Archiv der Mathematik

Characterization of 16-dimensional Hughes planes

By

HELMUT SALZMANN

Abstract. The well-known finite Hughes planes have compact analoga with 16-dimensional point space. The automorphism group of such a plane is a 36-dimensional Lie group. Theorem: Assume that the compact projective plane \mathcal{P} is not isomorphic to the classical Moufang plane over the octonions. Let Δ be a closed subgroup of Aut \mathcal{P} . If dim $\Delta \geq 31$ and if Δ has a normal torus subgroup, then \mathcal{P} is a Hughes plane, $\Delta = \operatorname{Aut} \mathcal{P}$, and $\Delta' \cong \operatorname{PSL}_3 \mathbb{H}$.

A finite Hughes plane \mathscr{F} is a projective plane of order n^2 having a Desarguesian subplane \mathscr{E} of order n such that each linear collineation of \mathscr{E} is induced by an automorphism of \mathscr{F} , compare Lüneburg [3]. Similarly, a compact 16-dimensional topological projective plane \mathscr{H} with automorphism group Σ is called a Hughes plane if \mathscr{H} has a Σ -invariant subplane \mathscr{E} isomorphic to the classical Desarguesian quaternion plane $\mathscr{P}_2\mathbb{H}$ such that Σ induces on \mathscr{E} the full automorphism group PSL₃H. There exist infinitely many non-isomorphic 16-dimensional Hughes planes, see [8, § 86]. These and their 8-dimensional analoga play a prominent role in the classification of compact, connected planes with an automorphism group of sufficiently large dimension, compare [8, Chap. 8, Introduction] and Theorem S below.

In the following, $\mathscr{P} = (P, \mathfrak{L})$ will always denote a topological projective plane with compact, 16-dimensional point space *P*. Taken with the compact-open topology, the automorphism group $\Sigma = \operatorname{Aut} \mathscr{P}$ is a locally compact transformation group of *P*, and Σ has a countable basis [8, 44.3, p. 237]. Let \varDelta be a connected closed (hence locally compact) subgroup of Σ . If the topological dimension dim $\varDelta \ge 27$, then \varDelta is even a Lie group (Priwitzer-Salzmann [6]).

Theorem S. Assume that \mathscr{P} is not the classical Moufang plane and that \varDelta is semi-simple. If $28 < \dim \varDelta < 36$, then $\varDelta \cong SL_3\mathbb{H}$, and \mathscr{P} is a Hughes plane.

Proof. Priwitzer [5] and Hähl [2].

Here, a related characterization will be given:

Theorem T. Let \mathscr{P} be as above, and assume that Δ has a normal torus subgroup $\Theta \cong \mathbb{T}$. If dim $\Delta > 28$ and if the involution $\iota \in \Theta$ is not a reflection, or if dim $\Delta > 30$, then Θ fixes a Baer subplane, $\Delta' \cong SL_3\mathbb{H}$ and \mathscr{P} is a Hughes plane.

Mathematics Subject Classification (1991): 51H10.

Proof of the first part. (a) Since Δ is connected and Aut Θ is finite, the normal subgroup Θ is contained in the center Z of Δ , compare [8, 93.19]. In particular, $\iota \in Z$.

(b) By assumption, ι is not a reflection, and [8, 55.29] shows that the fixed elements of ι form a Baer subplane \mathscr{E} .

(c) $\iota \in Z$ implies $\mathscr{E}^{\Delta} = \mathscr{E}$. Let $\Delta^* = \Delta|_{\mathscr{E}} \cong \Delta/\Phi$ be the effective action of Δ on \mathscr{E} , and consider its kernel $\Phi = \Delta_{[\mathscr{E}]}$. By the result mentioned above, Δ and Φ are Lie groups. From [8, 83.22] it follows that Φ is compact and that dim $\Phi \leq 3$. Consequently, dim $\Delta^* > 25$, and $\mathscr{E} \cong \mathscr{P}_2 \mathbb{H}$ by [8, 84.27]. Moreover, the center of Δ^* is trivial [8, 84.10], and Θ is contained in the connected component Φ^1 of Φ . This excludes the possibility $\Phi^1 \cong \mathrm{Spin}_3 \mathbb{R}$ and shows that $\Theta = \Phi^1$, see [8, 83.22]. Hence dim $\Delta^* > 27$, and Δ^* fixes no element of \mathscr{E} . The second part of [8, 84.27] now gives $\Delta^* \cong \mathrm{PSL}_3 \mathbb{H}$.

(d) According to [8, 94.27], the group Δ has a subgroup Γ locally isomorphic to the simple group Δ^* , and Theorem S may be applied to Γ . This shows that $\Gamma \cong SL_3\mathbb{H}$ and that \mathscr{P} is a Hughes plane. Finally, $\Delta = \Gamma \Theta$ implies that $\Gamma = \Delta'$ is the commutator group of Δ . \Box

Proof of the second part. Assume that dim $\Delta > 30$ and that the involution $\iota \in \Theta$ is a reflection with axis W and center $a \notin W$. Again $\iota \in Z$ and hence $W^{\Delta} = W$. Moreover, Δ is a Lie group. The dimension formula

 $\dim \varDelta = \dim x^{\varDelta} + \dim \varDelta_x$

will be used repeatedly, see [8, 96.10].

The following theorem of Bödi [1] plays an essential role:

(0) If the fixed elements of a connected Lie group Λ form a connected subplane \mathscr{F}_{Λ} , then Λ is isomorphic to the compact 14-dimensional group G_2 , or $\Lambda \cong SU_3\mathbb{C}$, or dim $\Lambda < 8$.

(1) Θ acts trivially on W and consists of homologies with center a.

Otherwise, $z^{\Theta} \neq z$ for some $z \in W$. Let $x \in az \setminus \{a, z\}$, and consider the connected component Λ of the stabilizer Δ_x . Because $\Theta \leq Z$, the fixed subplane \mathscr{F}_{Λ} contains the connected orbit z^{Θ} and hence is itself connected. The dimension formula together with (0) gives dim $\Delta \leq 16 + 14$, a contradiction. \Box

By combining (0) and (1) we get

(2) If Λ fixes any quadrangle, then dim $\Lambda \leq 8$.

We may assume, in fact, that Λ is connected. If $\Lambda \cong G_2$, then \mathscr{F}_{Λ} would be a 2-dimensional subplane [8, 83.24], but such a plane does not admit a torus group of homologies.

(2) No subgroup of Δ is isomorphic to G_2 .

Proof. Let $G_2 \cong \Upsilon < \Delta$. All involutions in Υ are conjugate [8, 11.31(d)], and there are commuting involutions α and β in Υ . These are either reflections or Baer involutions [8, 55.29]. In the first case, one of α, β , or $\alpha\beta$ would have axis W and would coincide with ι , see [8, 55. 35 and 32(ii)], but $\iota \notin \Upsilon$ because G_2 is simple [8, 11.32]. Hence every involution in Υ is planar, and from [8, 55.39 and Note 6] it follows that $W \approx S_8$. Repeated application of

[8, 96.35] shows that Υ fixes a quadrangle and, in fact, a 2-dimensional subplane. This is impossible by (2). \Box

Four cases will be treated separately: (i) Δ is transitive on W, (ii) Δ has a fixed point $v \in W$, (iii) Δ is doubly transitive on some orbit $V \subset W$, or (iv) Δ has none of these properties. The last case will turn out to be the most difficult one.

(3) The group $\Omega = \Delta_{[a,W]}$ of homologies with axis W has dimension dim $\Omega \leq 2$, and Δ induces on W a group Δ/Ω of dimension at least 29.

Proof. Let Ψ be a maximal compact subgroup of the connected component Ω^1 . Then $\Omega^1 = \Psi$ or $\Omega^1 \cong \Psi \times \mathbb{R}$ by [8, 61.2]. The compact Lie group Ψ does not contain commuting involutions and hence has torus rank at most 1, see [8, 55.32(ii) or 35]. From (1) follows $\Theta \leq \Psi$ and $\Psi \cong \text{Spin}_3$. This leaves only the possibility $\Psi = \Theta$. \Box

(4) If Δ is transitive on W, then $W \approx \mathbb{S}_8$, see [8, 52.3 and 96.14]. A maximal compact subgroup Φ of Δ is also transitive on W by [8, 96.19], and $\Phi|_W \cong SO_9$, compare [8, 96.22]. According to [8, 94.27], the group Δ contains a covering group H of SO₉, but then $\Phi \cong H\Theta$ would have torus rank > 4. This contradicts [8, 55.37], and case (i) is impossible.

(5) **Lemma.** Assume that G is a locally compact, connected transitive transformation group of $S \approx \mathbb{S}_8 \setminus \{a, b\}$. Consider a maximal compact subgroup K of G and the stabilizer $H = G_c$ of some point $c \in S$. If $H \cong SU_3\mathbb{C}$, then $K \cong SU_4\mathbb{C}$.

The proof depends on the exact homotopy sequence

$$\ldots \rightarrow \pi_{q+1}S \rightarrow \pi_q H \rightarrow \pi_q G \rightarrow \pi_q S \rightarrow \pi_{q-1}H \rightarrow \ldots$$

for the action of G on S, see [8, 96.12]. Note that G is a Lie group by [8, 96.14], and that there are homotopy equivalences $S \simeq \mathbb{S}_7$ and $G \simeq K$; the second one follows from the Mal'cev-Iwasawa theorem [8, 93.10]. Up to q = 8 (and beyond), the homotopy groups of S and of all compact simple Lie groups are known, compare the remarks preceding 94.36 in [8]. We have $\pi_q S = 0$ for q < 7 and $\pi_7 S \cong \mathbb{Z}$. The homotopy sequence gives $\pi_q K \cong \pi_q H$ for $q \le 5$. In particular, $\pi_1 K = 0$ and, therefore, K is semi-simple [8, 94.31(c)]. Whenever C is compact and almost simple, then $\pi_3 C \cong \mathbb{Z}$, see [8, 94.36]. Hence $\pi_3 K \cong \mathbb{Z}$, and K is even almost simple. The dimension formula shows that $8 \le \dim K \le 16$. Because of (2'), only the groups $\pi_q C$ with $C \cong SU_3$, SU_4 , or $U_2\mathbb{H}$ are actually needed; these can be found in Mimura [4, §3.2]. Generally, $\pi_5 C \cong \mathbb{Z}$ if and only if C is locally isomorphic to a group $SU_n\mathbb{C}$ with n > 2. Moreover, $\pi_6 H \cong \mathbb{Z}_6$ and $\pi_7 H = 0$. The exact sequence

$$\pi_7 H \to \pi_7 K \to \pi_7 \mathbb{S} \to \pi_6 H$$

shows that $\pi_7 K \cong \mathbb{Z}$, and $K \cong SU_4\mathbb{C}$. \Box

We are now able to deal with case (ii).

(6) If $v^{\Delta} = v \in W$, then Δ is transitive on $W \setminus \{v\}$.

Proof. Let $v \neq z \in W$. Together with (2), the dimension formula implies first $z^{\Delta} \neq z$ and then $31 - 2 \cdot \dim z^{\Delta} \leq 8 + 8$. Hence $\dim z^{\Delta} = 8$, and z^{Δ} is open in W by [8, 96.11]. Because $W \setminus \{v\}$ is connected, the assertion follows. \Box

(7) If $v^{\Delta} = v \in W$, then Δ is even doubly transitive on $W \setminus \{v\}$.

Proof. Let $\nabla = \Delta_u$ for some $u \in W$, $u \neq v$, and note that $23 \leq \dim \nabla \leq 24$. If ∇ is not transitive on $W \setminus \{u, v\}$, then, by similar arguments as in (6), there is a 7-dimensional orbit $z^{\nabla} \subset W$, and ∇_z is transitive on $S = av \setminus \{a, v\}$. From (0), (2), and (5) we conclude that a maximal subgroup Φ of ∇_z must be isomorphic to $SU_4\mathbb{C}$, but $\Theta \triangleleft \Phi$, a contradiction. \Box

(8) Remarks. All locally compact doubly transitive transformation groups (Γ, M) have been determined by Tits [9]. Either Γ is simple and M is a projective space or a sphere, or $M \approx \mathbb{R}^k$ and Γ is an extension of \mathbb{R}^k by a transitive subgroup $G \leq GL_k\mathbb{R}$, compare [8, 96. 15–23]. A convenient description of the possibilities for G can be found in Völklein [10]. The group G has an almost simple normal subgroup H which is transitive on the (k-1)-sphere S consisting of the rays in \mathbb{R}^k , and a maximal compact subgoup K of H is also transitive on S, see [8, 96.19]. It is now easy to detect the possible groups H among the irreducible representations of almost simple Lie groups [8, 95.10], and G is contained in the product of H and its centralizer. In particular, dim $G/H \leq 4$, even ≤ 2 if $CsH \cong \mathbb{H}$.

(9) If $u^{\Delta} = W \setminus \{v\}$ and $\nabla = \Delta_u$, then ∇ is an almost direct product of the solvable radical $\sqrt{\nabla}$ and a group $\Psi \cong \operatorname{Sp}_4 \mathbb{C}$.

Proof. By (2) and (3), the effective group $\Upsilon = \nabla|_W \cong \nabla/\Omega$ satisfies $21 \leq \dim \Upsilon \leq 23$, and Υ has no subgroup locally isomorphic to Spin_7 by (2'). With the remarks (8) it follows that the commutator subgoup Υ' is isomorphic to the simply connected group $\operatorname{Sp}_4\mathbb{C}$. The center Z of Υ is contained in \mathbb{C}^{\times} , and $\Upsilon = \Upsilon'Z$. The group Υ' is covered by a normal subgoup Ψ of ∇ . \Box

A maximal compact subgroup of $\text{Sp}_4\mathbb{C}$ is isomorphic to $U_2\mathbb{H}$ and does not contain $\text{SU}_3\mathbb{C}$. Hence (0) and (9) imply

(10) **Corollary.** If $u^{\Delta} = W \setminus \{v\}$, and if Λ fixes a quadrangle, then dim $\Lambda \leq 7$.

(11) If $u^{\Delta} = W \setminus \{v\}$ and $c \in av \setminus \{a, v\}$, then Δ_c is doubly transitive on $W \setminus \{v\}$ and $\Gamma = \Delta_{c,u} \cong SL_2\mathbb{H}$.

Proof. Let $u \neq z \in u^{\Delta}$. By (10) and the dimension formula, we have

 $15 \leq \dim \Gamma = \dim \Gamma_z + \dim z^{\Gamma} \leq 7 + 8,$

and dim $z^{\Gamma} = 8$. Hence each orbit z^{Γ} is open in W and Γ is transitive on $W \setminus \{u, v\}$ by the arguments of (6). The last assertion follows with the remarks (8). \Box

Because of Levi's Theorem [8, 94.28], we conclude from (9) and (11) that $SL_2\mathbb{H}$ must be a subgroup of $Sp_4\mathbb{C}$. There are several ways to show that this is impossible. A simple reason is the following: both groups have $U_2\mathbb{H}$ as maximal compact subgroups, but these are even maximal among all subgroups [8, 94.34]. More generally, Tits [9, Th. IV B.3.3] has determined all large maximal subgroups of the classical simple Lie groups. Thus, case (ii) has finally led to a contradiction.

All actions of Δ on W having only fixed points and 8-dimensional orbits are covered by (i) and (ii). Hence we may assume in case (iii) that Δ is doubly transitive on some orbit $V \subset W$ with $0 < \dim V = k < 8$. Let $u, v, w \in V$, and denote the connected component of the

stabilizer $\Delta_{u,v,w}$ by Ξ . From (2) and the dimension formula we obtain dim $\Xi \leq 16$ and then $31 \leq \dim \Delta \leq 3k + 16$. Consequently, dim $V \geq 5$. If $V \approx \mathbb{R}^k$, then $\Delta_{u,v}$ fixes a 1-dimensional subspace of \mathbb{R}^k , and we get even $2k \geq 31 - 16$, a contradiction. Thus, V is compact and $\Delta|_V$ is simple by (8). If V is a projective space, then $\Delta_{u,v}$ fixes the (real or complex) line through u and v, and dim $\Delta \leq 2k + 2 + \dim \Xi$. This implies $V \approx P_7 \mathbb{R}$ and $\Delta|_V \cong PSL_8 \mathbb{R}$, see [8, 96.17]. But then dim $\Delta > 63$ would be to large. By (8) or [8, 96.17] we have

(12) If Δ is doubly transitive on $V \subset W$, then V is homeomorphic to a sphere S_k with $5 \leq k \leq 7$.

Because k > 4, the kernel Φ of the action of Δ on $v^{\Delta} = V$ acts freely on $av \setminus \{a, v\}$, and dim $\Phi \leq 8$, dim $\Delta|_V \geq 23$. By [8, 96.19 and 23], each transitive group on \mathbb{S}_6 contains G₂, and (2') shows that $k \neq 6$. Therefore, only one possibility of the list [8, 96.17(b)] remains:

(13) If Δ is doubly transitive on $V \subset W$, then $V \approx \mathbb{S}_7$ and $\Delta|_V \cong \mathrm{PSU}_5(\mathbb{C}, 1)$.

If Δ is as in (13), then Δ contains an almost simple subgroup Ψ which is locally isomorphic to $SU_5(\mathbb{C}, 1)$, see [8, 94.27]. The kernel $\Phi = \Delta_{[V]}$ has dimension 7 or 8, and each representation of Ψ on the Lie algebra of Φ is trivial [8, 95.10]. Hence $\Phi \leq Cs_{\Delta}\Psi$. The group Ψ has torus rank rk $\Psi \geq 3$. By [8, 55. 29 and 35], there exist involutions $a, \omega \in \Psi$ such that ω is planar, a is not the reflection with axis W, and $a\omega = \omega a$. Then a induces on the fixed plane \mathscr{F}_{ω} either a reflection or a Baer involution. The common fixed point set $C = F_{a,\omega}$ is 4-dimensional, and Φ acts freely on some orbit $c^{\Phi} \subset C$, but dim $\Phi \geq 7$. This contradiction finally excludes case (iii). \Box

The general case (iv). Again, there is an orbit $v^{\Delta} = V \subset W$ with $0 < \dim V < 8$. Let $v \neq u \in V$, and consider the connected components Γ of Δ_v and ∇ of Γ_u .

(14) The orbit $u^{\Gamma} = U$ is a 6-dimensional connected manifold.

Proof. $u^{\Gamma} \approx \Gamma/\Gamma_u$ is a connected manifold [8, 94.3(a)]. Assume that dim U = m < 6. Choose $w \in U \setminus \{u\}$ and $c \in av \setminus \{a, v\}$, and denote the connected component of $\nabla_{c,w}$ by Λ . The dimension formula gives dim $\Lambda \ge 31 - 7 - 8 - 2m \ge 6$, and (2) implies $m \ge 4$. By [8, 83.22] and because Θ is a torus group of homologies, the fixed elements of Λ form a 4dimensional subplane $\mathscr{F}_{\Lambda} = \mathscr{F}$. Choose $z \in U \setminus \mathscr{F}$. Then $\Lambda_z \neq \mathbf{1}$ and $\mathscr{F}_{\Lambda_z} = \langle \mathscr{F}, z \rangle$ is a Baer subplane. From [8, 83.9] it follows that Λ is compact. In fact, $\Lambda \cong SU_3$ or $\Lambda \cong SO_4$, see Salzmann [7, (2.1)]. In the second case, Λ contains a central involution η , and Λ induces a group Λ/K on the Baer subplane \mathscr{F}_{η} . Now dim $\Lambda/K \le 1$ by [8, 83.11], and dim $K \le 3$ by [8, 83.22]. This contradiction shows that $\Lambda \cong SU_3$. For a point z as above, [8, 83.22] implies $\Lambda_z \cong SU_2$ and $z^{\Lambda} \approx \mathbb{S}_5$. Hence m = 5 and z^{Λ} is open and closed in U, compare [8, 92.14 or 96.11(a)]. Because U is connected, Λ must be transitive on U, but $z^{\Lambda} \subseteq U \setminus \mathscr{F} \neq U$. \Box

(15) If $c \in S = av \setminus \{a, v\}$, then dim $\nabla_c \leq 10$.

Proof. Note that Γ_c acts effectively on U and that dim $\Gamma_c \leq 20$ by (14) and (2). If Γ_c is doubly transitive on U, then the remarks (8) and [8, 96.16 and 17] show that $U \approx \mathbb{R}^6$. Moreover, a maximal semi-simple subgroup of Γ_c is isomorphic to SU₃, and dim $\nabla_c \leq 10$. Assume now that dim $\nabla_c > 10$, and let Π denote the connected component of ∇_c . Then Γ_c is not doubly transitive on U, and there is some $w \in U \setminus \{u\}$ such that dim $w^{\Pi} < 6$. The connected component Λ of Π_w satisfies $6 \leq \dim \Lambda \leq 8$, and dim $w^{\Pi} > 2$. As is the proof of

step (14) it follows that \mathscr{F}_{Λ} is 4-dimensional, that $\Lambda_z \neq \mathbb{1}$ for $z \in w^{\Pi} \setminus \mathscr{F}_{\Lambda}$, and that Λ is compact. As before, $\Lambda \cong SU_3$ and $z^{\Lambda} \approx \mathbb{S}_5$. Again Λ would be transitive on the connected manifold w^{Π} , an obvious contradiction. \Box

(16) **Corollary.** dim $\Delta = 31$ and ∇ is transitive on S.

The same technique as in the proof of Lemma (5) can now be applied. However, only the dimension of the stabilizer $\nabla_c = \Pi$ is known, but neither the structure nor the topology of Π , and there are several distinct possibilities. Consider maximal compact subgroups Ψ of Π and Φ of ∇ with $\Psi \leq \Phi$ and the respective semi-simple commutator subgroups Ψ' and Φ' . Because ∇ is not compact and Θ is normal in Φ , we have dim $\Phi' \leq 16$. The group Ψ' is a product of 3-dimensional factors, or Ψ' is locally isomorphic to SU₃, or $\Psi' = \Pi \cong U_2 \mathbb{H} \cong \text{Spin}_5$. The exact homotopy sequence for the action of ∇ on S becomes

$$\dots \to \pi_{q+1}S \to \pi_q \Psi \to \pi_q \Phi \to \pi_q S \to \dots \to \pi_1 S = 0.$$

If *C* is any compact, connected Lie group and q > 1, then $\pi_q C' \cong \pi_q C$ by [8, 94.31(c)]. Moreover, $\pi_1 \Psi \cong \pi_1 \Phi$ is infinite (because Θ is a factor of Φ), and $\Psi' < \Psi$. This excludes the possibility $\Psi' = \Pi$. All the relevant homotopy groups of small compact simple Lie groups *C* can be found in Mimura [4, §3.2]. In particular, $\pi_5 \operatorname{SU}_n \cong \mathbb{Z}$ for $n \ge 3$, all other groups $\pi_5 C$ and all groups $\pi_6 C$ are finite.

(17) $\mathbf{1} < \Psi' < \Phi'$ and dim $\Phi' \leq \dim \Psi' + 7$.

Proof. If $\Psi' = \Phi'$, then $\pi_q \Psi \cong \pi_q \Phi$ in the exact homotopy sequence, and $\pi_q S \to \pi_{q-1} \Psi$ is injective, but $\pi_7 S \cong \mathbb{Z}$ and $\pi_6 \Psi$ is finite. Hence $\Psi' < \Phi'$. If $\Psi' = \mathbb{1}$, then $\pi_3 \Phi' = 0$ and $\Phi' = \mathbb{1}$ by [8, 94.36]. This contradicts the first step of the proof. From $\pi_1 \Psi \cong \pi_1 \Phi$ and [8, 94.31(c)] it follows that the torus factors of Φ and of Ψ have the same dimension. Because Φ is compact and Ψ is the connected component of Φ_c , we obtain $\dim \Phi'/\Psi' = \dim \Phi/\Psi = \dim c^{\Phi} < 8$. \Box

The remaining possibilities will be discussed separately. We will need the following lemma:

(18) If Φ contains a reflection σ with center u or axis au, then the elation group E with center v (and axis av) is sharply transitive on U, and E is a 6-dimensional Lie group.

Proof. Assume that σ has center u. Choose $\rho = \sigma^{\eta}$ with $\eta \in \Gamma$ and $u^{\eta} \neq u$. Then $\sigma\rho$ is the elation with axis av mapping u to u^{ρ} . Thus, σ is unique and $(\gamma \mapsto \sigma\sigma^{\gamma})$ maps the coset space Γ/Γ_u continuously and injectively into E. Hence dim $E = \dim U = 6$. By [8, 96.11(a)], each E-orbit in U is open, and $u^E = U$ because U is connected. \Box

(19) dim $\Psi' \neq 3$.

Proof. If Ψ' is locally isomorphic to SU₂, then $\pi_3 \Phi' \cong \pi_3 \Psi' \cong \mathbb{Z}$, and Φ' is almost simple by [8, 94.36]. The last statement of (17) implies dim $\Phi' \cong 10$. Since $\pi_5 \Phi' \cong \pi_5 \Psi' \cong \pi_5 \mathbb{S}_3 \cong \mathbb{Z}_2$ is finite, the group Φ' is not locally isomorphic to SU₃ by the remarks preceding (17). Consequently, dim $\Phi' = 10$. Because the group SO₅ cannot act on any plane [8, 55.40], it follows that $\Phi' \cong \text{Spin}_5 \cong \text{U}_2 \mathbb{H}$ is the simply connected covering group of SO₅. Again by [8, 55.40], the central involution $\sigma \in \Phi'$ cannot be planar, and σ is a reflection. If the axis of σ is different from W, then (18) implies that the elation group E with center v is a 6-dimensional connected Lie group. The group E is not known to be commutative, but σ inverts each element of E. Therefore, Φ' induces a faithful representation on the Lie algebra [E of E. The list of irreducible representations given in [8, 95.10] shows that dim E = 8, a contradiction. Hence σ has axis W, and $\sigma \in \Theta$.

Consider now the involution $\beta \in \Phi'$ corresponding to the element diag $(1, -1) \in U_2\mathbb{H}$. The centralizer $\Phi' \cap Cs\beta$ is a direct product $A \times B$, where $A \cong B \cong SU_2$ and $\beta \in B$. The properties of $U_2\mathbb{H}$ show that $\alpha = \beta\sigma$ is the central involution in A, and that α and β are conjugate in Φ' . If β is a reflection, then α and β have centers u and v and cannot be conjugate within ∇ . Hence β is a Baer involution, its fixed elements form an 8-dimensional subplane $\mathscr{F}_{\beta} = \mathscr{B}$. Either B induces the identity on \mathscr{B} , or $B|_{\mathscr{B}} \cong SO_3$ (note that $\beta \in B$). In the latter case, the fixed elements of B would form a 2-dimensional subplane \mathscr{E} , and Θ would act as a group of homologies on \mathscr{E} , but this is impossible by [8, 32.17 or 61.26]. Therefore, $B|_{\mathscr{B}} = \mathbb{1}$ and, analogously, $A|_{\mathscr{F}_a} = \mathbb{1}$. Because α and β commute, it follows from [8, 55.32] that $\alpha|_{\mathscr{B}} \neq \mathbb{1}$ and, hence, that A acts faithfully on \mathscr{B} . Consequently, $A\Theta \cong U_2\mathbb{C}$ would induce a 4-dimensional compact group of homologies on \mathscr{B} . This contradicts [8, 61.26].

The next case can be treated in the same way:

(20) dim $\Psi' \neq 6$.

Proof. If Ψ' is locally isomorphic to SO₄, then Φ' has two almost simple factors by [8, 94.36]. With (17) we obtain dim $\Phi' = 13$, and Φ' has a factor $\Xi \cong \text{Spin}_5$. As in the last step, the existence of such a group leads to a contradiction. \Box

(21) dim $\Psi' \neq 9$.

Proof. If Ψ' is a product of 3 almost simple factors, then so is Φ' , again by [8, 94.36]. Because $\Psi' < \Phi'$, one of the factors of Φ' must have torus rank at least 2. This implies that $\operatorname{rk} \Phi' \ge 4$ and then $\operatorname{rk} \Theta \Phi' > 4$. According to [8, 55.37], however, the torus rank can never exceed 4. \Box

(22) dim $\Psi' \neq 8$.

Proof. We argue as in step (19). If Ψ' is locally isomorphic to SU₃, then $\pi_3 \Phi' \cong \mathbb{Z}$ and Φ' is almost simple. From $\pi_5 \Phi' \cong \mathbb{Z}$ and $8 < \dim \Phi' \le 15$ we infer that Φ' is locally isomorphic to SU₄ $\mathbb{C} \cong$ Spin₆. Because SO₅ cannot act on a plane, Φ' is even isomorphic to SU₄, and its central involution σ is a reflection. In fact, σ has the axis W, or else Φ' would act effectively on the elation group E, see (18). The involution β corresponding to diag $(1, 1, -1, -1) \in$ SU₄ fixes a Baer subplane \mathscr{B} because it commutes with 5 conjugates, see [8, 55.35]. The centralizer of β contains a direct product $A \times B$, where $A \cong B \cong$ SU₂ and $\beta \in B$. Exactly as in (19), it follows that ΘA induces on \mathscr{B} a compact, 4-dimensional group of homologies with axis $W \cap \mathscr{B}$. This final contradiction completes the proof of Theorem T.

References

- R. BÖDI, On the dimensions of automorphism groups of eight-dimensional ternary fields, II. Geom. Dedicata 53, 201–216 (1994).
- [2] H. HÄHL, Charakterisierung der kompakten, zusammenhängenden Moufang-Hughes-Ebenen anhand ihrer Kollineationen. Math. Z. 191, 117–136 (1986).

- [3] H. LÜNEBURG, Characterizations of the generalized Hughes planes. Canad. J. Math. 28, 376–402 (1976).
- [4] M. MIMURA, Homotopy theory of Lie groups. In: Handbook of algebraic topology, I. M. James, ed., Chap. 19, 951–991. Amsterdam 1995.
- [5] B. PRIWITZER, Large almost simple groups acting on 16-dimensional compact projective planes. Monatsh. Math., to be published (1998).
- [6] B. PRIWITZER and H. SALZMANN, Large automorphism groups of 16-dimensional planes are Lie groups. J. Lie Theory 8, 1–11 (1998).
- [7] H. SALZMANN, Automorphismengruppen 8-dimensionaler Ternärkörper. Math. Z. 166, 265–275 (1979).
- [8] H. SALZMANN, D. BETTEN, T. GRUNDHÖFER, H. HÄHL, R. LÖWEN and M. STROPPEL, Compact projective planes. Berlin-New York 1995.
- [9] J. TITS, Sur certaines classes d'espaces homogènes de groupes de Lie. Mém. de l'Académie Royale de Belgique, Classe des Sciences XXIX, Fasc. 3 (1955).
- [10] H. VÖLKLEIN, Transitivitätsfragen bei linearen Liegruppen. Arch. Math. 36, 23-34 (1981).

Eingegangen am 19. 8. 1997

Anschrift des Autors:

Helmut Salzmann Mathematisches Institut der Universität D-72076 Tübingen