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We introduce finite Laguerre near-planes and investigate such planes of odd order that admit a
Desarguesian derivation.
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1. INTRODUCTION AND RESULTS

A finite Laguerre plane of order nwheren ≥ 2 is an integer consists of a setP of points,
a setC of circles and a setG of generators (subsets ofP) such that the following four axioms
are satisfied:

(P) P containsn(n+ 1) points.
(G) G partitionsP and each generator containsn points.
(C) Each circle intersects each generator in precisely one point.
(J) Three points, no two of which are on the same generator can be uniquely joined by a

circle.

From this definition it readily follows that a Laguerre plane of ordern hasn+ 1 generators,
that every circle contains exactlyn+ 1 points and that there aren3 circles.

All known models of finite Laguerre planes are of the following form. LetO be an oval
in the Desarguesian projective planeP2 = PG(2, pm), p a prime. EmbedP2 into three-
dimensional projective spaceP3 = PG(3, pm) and letv be a point ofP3 not belonging to
P2. Then P consists of all points of the cone with baseO and vertexv except the pointv.
Circles are obtained by intersectingP with planes ofP3 not passing throughv. In this way
one obtains anovoidal Laguerre plane of order pm. If the ovalO one starts off with is a conic,
one obtains theMiquelian Laguerre plane of order pm. All known finite Laguerre planes of
odd order are Miquelian.

The internal incidence structureAp at a pointp of a Laguerre plane has the collection of
all points not on the generator throughp as point set and, as lines, all circles passing through
p (without the pointp) and all generators not passing throughp. This is an affine plane, the
derived affine plane at p. A circle K not passing through the distinguished pointp induces
an oval in the projective extension of the derived affine plane atp which intersects the line at
infinity in the point corresponding to lines that come from generators of the Laguerre plane;
inAp one has aparabolic curve. (The derived affine planes of the Miquelian Laguerre planes
are Desarguesian and the parabolic curves are parabolae whose axes are the verticals, i.e.,
the lines that come from generators of the Laguerre plane.) A Laguerre plane can thus be
described in one derived affine planeA by the lines ofA and a collection of parabolic curves.
This planar description of a Laguerre plane, which is the most commonly used representation
of a Laguerre plane, is then extended by the points of one generator where one has to adjoin a
new point to each line and to each parabolic curve of the affine plane. It follows from [12] that
every parabolic curve in a finite Desarguesian affine plane of odd order is in fact a parabola.
Furthermore, using a simple counting argument, Chen and Kaerlein showed [2] that a finite
Laguerre plane of odd order that admits a Desarguesian derivation is Miquelian.
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The spatial description of an ovoidal Laguerre plane as the geometry of plane sections of an
oval cone is related to the planar description in one derived plane by stereographic projection
from one point of the cone onto a plane not passing through the point of projection. In this
description all points of the Laguerre plane except the points on the generator through the
point of projection are covered.

In this note we consider the restriction of a finite Laguerre plane of ordern to one of its
derived affine planes. When verifying the axioms of a Laguerre plane in such a planar repre-
sentation one always has to consider special cases involving the extra points. We now ask to
what extend the description in a derived affine plane determines the Laguerre plane. To our
knowledge this problem has not yet been solved. To be more precise, aLaguerre near-plane of
order n≥ 3 is an incidence structure ofn2 points, circles and generators satisfying the axioms
(G), (C) and (J) from above. This definition extends the terminology for Minkowski planes
and Möbius planes adopted in [10] and [13], respectively, see Section4. Laguerre near-planes
occur as special Laguerre semi-planes in [11] but have not been further investigated there.
Also note that a Laguerre near-plane is not a restricted L1-space as defined in [18] since the
restriction made in [18] on the number of points and lines in an internal incidence structure at
a point is not satisfied.

Clearly, there aren generators, every circle contains exactlyn points and there aren3 cir-
cles. One obviously obtains a Laguerre near-plane of ordern by deleting a generator from a
Laguerre plane of ordern. Conversely, it is not clear how to extend circles in order to con-
struct a Laguerre plane from a Laguerre near-plane since all circles have the same length.
Even worse, if an extension exists, it may not be unique, see Example3.1.

Like for Laguerre planes, we have an internal incidence structure at each point of a Laguerre
near-plane defined in exactly the same way, that is, the internal incidence structureIp at a
point p consists of all points not on the generator throughp and the traces of all circles
throughp and all generators not passing throughp. However,Ip is no longer an affine plane
but it can be extended to an affine plane by adjoining some points, see Theorem2.2. In view of
Chen and Kaerlein’s characterization [2] of Miquelian Laguerre planes of odd order in terms
of a single derivation, we investigate Laguerre near-planes of odd order that contain a point
whose internal incidence structure can be extended to a Desarguesian affine plane. We prove
the following.

THEOREM 1. A finite Laguerre near-plane of odd order n≥ 7 that admits a point whose
internal incidence structure extends to a Desarguesian plane can be uniquely extended to the
Miquelian Laguerre plane of order n by adjoining the points of one generator.

Regarding Laguerre near-planes of small orders, we have the following.

THEOREM 2. A finite Laguerre near-plane of order n≤ 7, n 6= 4, can be uniquely ex-
tended to the Miquelian Laguerre plane of order n by adjoining the points of one generator.
In particular, there is no Laguerre near-plane of order 6.

Laguerre near-planes of order 4 were studied and completely classified in [15], see Theo-
rem3.2for a summary. We further have a brief look at Laguerre near-planes of even order and
at the other two kinds of circle near-planes, Möbius near-planes and Minkowski near-planes,
see [1] for a unifying algebraic description of M̈obius, Laguerre and Minkowski planes.

2. PROOF OFTHEOREMS1 AND 2

We look at the internal incidence structureIp at a pointp of a Laguerre near-plane. We
remove the generator throughp. If L has ordern, then we are left withn(n − 1) points.
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Clearly,Lp is a linear space and there aren + 1 lines through each point. Lines ofIp that
come from a generator or a circle ofL have lengthn or n−1, respectively. In particular, there
is a unique line of lengthn through every point ofLp. Furthermore, given a lineL and a point
q /∈ L, there are either 1 or 2 lines throughq that do not intersectL. Hence, we have a biaffine
(or 2-affine) plane. In the notation of [7] we have found the following.

LEMMA 2.1. The internal incidence structureIp at a point p of a Laguerre near-plane is
a biaffine plane of type II.

Oehler determined all finite biaffine planes of type II, see [7, Satz 19 and Section 6].

THEOREM 2.2. A biaffine plane of type II and order n≥ 5 can be obtained from an affine
plane of order n by removing all points on a line, that is, from a projective plane by removing
all points on two lines.

The above theorem deals with the circles through the pointp of derivation. They can be
extended in at least two ways. Next we investigate circles not passing throughp. Recall that
a k-arc in a projective plane of ordern is a collection ofk points, no three of which are on a
common line. The ovals are precisely the(n + 1)-arcs, and thehyperovalsare precisely the
(n+ 2)-arcs. Note that hyperovals can only exist ifn is even.

LEMMA 2.3. Let p be a point of a Laguerre near-plane of order n and letP be a projective
extension of the biaffine planeIp. A circle C not passing through p induces a n-arc inP by
removing the point of C on the same generator as p and adding the infinite point of lines that
come from generators ofL.

PROOF. Let q be the point ofC on the same generator asp and let(∞) be the infinite point
of lines that come from generators ofL. LetC′ = C\{q}. It follows from axiom (J) that every
line ofP intersectsC′ in at most two points, i.e.,C′ is an(n−1)-arc ofP. Furthermore, lines
of P that come from generators ofL intersectC′ in exactly one point. Thus we may add(∞)
to C′ and obtain ann-arcC′′ = C′ ∪ {(∞)} of P. 2

In general, ann-arc in a projective plane of ordern can becomplete, that is, it is not prop-
erly included in an(n + 1)-arc. Examples of complete 9-arcs in projective planes of order 9
can be found in [3] and [6]. For finite Desarguesian projective planes, however, we have the
following, cf. [17] or [4, Section 8.6].

THEOREM 2.4. A q-arc in a finite Desarguesian projective plane of order a prime power q
can be extended to a conic by adjoining one point, if q is odd, or to a hyperoval by adjoining
two points, if q is even.

LetL be a finite Laguerre near-plane of odd ordern and letp be a point ofL. By Lemma2.1
and Theorem2.2the internal incidence structureIp extends to a projective planeP. We now
assume thatP is Desaguesian. In particular,n = q is a power of an odd prime andP can be
described over the Galois fieldsFq = GF(q) of orderq. We use the representation ofP as an
affine plane plus the line at infinity, that is,P has point setFq × Fq ∪ {(m) | m ∈ Fq ∪ {∞}}

where(m) represents the infinite point of lines of slopem. We coordinatizeP in such a way
that the lineW at infinity and they-axis Y are the two lines that have been adjoined toIp

in order to obtainP. Then the generators ofL are represented by the vertical lines6= Y. By
Lemma2.3every circle not passing throughp induces aq-arc and each such arc extends to a
conic by Theorem2.4. Since each of theq-arcs passes through(∞) = W ∩Y and hasW and
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Y as tangents, we find that the corresponding conics pass through(∞) and have eitherW or
Y as a tangent. In a Desarguesian projective plane over a fieldF one readily determines these
two types of conics.

LEMMA 2.5. The conics in the Desarguesian projective planeP over the Galois fieldF =
GF(q) that have W as a tangent are parabolae of the following form

{(x,ax2
+ bx+ c) | x ∈ Fq} ∪ {(∞)}

for a, b, c ∈ Fq, a 6= 0.
The conics inP that have Y as a tangent are hyperbolae of the following form{(

x,
r

x
+ sx+ t

) ∣∣∣∣ x ∈ Fq, x 6= 0

}
∪ {(∞), (s)}

for r, s, t ∈ Fq, r 6= 0, where(s) denotes the infinite point on lines of slope s.
Correspondingly, we call circles ofL of parabola or hyperbola type if they induce parabolae

or hyperbolae, respectively, as above.

We now assume that there is a circleC whose corresponding conic inP is a parabola. Note
that we can always make this assumption by interchanging the roles ofW andY. The next
step is to make sure that every circle not passing throughp is of parabola type. We begin with
a special case.

LEMMA 2.6. Let q > 5 and letB be a bundle of q− 1 parabolae or hyperbolae through
the points(1, 0) and (u, 0) for some u∈ Fq, u 6= 0, 1. Assume that two distinct members of
B only intersect in these two points or on W∪ Y . IfB contains a parabola, then all members
ofB are parabolae.

PROOF. The affine parts of parabolae inB are described by

y = a(x − 1)(x − u)

for somea ∈ Fq, a 6= 0. Likewise, the affine parts of hyperbolae inB are described by

y = r

(
1

x
+

x

u
− 1−

1

u

)
=

r

ux
(x − 1)(x − u)

for somer ∈ Fq, r 6= 0.
We intersect parabolae and hyperbola of this form. For thex-coordinates of affine points of

intersection one finds

x = 1 or x = u or x =
r

au
.

By assumption we must have thatr
au = 0, 1 oru. This leads to

r = au or r = au2.

Note that these relations must hold between anya’s and r ’s occurring for members ofB.
Hence, at most two hyperbolae are possible inB. Sinceq > 5, there are at least three different
parabolae inB. This in turn leads to at least three differenta’s and thus to three differentr ’s
if there are any. As we have seen before, this is not possible. ThereforeB cannot contain any
hyperbola. 2
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LEMMA 2.7. For q > 5 all circles not passing through the point of derivation are of the
same type.

PROOF. Let C be a circle of parabola type and letp1, p2 ∈ C be two points ofIp not on
the same generator. We consider the bundle of circles inL through p1 and p2. This bundle
containsq − 1 circle not passing throughp. Furthermore, any two of these circles intersect
only in p1 andp2. We now look at the situation induced inP. We obtain a bundleB of q − 1
conics throughp1 and p2 and this bundle contains a parabola (associated with the circleC).
Using a collineation ofP that fixesW andY, we may assume thatp1 = (1, 0) andp2 = (u, 0)
for someu ∈ Fq, u 6= 0, 1. Hence, all assumptions of Lemma2.6 are satisfied and we find
that all conics associated with circles throughp1 and p2 are parabolae.

We now repeat the above argument for each of the circles throughp1 andp2 (but not passing
throughp) and every pair of points on one of these circles (but none on the same generator
as p). Since every circle not passing throughp intersects at least one of these circles in two
points, we obtain that all circles are of parabola type. 2

So far we have found an extensionL∗ of the Laguerre near-planeL. We addY \ {(∞)} as a
new generatorG and each circle is extended naturally by the point of the associated parabola
on Y. Clearly, the axioms (P), (G) and (C) of a Laguerre plane are satisfied inL∗. ForL∗ to
be a Laguerre plane we still have to verify axiom (J). By definition, the axiom of joining is
satisfied inL and by construction also inL∗ \ {G} because the latter is a Laguerre near-plane
obtained from the Miquelian Laguerre plane of orderq by deleting one generator. We now
have to determine how the points on the generator through the pointp of derivation fit into
this picture.

Let p′ 6= p be a point on the same generator asp and letr ∈ Ip. Let B be the bundle
of circles throughp′ and r . There areq circles inB and any two of them intersect inp′

and r only. We now look at the picture in the internal incidence structureIr at r and its
projective extensionP ′. Let L1 andL2 be the two lines added toIr in order to obtainP ′ and
let (∞′) = L1 ∩ L2 be the infinite point of lines inP ′ that come from generators ofL. Let
L3 be the line joining(∞′) and p′. ThenB gives us a collection ofq lines passing through
neither(∞′) nor p such that any two of them intersect in a point ofL1 ∪ L2 ∪ L3. In the next
lemma we study this situation for arbitrary projective planes.

LEMMA 2.8. LetP ′ be a projective plane of order n≥ 5, let p1 and p2 be two points ofP ′
and let L1, L2 and L3 be three lines through p1 such that L3 passes through p2. Furthermore,
let B be a collection of n lines such that neither of them passes through p1 nor through p2
and such that any two of them intersect in a point of L1 ∪ L2 ∪ L3. Then the lines inB must
pass through a common point on L3.

PROOF. Suppose there are two linesM1 andM2 in B that intersect in a pointu of L1. Since
there aren lines inB but onlyn− 1 points they can intersectL3 in, there must be a lineM3
in B not passing throughu. This line cannot intersect bothM1 andM2 in a point ofL3 and
likewise for L2. So we may assume thatv = M3 ∩ M1 ∈ L3 andw = M3 ∩ M2 ∈ L2, see
Figure1.

Sincen ≥ 5, there is a lineM4 ∈ B \ {M1,M2,M3}. Now M4 cannot pass throughu
because otherwise it must meetM1 in a point not onL1∪ L2∪ L3. Similarly, M4 cannot pass
throughv or w either. However,M4 meetsM1 in a point ofL1 ∪ L2 ∪ L3. HenceM4 must
pass throughw′ = M1∩ L2. One likewise finds thatM4 must pass throughu′ = M3∩ L1 and
v′ = M2 ∩ L3. In particular,M4 is completely determined byu′ andv′ so that there can be at
most one such line. This result contradictsn ≥ 5.
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FIGURE 1.

The same argument shows that no two lines ofB can intersect in a point ofL2. Hence any
two lines ofB must intersect in a point ofL3, that is, all these lines pass through a common
point onL3. 2

Note that Lemma2.8cannot be extended ton = 4 because in this case the pointsu′, v′ and
w′ can be collinear.

PROOF OFTHEOREM 1. Let L be a Laguerre near-plane of orderq ≥ 7 and letp be a
point ofL whose internal incidence structure can be extended to the Desarguesian projective
planeP of orderq. Then, by Lemma2.7, all circles not passing throughp are of the same
type and we can choose an extensionL∗ of L in such a way that the generatorG throughp
becomes{∞} × Fq and circles of the extended plane are precisely the graphs of polynomials
of degree at most 2.

By construction, circles throughp are lines ofP, which are the graphs of polynomials of
degree at most 1. Thusp can be identified with the point(∞, 0) in the Miquelian Laguerre
plane of orderq. As for points onG different from p, Lemma2.8 states that the parabolae
associated with the circles throughp′ ∈ G \ {p} andr /∈ G pass through a common point
in the corresponding Miquelian Laguerre plane. Hence we can labelp′ as (∞,a) wherea
denotes the leading coefficient the quadratic polynomials describing the associated parabolae.
Hence,L∗ can be identified with the Miquelian Laguerre plane of orderq. 2

We now turn to Laguerre near-planes of small orders. We deal with orders 3 and 5 separately.

LEMMA 2.9. A Laguerre near-plane of order 3 is obtained from the Miquelian Laguerre
plane of order 3 by deleting one generator.

PROOF. We call a triple of pointsadmissibleif and only if no two of the points are on the
same generator. In a Laguerre near-plane of order 3, every circle corresponds to an admissible
triple of points and each admissible triple of points must occur by axiom (J). This is exactly
the same as in the Miquelian Laguerre plane of order 3 with one generator deleted. 2

LEMMA 2.10. A Laguerre near-plane of order 5 is obtained from the Miquelian Laguerre
plane of order 5 by deleting one generator.
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PROOF. It is well known that a projective plane of order 5 is Desarguesian (compare the
remarks following 12.14 in [9]). Thus, we can follow the same path as in the proof of Theo-
rem1 except for Lemma2.6. We take a closer look at the proof of this lemma in the case of
order 5 and show that we can still obtain the result of Lemma2.7. Adopting the notation used
in the proof of Lemma2.6we know that all conics in the bundleB are parabolae if there are
at least three parabolae inB. Furthermore, given a parabola inB with coefficienta there are
at most two hyperbolae inB and these hyperbolae have coefficientsr = au or r = au2.

We therefore have two possible situations. Either all conics inB are parabolae—this is the
case that we want to have—or there are precisely two parabolae and two hyperbolae inB. If
the parabolae have coefficientsa1 anda2, then the coefficientsr1 andr2 of the hyperbolae in
B must satisfyr1 = a1u, r2 = a1u2, r2 = a2u, r1 = a2u2 up to relabelling. Hence,u2

= 1
and thusu = −1. Futhermore,a2 = −a1, r2 = −r1 andr2 = a1. In particular, ifu 6= −1,
then all conics inB are parabolae.

Let u = −1 and letC be a parabola inB with coefficienta. We now form a second bundle
B′ consisting of the conics associated with the circles through the points(1, 0) and(v,a(v2

−

1)) wherev 6= 0, 1,−1. This bundle contains the parabolaC. Using a collineation of the
Desarguesian plane that fixes the lineW at infinity, they-axisY and the point(1, 0), we can
transform the point(v,a(v2

− 1)) into a point(v,0). Therefore, as we have seen above and
becausev 6= −1, the bundleB′ consists of parabolae only.

Let w be the fourth non-zero element6= 1,−1, v of F5. Then the conics inB′ cover all
but one point on the generatorGw = {(w, y) | y ∈ F5}. So if we assume thatB contains
two hyperbolae, at least one of them must intersectGw in a point(w, h) which is also on a
parabola inB. But now the bundle consisting of the conics associated with the circles through
(1, 0) and(w, h) contains a parabola and a hyperbola althoughw 6= −1. This is impossible.

This shows that all circles ofL are of parabola type and the statement now follows as in the
proof of Theorem1. 2

PROOF OFTHEOREM 2. Let L be a Laguerre near-plane of ordern ≤ 7, n 6= 4. By
Lemma2.1 and Theorem2.2 every internal incidence structure at a point ofL is obtained
from a projective plane or ordern by removing all points on two lines. In particular,n 6= 6,
because there are no orthogonal Latin squares of order 6 by [16] and consequently there is
no projective plane of order 6. Lemmas2.9 and2.10 deal with order 3 and 5. Since every
projective plane of order 7 is Desarguesian, see [9, Anhang 2], Theorem1 now readily yields
the desired result forn = 7. 2

3. LAGUERRENEAR-PLANES OFEVEN ORDER

In this section we have a brief look at Laguerre near-planes of even order and give an
example that shows that a Laguerre near-plane of even order may be extended in more than
one way to a Laguerre plane of the same order. Furthermore, the case of order 4 provides
examples of Laguerre near-planes that cannot be extended to Laguerre planes.

EXAMPLE 3.1. Consider the ovoidal Laguerre plane over an ovalO in PG(2, 2m). The
tangents ofO pass through a common pointν, thenucleus ofO, so thatO ∪ {ν} becomes
a hyperoval; cf. [5, Lemma 12.10] or [4, Section 8.1]. We can now remove any point of
O ∪ {ν} and obtain again an oval. Hence, if we delete a generator from the ovoidal Laguerre
overO, we obtain a Laguerre near-plane of order 2m. However, we can now either add the
deleted generator or a generator formed from the line through the vertex and the nucleus of
O. In both cases we obtain a Laguerre plane. In general, the two Laguerre planes are not
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isomorphic. Substituting a point of a conic by its nucleus yields a translation oval which is not
a conic unlessm≤ 2. Hence, one extension is the Miquelian Laguerre plane whereas another
extension is an ovoidal non-Miquelian Laguerre plane. In coordinates, letF2m = GF(2m) be
the Galois field of order 2m. We consider the following Laguerre near-plane of order 2m with
point setF2m × F2m, generators being the verticals{c} × F2m for c ∈ F2m and circles being of
the form

{(x,ax2
+ bx+ c) | x ∈ F2m}

for a,b, c ∈ F2m. We extend this Laguerre near-plane by a generator{∞} × F2m. A circle
described bya, b, c ∈ F2m as above is adjoined the point(∞,a). This yields the Miquelian
Laguerre plane of order 2m. If we adjoin the point(∞, b) however we obtain an ovoidal
non-Miquelian Laguerre plane of order 2m if m ≥ 3. (Form = 1 or 2 we obtain again the
Miquelian Laguerre plane.) Explicitly, letφ be the permutation of(F2m ∪{∞})×F2m defined
by φ(x, y) = (x2, y). A circle {(x,ax2

+ bx+ c) | x ∈ F2m} ∪ {(∞, b)} is taken underφ to

{(u, bu2m−1
+ au+ c) | u ∈ F2m} ∪ {(∞,b)}.

This is the familiar representation of the ovoidal Laguerre planeL(2m−1) over the translation
oval

{(x, x2m−1
) | x ∈ F2m} ∪ {(∞)}

in the Desarguesian plane overF2m.
The above example shows that it is possible for a Laguerre near-plane to be extended to

two non-isomorphic Laguerre planes. Moreover, it is also possible that two non-isomorphic
Laguerre near-planes can be extended to essentially the same Laguerre plane. To see this
consider the following Laguerre near-plane of orderq = 2m, m ≥ 3, whose circles are the
sets

{(x,axq−2
+ bx+ c) | x ∈ Fq}

for a, b, c ∈ Fq. Adjoining the point(∞,a) to such a circle yields essentially the Laguerre
planeL(2m−1) from above. The map

(x, y) 7→

 (x
2, xy), if x ∈ Fq, x 6= 0,

(∞, y), if x = 0,
(0, y), if x = ∞,

takes the set{(x,axq−2
+ bx+ c) | x ∈ Fq} ∪ {(∞,a)} to the set

{(u, cu2m−1
+ bu+ a) | u ∈ Fq} ∪ {(∞, c)}

so that one obtains the circles ofL(2m−1). Note thatxq−1
= 1 for x ∈ Fq, x 6= 0. As seen

above, this Laguerre plane is also the extension the Laguerre near-plane obtained from the
Miquelian Laguerre plane by deleting one generator. However, the two Laguerre near-planes
are not isomorphic. Under the map

(x, y) 7→

{
(x, xy), if x ∈ Fq, x 6= 0,
(0, y), if x = 0,

the set{(x,axq−2
+ bx+ c) | x ∈ Fq} is taken to the set

{(x, bx2
+ cx+ a) | x ∈ Fq, x 6= 0} ∪ {(0, c)}
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so that one almost has an isomorphism if it were not for the points on the generator{(0, y) | y ∈
Fq}.

The two ways of extending the Laguerre near-planes in Example3.1also become apparent
if we follow the path adopted for the proof of Theorem1 in the case of Laguerre near-planes
of odd order. Suppose we have a Laguerre near-planeL of even orderq = 2m for some integer
m ≥ 2 such thatL admits a Desarguesian extensionP at one of its points. By Theorem2.4, a
circle not passing through the pointp of derivation can be extended to a hyperoval inP. Note
that the situation here is completely symmetric in the two linesY andW we had to adjoin
in order to obtain the projective planeP, that is, we can interchange the roles ofY andW.
Ignoring points onW, we may addY\{(∞)} toL as a new generator of an extended incidence
structureL∗ and extend each circle by the point of intersection of its associated hyperoval with
Y \ {(∞)}. Alternatively, we may addW \ {(∞)} to L as a new generator and extend each
circle by the point of intersection of its associated hyperoval with this set. As before in the
odd case, the axioms (P), (G) and (C) of a Laguerre plane are satisfied inL∗. Furthermore, the
axiom of joining has only to be verified for admissible triples of points containing one point
on the new generatorY \ {(∞)}.

In [15] we investigated the caseq = 4. We developed a representation of Laguerre near-
planes of order 4 in terms of a single map and determined, up to isomorphism, all Laguerre
near-planes of order 4. We further characterized those planes that can be extended to Laguerre
planes. The results from [15] can be summarized as follows.

THEOREM 3.2. Let f : F3
4 → F4 whereF4 = {0, 1, ω, ω + 1}, ω2

= ω + 1, denotes
the Galois field of order 4 be a map such that for each x0, y0, z0 ∈ F4 the functions x7→
f (x, y0, z0), y 7→ f (x0, y, z0) and z 7→ f (x0, y0, z) are permutations ofF4. Such a map
describes a Laguerre near-planeL( f ) of order 4 as follows. The point set isF4 × F4 and
generators are the verticals{c} × F4 for c ∈ F4. Circles are of the form

u, (x, y, z, f (x, y, z)) ·


1 1 1 0
1 ω ω + 1 0
1 ω + 1 ω 0
1 0 0 1

 ·


u3

u2

u
1


 | u ∈ F4


for x, y, z ∈ F4. Conversely, every Laguerre near-plane of order 4 can be uniquely described
in this way by such a map.

A Laguerre near-planeL( f ) can be uniquely extended to the Miquelian Laguerre plane of
order 4 by adjoining the points of one generator if and only if f+ f (0, 0, 0) is additive. Up
to isomorphism, there are precisely five Laguerre near-planes of order 4. These planes are
described by the maps

f0(x, y, z) = x + y+ z,

f1(x, y, z) = (x2
+ x)(y2

+ y)+ x + y+ z,

f2(x, y, z) = (x2
+ x)(y2

+ y)+ (y2
+ y)(z2

+ z)+ (x2
+ x)(z2

+ z)+ x + y+ z,

f3(x, y, z) = (x2
+ x)(y2

+ y)(z2
+ z)+ x + y+ z,

f4(x, y, z) = (x2
+ ω2x)(y2

+ ωy)(z2
+ ωz)+ (x2

+ ω2x)(y2
+ ω2y)

+(x2
+ ω2x)(z2

+ ω2z)+ (y2
+ ωy)(z2

+ ωz)+ x + y+ z.

4. THE OTHER CIRCLE PLANES

We conclude this paper with a brief look at the other two kinds of circle planes: Möbius
planes and Minkowski planes. In these cases, we have much more comprehensive results
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about their restrictions to derived affine planes, see [14] and [10]. To begin with, a finite
Minkowski plane of order n− 1 wheren ≥ 3 is an integer consists of a setP of points and a
setC of circles such that the following four axioms are satisfied:

(P) P containsn2 points.
(G) There are two classesG1 andG2 of generators each of which partitionsP. Every gener-

ator containsn points and two generators of different classes intersect in precisely one
point.

(C) Each circle intersects each generator in precisely one point.
(J) Three points, no two of which are on the same generator can be uniquely joined by a

circle.

Minkowski planes of ordern− 1 correspond to sharply 3-transitive sets of permutations of a
set of sizen.

Deleting two intersecting generators from a Minkowski plane of ordern yields an affine
plane of ordern and a collection of hyperbolic curves. This planar description of a Minkowski
plane is the most commonly used representation of a Minkowski plane. Conversely such a
model is then extended by the points of two intersecting generators. Since lines of the affine
plane haven points and hyperbolic curves haven− 1 points, it is obvious how to extend. The
point of intersection of the two new generators is adjoined to all the lines of the affine plane.
A hyperbolic curve is extended by two points corresponding to the two generators with which
it does not have a point in common.

Again one can ask whether the planar description in a derived affine plane already deter-
mines the Minkowski plane. This question was answered by Rinaldi in [10], although the
introduction of the so-called Minkowski near-planes of ordern was motivated differently.
More precisely, aMinkowski near-plane of order n≥ 3 is an incidence structure of points and
circles satisfying the axioms (P), (G) and (J) from above but where axiom (C) is replaced by:

(C’) Each circle intersects each generator in at most one point and contains eithern or n− 1
points.

Rinaldi showed that a Minkowski near-plane of ordern ≥ 5 is either a Minkowski plane
of order n − 1 or a Minkowski plane of ordern with two intersecting generators deleted.
Hence aproper Minkowski near-plane of order n≥ 5, that is, circles of lengthsn andn− 1
actually occur, extends to a Minkowski plane of ordern. Clearly, such an extension is unique.
Minkowski near-planes of order 3 and 4 were also described by Rinaldi in [10]. We summarize
her results.

THEOREM 4.1. A finite proper Minkowski near-plane of order n≥ 5 can be uniquely
extended to a Minkowski plane of order n. The only other Minkowski near-planes of order
n ≥ 5 are the Minkowski planes of order n− 1.

Every Minkowski near-plane of order 3 is obtained from the Miquelian Minkowski near-
plane of order 3 by deleting the points on the two generators through a particular point p and
removing some (including none or all) circles not passing through p. Note that the Miquelian
Minkowski plane of order 2 is obtained in the above way by removing all circles not passing
through p.

Every Minkowski near-plane of order 4 is obtained from the Miquelian Minkowski plane of
order 3 by converting some (including none or all) of its circles into all the 3-subsets contained
in them.

A finite Möbiusor inversive plane of order n≥ 2 is a 3−(n2
+1,n+1, 1) design. Explicitly,

such a planeM = (P, C) consists of a setP of points and a setC of circles such that the
following three axioms are satisfied:
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(P) There aren2
+ 1 points.

(J) Three mutually distinct points can be uniquely joined by a circle.
(C) Each circle containsn+ 1 points.

An ovoidal(or egg-like) Möbius planeis obtained as the geometry of non-trivial plane sections
of an ovoid in three-dimensional projective space over some finite field. If the ovoid one starts
off with is a quadric, one obtains aMiquelian Möbius plane.

Deleting one point from a M̈obius plane of ordern yields an affine plane of ordern and a
collection of ovals. In [14] we considered this restriction of a finite M̈obius plane of ordern to
one of its derived affine planes and asked whether this already determines the Möbius plane.
More precisely, aMöbius near-plane of order n≥ 2 is an incidence structure of points and
circles satisfying the axiom (J) from above but where axioms (P) and (C) are replaced by

(P’) There aren2 points.
(C’) Each circle containsn+ 1 orn points.

The results from [14] can be summarized as follows.

THEOREM 4.2. A finite Möbius near-plane of order n≥ 5 can be uniquely extended to a
Möbius plane of order n by adjoining one point.

Every M̈obius near-plane of order 2 is obtained from the Miquelian Möbius plane of or-
der 2 by deleting one point p and removing some (including none or all) circles through p.
Moreover, there are, up to isomorphism, precisely eleven Möbius near-planes of order 2.

Every M̈obius near-plane of order 3 is determined by a collection of 4-subsets such that
these sets mutually intersect in at most two points. To obtain a Möbius near-plane one then
adds all 3-subsets that are not contained in any of the 4-subsets. There are Möbius near-
planes of order 3 that cannot be obtained from the Miquelian Möbius plane of order 3 by
deleting one point p and replacing some circles not passing through p by the four 3-subsets
contained in them.

There are M̈obius near-planes of order 4 that cannot be extended to the Miquelian Möbius
plane of order 4.

Olanda [8] considered finiteseminversive planes, that is, incidence structures(P, C) with
at least two circles and at least three points on each circle such that axiom (J) is satisfied and
such that for every circleC ∈ C and any two pointsp, q, wherep ∈ C andq /∈ C, there are
precisely one or two circles passing throughq which intersectC only at p. He showed that
such a seminiversive plane of ordern > 5 is either a M̈obius plane of ordern or a Möbius
plane of ordern with one point deleted. However, the last condition in the definition of a
seminversive plane is not necessarily satisfied in a Möbius near-plane and so a Möbius near-
plane may not be a seminversive plane. Thus, Olanda’s result [8] cannot be directly applied.
However, of course, in the end the same incidence structures are obtained.

REFERENCES

1. W. Benz,Vorlesungen̈uber Geometrie der Algebren, Springer, Berlin, 1973.
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GÜNTER F. STEINKE

Department of Mathematics and Statistics,
University of Canterbury,

Private Bag 4800,
Christchurch,
New Zealand


	Introduction and Results
	Proof of Theorems 1 and 2
	Fig. 1

	Laguerre Near-planes of Even Order
	The Other Circle Planes
	References

