Characterizations of homomorphisms of skew fields

Walter Benz

Summary. The functional equations

$$
f\left(x(x+y)^{-1}\right)(f(x)+f(y))=f(x)
$$

and

$$
f\left((x+y) x^{-1}\right) f(x)=f(x)+f(y)
$$

are solved for skew fields.
Mathematics Subject Classification (2000). 39B52.
Keywords. Functional equations, homomorphisms.

1. The functional equation

$$
\begin{equation*}
f\left(\frac{x+y}{x-y}\right)=\frac{f(x)+f(y)}{f(x)-f(y)} \tag{1}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is supposed to be injective was solved by S. Reich (American Math. Monthly 78 (1971), 675). Replacing \mathbb{R} by a prime field or by certain Galois extensions of \mathbb{Q}, the solutions of (1) were found by K. S. Sarkaria in [5]. T. M. K. Davison, [3], posed the problem to solve (1) for arbitrary fields F. It was possible, [1], to find the solution, even for skew fields, replacing (1) by (2) or (3) (see below) in order to avoid the injectivity assumption. In [1] we proved the following theorem. If F is an arbitrary skew field with $F \neq F_{5}$ and char $F \neq 2$, then every $f: F \rightarrow F$ satisfying equation (2), equation (3), respectively,

$$
\begin{align*}
f\left((x+y)(x-y)^{-1}\right)(f(x)-f(y)) & =f(x)+f(y) \tag{2}\\
(f(x)-f(y))\left(f\left((x+y)(x-y)^{-1}\right)\right) & =f(x)+f(y) \tag{3}
\end{align*}
$$

for all elements $x \neq y$ of F must be a homomorphism, an anti-homomorphism, respectively, of F. In the present note we would like to find a characterization of homomorphisms including the case char $F=2$. The following equations which are
of a similar type as equation (2), will be considered.

$$
\begin{align*}
f\left(x(x+y)^{-1}\right)(f(x)+f(y)) & =f(x) \tag{4}\\
f\left((x+y) x^{-1}\right) f(x) & =f(x)+f(y) \tag{5}
\end{align*}
$$

As a matter of fact, it is not difficult to verify
Proposition 1. If F is an arbitrary skew field and if $f: F \rightarrow F$ satisfies (5) for all $x, y \in F$ with $x \neq 0$, then f is $\equiv 2$ or a homomorphism of F.

With respect to equation (4) the following result will be proved in this note.
Theorem 2. Let F be an arbitrary skew field and $f: F \rightarrow F$ be a mapping satisfying (4) for all $x, y \in F$ with $x+y \neq 0$. If $f(1)=1$, then f is a monomorphism of F. If $f(1) \neq 1$, then $f \equiv 0$, or $f(0)=1$ and $f(x)=0$ for all $x \neq 0$, or $2 f \equiv 1$ for $2 \neq 0$.

As a consequence of this theorem we get
Corollary 3. If F is a skew field and $f: F \rightarrow F$ a mapping satisfying $2[f(1)]^{2} \neq$ $f(1)$ and (4) for all $x, y \in F$ with $y \neq-x$, then f is a monomorphism of F.

In our context we also would like to refer to results of F. Halter-Koch and L. Reich [4].

Concerning the algebraic notions in this paper see P. M. Cohn [2]. Note that in the terminology of P. M. Cohn [2] fields are special skew fields, namely skew fields satisfying the commutative law of multiplication.
2. In this section the first part of Theorem 2 will be proved. So let $f: F \rightarrow F$ satisfy $f(1)=1$ and (4) for all $x, y \in F$ with $y \neq-x$.
2.1. $f(0)=0$ and $f(z) \neq 0$ for all $z \neq 0$. Moreover,

$$
\begin{equation*}
\forall_{y \neq-1} f\left((1+y)^{-1}\right)(1+f(y))=1 . \tag{6}
\end{equation*}
$$

Proof. Apply (4) for $x=1$ and $y=0$. Hence $1+f(0)=1$. For $x=1$ and $y \neq-1$ we get (6) from (4). If $z \neq 0$, then $y:=\frac{1}{z}-1 \neq-1$. Hence, by (6), $f(z) \neq 0$.
2.2. For all $a, b \in F$ with $a \neq-1$

$$
\begin{equation*}
f(a b)=f(a) f(b) \tag{7}
\end{equation*}
$$

holds true.

Proof. We may assume $a b \neq 0$. Hence (6) and (4) yield

$$
\begin{align*}
f\left((1+a)^{-1}\right)(1+f(a)) & =1, \tag{8}\\
f\left(b \cdot(b+a b)^{-1}\right)(f(b)+f(a b)) & =f(b) \tag{9}
\end{align*}
$$

Observe $(1+a)^{-1}=b \cdot(b+a b)^{-1}$ and $f(b) \neq 0$. Hence

$$
1+f(a)=[f(b)+f(a b)][f(b)]^{-1}
$$

i.e. (7).
2.3. If char $F=2$, then, obviously, (7) holds true for all $a, b \in F$.
2.4. $f(a)+f(1-a)=1$ for all $a \in F$.

Proof. We may assume $a \neq 0$. Hence, by 2.1, $f(a) \neq 0$. Apply (4) for $x=a$ and $y=1-a$. Then $f(a)(f(a)+f(1-a))=f(a)$, i.e. 2.4.
2.5. $f(2)+f(-1)=1$ and $f(2)=f(-2) f(-1)$ hold true.

Proof. The first equation follows from 2.4, the second one from 2.2 since $-2 \neq-1$.
2.6. $f(-1)(1+f(-1-a))=f(a)$ for all $a \neq 0$.

Proof. We may assume $a \neq-1$. Hence, by 2.2,

$$
f(-1)=f\left(a \cdot \frac{1}{-a}\right)=f(a) \cdot f\left(\frac{1}{-a}\right) .
$$

If we put $y:=-1-a$ in (6), then

$$
f\left(\frac{1}{-a}\right)(1+f(-1-a))=1
$$

2.7. $f(-a)(f(a)+f(-1-a))=f(a)$ holds true for all $a \in F$.

Proof. Put $x=a$ and $y=-1-a$ in (4) and observe $x+y \neq 0$.
2.8. $\frac{1}{f(a)}+\frac{1}{f(-a)}=1+\frac{1}{f(-1)}$ for all $a \neq 0$.

Proof. Observe $f(-1) \neq 0$, in view of $-1 \neq 0$. Put $k:=f(-1)$ and $r:=f(-1-a)$.
Now 2.6, 2.7 imply

$$
\begin{aligned}
1+r=k^{-1} f(a) \text { and } f(a)+r & =[f(-a)]^{-1} f(a), \text { i.e. } \\
1-f(a) & =\left(\frac{1}{k}-\frac{1}{f(-a)}\right) f(a) .
\end{aligned}
$$

2.9. If char $F=2$, then $f(-1)=-1$, and, if char $F \neq 2$, then $f(-1) \in\left\{-1, \frac{1}{2}\right\}$. The element $f(-1)$ is hence in the center of F.

Proof. The first statement is trivial, so assume $2 \neq 0$. With $k:=f(-1)$ we get $f(2)=1-k$ and $f(-2)=f(2) k^{-1}$ from 2.5. Hence, by 2.8 with $a=2$,

$$
\begin{equation*}
\frac{1}{1-k}+\left[(1-k) k^{-1}\right]^{-1}=1+k^{-1} \tag{10}
\end{equation*}
$$

Multiplying (10) from the right by $1-k$, we get $(k+1)\left(k^{-1}-2\right)=0$, i.e. $k=-1$ or $k^{-1}=2$.
2.10. If $a, b \in F$ are not both equal to -1 , then (7) holds true.

Proof. Because of 2.3 we only need to consider the case $2 \neq 0$. In view of 2.2 the only case left is $a=-1$ and $b \neq-1$. Here we have

$$
f(a b)=f(-b)=f(b \cdot(-1))=f(b) \cdot f(-1)=f(-1) f(b)
$$

on account of 2.2 and the fact that $f(-1)$ is in the center of F (see 2.9).
2.11. The equation (7) holds true for all $a, b \in F$. Moreover, $f(-1)=-1$.

Proof. Because of 2.3 we may assume $2 \neq 0$. If $3=0$, then $\frac{1}{2}=-1$ and thus

$$
f(-1) f(-1)=1=f(1) .
$$

Suppose now that $2 \cdot 3 \neq 0$. There hence exists $\alpha \in F \backslash\{0,1,-1\}$. By observing $(-1) \alpha \neq-1, \alpha \neq-1, \alpha^{-1} \neq-1$ we get, by 2.10 ,

$$
\begin{aligned}
1 & =f((-1)(-1))=f\left((-1) \alpha \cdot \alpha^{-1}(-1)\right)=f((-1) \alpha) \cdot f\left(\alpha^{-1}(-1)\right) \\
& =f(-1) f(\alpha) \cdot f\left(\alpha^{-1}\right) f(-1)=f(-1) f\left(\alpha \alpha^{-1}\right) f(-1)=f(-1) f(-1)
\end{aligned}
$$

By $2.9, f(-1)=-1$ for $2=0$. If $3=0$, then $\frac{1}{2}=-1$. If $2 \cdot 3 \neq 0$, then $[f(-1)]^{2}=1$ implies $f(-1) \neq \frac{1}{2}$. So $f(-1)=-1$ by 2.9.
2.12. $f(-a)=-f(a)$ for all $a \in F$.

Proof. This follows from 2.11.
2.13. $f(1+a)=1+f(a)$ for all $a \in F$.

Proof. $f(1+a)=1-f(-a)=1+f(a)$ by 2.4 and 2.12 .
2.14. $f(a+b)=f(a)+f(b)$ for all $a, b \in F$.

Proof. We may assume $a \neq 0$. Then

$$
\begin{aligned}
f(a+b) & =f\left(a\left(1+a^{-1} b\right)\right)=f(a) f\left(1+a^{-1} b\right) \\
& =f(a)\left(1+f\left(a^{-1} b\right)\right)=f(a)+f(b)
\end{aligned}
$$

by 2.11 and 2.13 .
2.11 and 2.14 finally prove Theorem 2 in the case $f(1)=1$.
3. In this section we will solve the functional equation (4) in the case $f(1) \neq 1$. Apply (4) for $x \neq 0$ and $y=0$. Then we get

$$
\begin{equation*}
(1-f(1)) f(x)=f(1) f(0) \quad \forall_{x \neq 0} \tag{11}
\end{equation*}
$$

Hence $f(x)=$ const for all $x \neq 0$, i.e.

$$
\begin{equation*}
f(x)=f(1) \quad \forall_{x \neq 0} \tag{12}
\end{equation*}
$$

since $1 \neq 0$.
If $f(0)=0$, then (11) implies $f(x)=0$ also in the case $x \neq 0$. This leads to the solution $f \equiv 0$ of (4). If $f(0) \neq 0$, then

$$
\begin{equation*}
f(0)+f(y)=1 \quad \forall y \neq 0 \tag{13}
\end{equation*}
$$

holds true by applying (4) for $x=0$ and $y \neq 0$. In the case $f(0) \neq 0$ we will consider the two subcases a) $f(1)=0$ and b) $f(1) \neq 0$. If $f(1)=0$ holds true, (13) implies $f(0)=1$. This leads to another solution of (4), namely to

$$
f(x)= \begin{cases}0 & x \neq 0 \tag{14}\\ \text { for } & \\ 1 & x=0\end{cases}
$$

Assume now that $f(1) \neq 0$ holds true. Since also $f(1) \neq 1$ we get $F \neq F_{2}$. Suppose that $\alpha \in F \backslash\{0,1\}$. Put $x=1$ and

$$
y=\left\{\begin{array}{ll}
\alpha & 2=0 \\
\text { for } & 2 \neq 0
\end{array} .\right.
$$

Then (4) and (12) imply

$$
f(1)(f(1)+f(1))=f(1)
$$

i.e. $2 f(1)=1$. This is impossible for $2=0$. In the case $2 \neq 0$, we hence get $f(x)=\frac{1}{2}$ for all $x \in F$, in view of (12) and (13). This $f \equiv \frac{1}{2}$ solves (4) for $2 \neq 0$.

References

[1] W. Benz, A characterization of monomorphisms of skew fields, Aequationes Math. 60 (2000), 142-147.
[2] P. M. Cohn, Algebra I, II, John Wiley \& Sons. London-New York, 1974, 1977.
[3] T. M. K. Davison, Problem 7, Aequationes Math. 60 (2000), 189.
[4] F. Halter-Koch and L. Reich, Additive functions commuting with Möbius transformations and field homomorphisms, Aequationes Math. 58 (1999), 176-182.
[5] K. S. Sarkaria, On some questions concerning a functional equation involving Möbius transformations, Aequationes Math. 60 (2000), 137-141.
W. Benz

Universität Hamburg
Fachbereich Mathematik
Bundesstr. 55
D-20146 Hamburg
Germany
Manuscript received: June 6, 2001 and, in final form, September 28, 2001.

