Aequationes Math. 64 (2002) 315–320 0001-9054/02/030315-6

© Birkhäuser Verlag, Basel, 2002

Aequationes Mathematicae

Characterizations of homomorphisms of skew fields

WALTER BENZ

Summary. The functional equations

$$f(x(x+y)^{-1})(f(x) + f(y)) = f(x)$$

and

$$f((x+y)x^{-1}) f(x) = f(x) + f(y)$$

are solved for skew fields.

Mathematics Subject Classification (2000). 39B52.

Keywords. Functional equations, homomorphisms.

1. The functional equation

$$f\left(\frac{x+y}{x-y}\right) = \frac{f\left(x\right) + f\left(y\right)}{f\left(x\right) - f\left(y\right)} \tag{1}$$

where $f : \mathbb{R} \to \mathbb{R}$ is supposed to be injective was solved by S. Reich (American Math. Monthly 78 (1971), 675). Replacing \mathbb{R} by a prime field or by certain Galois extensions of \mathbb{Q} , the solutions of (1) were found by K.S. Sarkaria in [5]. T. M. K. Davison, [3], posed the problem to solve (1) for arbitrary fields F. It was possible, [1], to find the solution, even for skew fields, replacing (1) by (2) or (3) (see below) in order to avoid the injectivity assumption. In [1] we proved the following theorem. If F is an arbitrary skew field with $F \neq F_5$ and char $F \neq 2$, then every $f : F \to F$ satisfying equation (2), equation (3), respectively,

$$f((x+y)(x-y)^{-1})(f(x) - f(y)) = f(x) + f(y),$$
(2)

$$(f(x) - f(y))(f((x+y)(x-y)^{-1})) = f(x) + f(y),$$
(3)

for all elements $x \neq y$ of F must be a homomorphism, an anti-homomorphism, respectively, of F. In the present note we would like to find a characterization of homomorphisms including the case char F = 2. The following equations which are

W. Benz

of a similar type as equation (2), will be considered.

$$f(x(x+y)^{-1})(f(x)+f(y)) = f(x),$$
(4)

$$f((x+y)x^{-1}) f(x) = f(x) + f(y).$$
(5)

As a matter of fact, it is not difficult to verify

Proposition 1. If F is an arbitrary skew field and if $f : F \to F$ satisfies (5) for all $x, y \in F$ with $x \neq 0$, then f is $\equiv 2$ or a homomorphism of F.

With respect to equation (4) the following result will be proved in this note.

Theorem 2. Let F be an arbitrary skew field and $f: F \to F$ be a mapping satisfying (4) for all $x, y \in F$ with $x + y \neq 0$. If f(1) = 1, then f is a monomorphism of F. If $f(1) \neq 1$, then $f \equiv 0$, or f(0) = 1 and f(x) = 0 for all $x \neq 0$, or $2f \equiv 1$ for $2 \neq 0$.

As a consequence of this theorem we get

Corollary 3. If F is a skew field and $f: F \to F$ a mapping satisfying $2 [f(1)]^2 \neq f(1)$ and (4) for all $x, y \in F$ with $y \neq -x$, then f is a monomorphism of F.

In our context we also would like to refer to results of F. Halter-Koch and L. Reich [4].

Concerning the algebraic notions in this paper see P. M. Cohn [2]. Note that in the terminology of P. M. Cohn [2] fields are special skew fields, namely skew fields satisfying the commutative law of multiplication.

2. In this section the first part of Theorem 2 will be proved. So let $f : F \to F$ satisfy f(1) = 1 and (4) for all $x, y \in F$ with $y \neq -x$.

2.1. f(0) = 0 and $f(z) \neq 0$ for all $z \neq 0$. Moreover,

$$\forall_{y\neq-1} f\left((1+y)^{-1}\right)\left(1+f\left(y\right)\right) = 1.$$
(6)

Proof. Apply (4) for x = 1 and y = 0. Hence 1 + f(0) = 1. For x = 1 and $y \neq -1$ we get (6) from (4). If $z \neq 0$, then $y := \frac{1}{z} - 1 \neq -1$. Hence, by (6), $f(z) \neq 0$.

2.2. For all $a, b \in F$ with $a \neq -1$

$$f(ab) = f(a) f(b) \tag{7}$$

holds true.

Vol. 64 (2002)

Characterizations of homomorphisms of skew fields

Proof. We may assume $ab \neq 0$. Hence (6) and (4) yield

$$f\left((1+a)^{-1}\right)\left(1+f\left(a\right)\right) = 1,$$
(8)

$$f(b \cdot (b+ab)^{-1})(f(b) + f(ab)) = f(b).$$
(9)

Observe $(1+a)^{-1} = b \cdot (b+ab)^{-1}$ and $f(b) \neq 0$. Hence

$$1 + f(a) = [f(b) + f(ab)][f(b)]^{-1},$$

i.e. (7).

2.3. If char F = 2, then, obviously, (7) holds true for all $a, b \in F$. **2.4.** f(a) + f(1 - a) = 1 for all $a \in F$.

Proof. We may assume $a \neq 0$. Hence, by 2.1, $f(a) \neq 0$. Apply (4) for x = a and y = 1 - a. Then f(a)(f(a) + f(1 - a)) = f(a), i.e. 2.4.

2.5. f(2) + f(-1) = 1 and f(2) = f(-2) f(-1) hold true.

Proof. The first equation follows from 2.4, the second one from 2.2 since $-2 \neq -1$.

2.6.
$$f(-1)(1 + f(-1 - a)) = f(a)$$
 for all $a \neq 0$.

Proof. We may assume $a \neq -1$. Hence, by 2.2,

$$f(-1) = f\left(a \cdot \frac{1}{-a}\right) = f(a) \cdot f\left(\frac{1}{-a}\right).$$

If we put y := -1 - a in (6), then

$$f\left(\frac{1}{-a}\right)\left(1+f\left(-1-a\right)\right) = 1.$$

2.7. f(-a)(f(a) + f(-1 - a)) = f(a) holds true for all $a \in F$.

Proof. Put x = a and y = -1 - a in (4) and observe $x + y \neq 0$.

2.8.
$$\frac{1}{f(a)} + \frac{1}{f(-a)} = 1 + \frac{1}{f(-1)}$$
 for all $a \neq 0$.

Proof. Observe $f(-1) \neq 0$, in view of $-1 \neq 0$. Put k := f(-1) and r := f(-1-a). Now 2.6, 2.7 imply

$$1 + r = k^{-1} f(a) \text{ and } f(a) + r = \left[f(-a) \right]^{-1} f(a), \text{ i.e.}$$
$$1 - f(a) = \left(\frac{1}{k} - \frac{1}{f(-a)} \right) f(a).$$

W. Benz

2.9. If char F = 2, then f(-1) = -1, and, if char $F \neq 2$, then $f(-1) \in \{-1, \frac{1}{2}\}$. The element f(-1) is hence in the center of F.

Proof. The first statement is trivial, so assume $2 \neq 0$. With k := f(-1) we get f(2) = 1 - k and $f(-2) = f(2)k^{-1}$ from 2.5. Hence, by 2.8 with a = 2,

$$\frac{1}{1-k} + \left[(1-k) \, k^{-1} \right]^{-1} = 1 + k^{-1}. \tag{10}$$

Multiplying (10) from the right by 1 - k, we get $(k + 1)(k^{-1} - 2) = 0$, i.e. k = -1 or $k^{-1} = 2$.

2.10. If $a, b \in F$ are not both equal to -1, then (7) holds true.

Proof. Because of 2.3 we only need to consider the case $2 \neq 0$. In view of 2.2 the only case left is a = -1 and $b \neq -1$. Here we have

$$f(ab) = f(-b) = f(b \cdot (-1)) = f(b) \cdot f(-1) = f(-1) f(b),$$

on account of 2.2 and the fact that f(-1) is in the center of F (see 2.9).

2.11. The equation (7) holds true for all $a, b \in F$. Moreover, f(-1) = -1.

Proof. Because of 2.3 we may assume $2 \neq 0$. If 3 = 0, then $\frac{1}{2} = -1$ and thus

$$f(-1) f(-1) = 1 = f(1)$$

Suppose now that $2 \cdot 3 \neq 0$. There hence exists $\alpha \in F \setminus \{0, 1, -1\}$. By observing $(-1) \alpha \neq -1, \alpha \neq -1, \alpha^{-1} \neq -1$ we get, by 2.10,

$$1 = f((-1)(-1)) = f((-1)\alpha \cdot \alpha^{-1}(-1)) = f((-1)\alpha) \cdot f(\alpha^{-1}(-1))$$

= $f(-1)f(\alpha) \cdot f(\alpha^{-1})f(-1) = f(-1)f(\alpha\alpha^{-1})f(-1) = f(-1)f(-1).$

By 2.9, f(-1) = -1 for 2 = 0. If 3 = 0, then $\frac{1}{2} = -1$. If $2 \cdot 3 \neq 0$, then $[f(-1)]^2 = 1$ implies $f(-1) \neq \frac{1}{2}$. So f(-1) = -1 by 2.9.

2.12. f(-a) = -f(a) for all $a \in F$.

Proof. This follows from 2.11.

2.13. f(1+a) = 1 + f(a) for all $a \in F$.

Proof. f(1+a) = 1 - f(-a) = 1 + f(a) by 2.4 and 2.12.

2.14. f(a+b) = f(a) + f(b) for all $a, b \in F$.

Vol. 64 (2002)

Characterizations of homomorphisms of skew fields

Proof. We may assume $a \neq 0$. Then

$$f(a+b) = f(a(1+a^{-1}b)) = f(a) f(1+a^{-1}b)$$
$$= f(a)(1+f(a^{-1}b)) = f(a) + f(b)$$

by 2.11 and 2.13.

2.11 and 2.14 finally prove Theorem 2 in the case f(1) = 1.

3. In this section we will solve the functional equation (4) in the case $f(1) \neq 1$. Apply (4) for $x \neq 0$ and y = 0. Then we get

$$(1 - f(1)) f(x) = f(1) f(0) \quad \forall_{x \neq 0}.$$
(11)

Hence $f(x) = \text{const for all } x \neq 0$, i.e.

$$f(x) = f(1) \quad \forall_{x \neq 0} \tag{12}$$

since $1 \neq 0$.

If f(0) = 0, then (11) implies f(x) = 0 also in the case $x \neq 0$. This leads to the solution $f \equiv 0$ of (4). If $f(0) \neq 0$, then

$$f(0) + f(y) = 1 \quad \forall_{y \neq 0}$$
 (13)

holds true by applying (4) for x = 0 and $y \neq 0$. In the case $f(0) \neq 0$ we will consider the two subcases a) f(1) = 0 and b) $f(1) \neq 0$. If f(1) = 0 holds true, (13) implies f(0) = 1. This leads to another solution of (4), namely to

$$f(x) = \begin{cases} 0 & x \neq 0 \\ & \text{for} \\ 1 & x = 0 \end{cases}$$
(14)

Assume now that $f(1) \neq 0$ holds true. Since also $f(1) \neq 1$ we get $F \neq F_2$. Suppose that $\alpha \in F \setminus \{0, 1\}$. Put x = 1 and

$$y = \begin{cases} \alpha & 2 = 0\\ \text{for} & .\\ 1 & 2 \neq 0 \end{cases}$$

Then (4) and (12) imply

$$f(1)(f(1) + f(1)) = f(1),$$

i.e. 2f(1) = 1. This is impossible for 2 = 0. In the case $2 \neq 0$, we hence get $f(x) = \frac{1}{2}$ for all $x \in F$, in view of (12) and (13). This $f \equiv \frac{1}{2}$ solves (4) for $2 \neq 0$.

W. Benz

References

- [1] W. BENZ, A characterization of monomorphisms of skew fields, Aequationes Math. 60 (2000), 142–147.
- [2] P. M. COHN, Algebra I, II, John Wiley & Sons. London-New York, 1974, 1977.
- [3] T. M. K. DAVISON, Problem 7, Acquationes Math. 60 (2000), 189.
- [4] F. HALTER-KOCH AND L. REICH, Additive functions commuting with Möbius transformations and field homomorphisms, Aequationes Math. 58 (1999), 176–182.
- [5] K. S. SARKARIA, On some questions concerning a functional equation involving Möbius transformations, Aequationes Math. 60 (2000), 137–141.

W. Benz Universität Hamburg Fachbereich Mathematik Bundesstr. 55 D–20146 Hamburg Germany

Manuscript received: June 6, 2001 and, in final form, September 28, 2001.

To access this journal online: http://www.birkhauser.ch