an isomorphism if it were not for the points on the ger{é@ator| y
Fq}.

The two ways of extending the Laguerre near-planes in ExaBfilglso become apparent
if we follow the path adopted for the proof of Theordnn the case of Laguerre near-planes
of odd order. Suppose we have a Laguerre near-plasfeeven order = 2™ for some integer
m > 2 such thaiZ admits a Desarguesian extensi@rat one of its points. By Theoreth4, a
circle not passing through the poiptof derivation can be extended to a hyperovaPinNote
that the situation here is completely symmetric in the two liiesnd W we had to adjoin
in order to obtain the projective plarf, that is, we can interchange the rolesYondW.
Ignoring points orW, we may addr \ {(co)} to £ as a new generator of an extended incidence
structureC* and extend each circle by the point of intersection of its associated hyperoval with
Y \ {(c0)}. Alternatively, we may addV \ {(co0)} to £ as a new generator and extend each
circle by the point of intersection of its associated hyperoval with this set. As before in the
odd case, the axioms (P), (G) and (C) of a Laguerre plane are satisfiédfarthermore, the
axiom of joining has only to be verified for admissible triples of points containing one point
on the new generatof \ {(co)}.

In [15] we investigated the case = 4. We developed a representation of Laguerre near-
planes of order 4 in terms of a single map and determined, up to isomorphism, all Laguerre
near-planes of order 4. We further characterized those planes that can be extended to Laguerre
planes. The results froni$] can be summarized as follows.

THEOREM3.2. Let f : F3 — F4 whereFs = {0,1, 0, w + 1}, ®®> =  + 1, denotes
the Galois field of order 4 be a map such that for eaghyy, zo € F4 the functions x—
f(X, Yo, 20), Y — f(Xo,VY,20) and z+— f(Xp, Yo, 2) are permutations oF4. Such a map
describes a Laguerre near-plan& f) of order 4 as follows. The point setlg x F4 and
generators are the verticalge} x F,4 for ¢ € Fy. Circles are of the form

1 1 1 ud
1 w w+1 0 u?
1 w+1 o 0]

1 0 0 1

for x, y, z € F4. Conversely, every Laguerre near-plane of order 4 can be uniquely described
in this way by such a map.

A Laguerre near-plan&€( f) can be uniquely extended to the Miquelian Laguerre plane of
order 4 by adjoining the points of one generator if and only H-ff (0, 0, 0) is additive. Up
to isomorphism, there are precisely five Laguerre near-planes of order 4. These planes are
described by the maps

u, (x,y,z f(x,y,2) - |uelFq4

fo(X,y,2) =xX+Yy+2
f1(X.y.2) = P+ +Y) +X+y+2z
26, ¥, 2 = C+ X0+ + VP + V@ +2D+ P+ 0@+ +X+y+2
f306. Y. 2 = P+ X0+ )@ +2) +x+y+2z
fa(X, Y, 2) = (X2 4+ 0?X) (Y2 + wy)(Z% + 02) + (X2 + 0®X) (Y2 + 0?Y)
+(X2 + 0?X)(Z + ©°2) + (Y? + wy)(ZZ + wZ) + X+ Yy + .

4. THE OTHER CIRCLE PLANES

We conclude this paper with a brief look at the other two kinds of circle planéking
planes and Minkowski planes. In these cases, we have much more comprehensive results
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about their restrictions to derived affine planes, se@ and [L0]. To begin with, a finite
Minkowski plane of order r- 1 wheren > 3 is an integer consists of a setof points and a
setC of circles such that the following four axioms are satisfied:

(P) P containsn? points.

(G) There are two class&hl andgG, of generators each of which partitioRs Every gener-
ator containg points and two generators of different classes intersect in precisely one
point.

(C) Each circle intersects each generator in precisely one point.

(J) Three points, no two of which are on the same generator can be uniquely joined by a
circle.

Minkowski planes of orden — 1 correspond to sharply 3-transitive sets of permutations of a
set of sizen.

Deleting two intersecting generators from a Minkowski plane of ordgields an affine
plane of orden and a collection of hyperbolic curves. This planar description of a Minkowski
plane is the most commonly used representation of a Minkowski plane. Conversely such a
model is then extended by the points of two intersecting generators. Since lines of the affine
plane haven points and hyperbolic curves hame- 1 points, it is obvious how to extend. The
point of intersection of the two new generators is adjoined to all the lines of the affine plane.
A hyperbolic curve is extended by two points corresponding to the two generators with which
it does not have a point in common.

Again one can ask whether the planar description in a derived affine plane already deter-
mines the Minkowski plane. This question was answered by RinaldlGh hlthough the
introduction of the so-called Minkowski near-planes of ordewas motivated differently.

More precisely, Minkowski near-plane of order i 3 is an incidence structure of points and
circles satisfying the axioms (P), (G) and (J) from above but where axiom (C) is replaced by:

(C) Each circle intersects each generator in at most one point and containgether 1
points.

Rinaldi showed that a Minkowski near-plane of oreer> 5 is either a Minkowski plane
of ordern — 1 or a Minkowski plane of orden with two intersecting generators deleted.
Hence goroper Minkowski near-plane of order i 5, that is, circles of lengths andn — 1
actually occur, extends to a Minkowski plane of ordeClearly, such an extension is unique.
Minkowski near-planes of order 3 and 4 were also described by Rinaltdjnjve summarize
her results.

THEOREM4.1. A finite proper Minkowski near-plane of order » 5 can be uniquely
extended to a Minkowski plane of order n. The only other Minkowski near-planes of order
n > 5 are the Minkowski planes of order- 1.

Every Minkowski near-plane of order 3 is obtained from the Miquelian Minkowski near-
plane of order 3 by deleting the points on the two generators through a particular point p and
removing some (including none or all) circles not passing through p. Note that the Miquelian
Minkowski plane of order 2 is obtained in the above way by removing all circles not passing
through p.

Every Minkowski near-plane of order 4 is obtained from the Miguelian Minkowski plane of
order 3 by converting some (including none or all) of its circles into all the 3-subsets contained
in them.

A finite Mobiusor inversive plane of order i 2 is a 3-(n2+1, n+1, 1) design. Explicitly,
such a planeM = (P, C) consists of a seP of points and a sef of circles such that the
following three axioms are satisfied:
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(P) There are? + 1 points.
(J) Three mutually distinct points can be uniquely joined by a circle.
(C) Each circle containe + 1 points.

An ovoidal(or egg-like Mobius planés obtained as the geometry of non-trivial plane sections
of an ovoid in three-dimensional projective space over some finite field. If the ovoid one starts
off with is a quadric, one obtainsMiquelian Mdbius plane

Deleting one point from a Kbius plane of orden yields an affine plane of orderand a
collection of ovals. In14] we considered this restriction of a finitedius plane of ordem to
one of its derived affine planes and asked whether this already determine$lingshlane.
More precisely, aModbius near-plane of order n- 2 is an incidence structure of points and
circles satisfying the axiom (J) from above but where axioms (P) and (C) are replaced by

(P) There ara? points.
(C) Each circle containa + 1 orn points.

The results from14] can be summarized as follows.

THEOREM4.2. A finite Mbbius near-plane of order i 5 can be uniquely extended to a
Mobius plane of order n by adjoining one point.

Every Mobius near-plane of order 2 is obtained from the Miqueliadbs plane of or-
der 2 by deleting one point p and removing some (including none or all) circles through p.
Moreover, there are, up to isomorphism, precisely elevébilk near-planes of order 2.

Every Mbbius near-plane of order 3 is determined by a collection of 4-subsets such that
these sets mutually intersect in at most two points. To obtairdbidd near-plane one then
adds all 3-subsets that are not contained in any of the 4-subsets. Theretdniedvhear-
planes of order 3 that cannot be obtained from the MiqueliadbMs plane of order 3 by
deleting one point p and replacing some circles not passing through p by the four 3-subsets
contained in them.

There are Mbbius near-planes of order 4 that cannot be extended to the Miqueligriud
plane of order 4.

Olanda B] considered finiteseminversive planeghat is, incidence structurg®, C) with
at least two circles and at least three points on each circle such that axiom (J) is satisfied and
such that for every circl€ < C and any two pointp, q, wherep € C andq ¢ C, there are
precisely one or two circles passing througlwhich intersecC only at p. He showed that
such a seminiversive plane of order> 5 is either a Mbbius plane of orden or a Mobius
plane of ordem with one point deleted. However, the last condition in the definition of a
seminversive plane is not necessarily satisfied indiMs near-plane and so adldius near-
plane may not be a seminversive plane. Thus, Olanda’s ré§uafnot be directly applied.
However, of course, in the end the same incidence structures are obtained.
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