Characterization of 16 -dimensional Hughes planes

By
Helmut Salzmann

Abstract

The well-known finite Hughes planes have compact analoga with 16 -dimensional point space. The automorphism group of such a plane is a 36 -dimensional Lie group. Theorem: Assume that the compact projective plane \mathscr{P} is not isomorphic to the classical Moufang plane over the octonions. Let Δ be a closed subgroup of Aut \mathscr{P}. If $\operatorname{dim} \Delta \geqq 31$ and if Δ has a normal torus subgroup, then \mathscr{P} is a Hughes plane, $\Delta=\operatorname{Aut} \mathscr{P}$, and $\Delta^{\prime} \cong \mathrm{PSL}_{3} \mathbb{H}$.

A finite Hughes plane \mathscr{F} is a projective plane of order n^{2} having a Desarguesian subplane \mathscr{E} of order n such that each linear collineation of \mathscr{E} is induced by an automorphism of \mathscr{F}, compare Lüneburg [3]. Similarly, a compact 16-dimensional topological projective plane \mathscr{H} with automorphism group Σ is called a Hughes plane if \mathscr{H} has a Σ-invariant subplane \mathscr{E} isomorphic to the classical Desarguesian quaternion plane $\mathscr{P}_{2} \mathbb{H}$ such that Σ induces on \mathscr{E} the full automorphism group $\mathrm{PSL}_{3} \mathbb{H}$. There exist infinitely many non-isomorphic 16-dimensional Hughes planes, see [8, § 86]. These and their 8-dimensional analoga play a prominent role in the classification of compact, connected planes with an automorphism group of sufficiently large dimension, compare [8, Chap. 8, Introduction] and Theorem S below.

In the following, $\mathscr{P}=(P, \mathfrak{R})$ will always denote a topological projective plane with compact, 16-dimensional point space P. Taken with the compact-open topology, the automorphism group $\Sigma=$ Aut \mathscr{P} is a locally compact transformation group of P, and Σ has a countable basis [8, 44.3, p. 237]. Let Δ be a connected closed (hence locally compact) subgroup of Σ. If the topological dimension $\operatorname{dim} \Delta \geqq 27$, then Δ is even a Lie group (Priwitzer-Salzmann [6]).

Theorem S. Assume that \mathscr{P} is not the classical Moufang plane and that Δ is semi-simple. If $28<\operatorname{dim} \Delta<36$, then $\Delta \cong \mathrm{SL}_{3} \mathbb{H}$, and \mathscr{P} is a Hughes plane.

Proof. Priwitzer [5] and Hähl [2].
Here, a related characterization will be given:

Theorem T. Let \mathscr{P} be as above, and assume that Δ has a normal torus subgroup $\Theta \cong \mathbb{T}$. If $\operatorname{dim} \Delta>28$ and if the involution $\iota \in \Theta$ is not a reflection, or if $\operatorname{dim} \Delta>30$, then Θ fixes a Baer subplane, $\Delta^{\prime} \cong \mathrm{SL}_{3} \mathbb{H}$ and \mathscr{P} is a Hughes plane.

Proof of the first part. (a) Since Δ is connected and Aut Θ is finite, the normal subgroup Θ is contained in the center Z of Δ, compare [8, 93.19]. In particular, $\iota \in Z$.
(b) By assumption, ι is not a reflection, and [8,55.29] shows that the fixed elements of ι form a Baer subplane \mathscr{E}.
(c) $\iota \in Z$ implies $\mathscr{E}^{\Delta}=\mathscr{E}$. Let $\Delta^{*}=\left.\Delta\right|_{\mathscr{E}} \cong \Delta / \Phi$ be the effective action of Δ on \mathscr{E}, and consider its kernel $\Phi=\Delta_{[\mathscr{E}]}$. By the result mentioned above, Δ and Φ are Lie groups. From [8, 83.22] it follows that Φ is compact and that $\operatorname{dim} \Phi \leqq 3$. Consequently, $\operatorname{dim} \Delta^{*}>25$, and $\mathscr{E} \cong \mathscr{P}_{2} \mathbb{H}$ by [8, 84.27]. Moreover, the center of Δ^{*} is trivial [8, 84.10], and Θ is contained in the connected component Φ^{1} of Φ. This excludes the possibility $\Phi^{1} \cong \operatorname{Spin}_{3} \mathbb{R}$ and shows that $\Theta=\Phi^{1}$, see $[8,83.22]$. Hence $\operatorname{dim} \Delta^{*}>27$, and Δ^{*} fixes no element of \mathscr{E}. The second part of [8, 84.27] now gives $\Delta^{*} \cong$ PSL $_{3} \mathbb{H}$.
(d) According to [8, 94.27], the group Δ has a subgroup Γ locally isomorphic to the simple group Δ^{*}, and Theorem S may be applied to Γ. This shows that $\Gamma \cong \mathrm{SL}_{3} \mathbb{H}$ and that \mathscr{P} is a Hughes plane. Finally, $\Delta=\Gamma \Theta$ implies that $\Gamma=\Delta^{\prime}$ is the commutator group of Δ.

Proof of the second part. Assume that $\operatorname{dim} \Delta>30$ and that the involution $\iota \in \Theta$ is a reflection with axis W and center $a \notin W$. Again $\iota \in Z$ and hence $W^{\Delta}=W$. Moreover, Δ is a Lie group. The dimension formula

$$
\operatorname{dim} \Delta=\operatorname{dim} x^{4}+\operatorname{dim} \Delta_{x}
$$

will be used repeatedly, see [8, 96.10].
The following theorem of Bödi [1] plays an essential role:
(0) If the fixed elements of a connected Lie group Λ form a connected subplane \mathscr{F}_{Λ}, then Λ is isomorphic to the compact 14-dimensional group G_{2}, or $\Lambda \cong \mathrm{SU}_{3} \mathbb{C}$, or $\operatorname{dim} \Lambda<8$.
(1) Θ acts trivially on W and consists of homologies with center a.

Otherwise, $z^{\Theta} \neq z$ for some $z \in W$. Let $x \in a z \backslash\{a, z\}$, and consider the connected component Λ of the stabilizer Δ_{x}. Because $\Theta \leqq Z$, the fixed subplane \mathscr{F}_{Λ} contains the connected orbit z^{Θ} and hence is itself connected. The dimension formula together with (0) gives $\operatorname{dim} \Delta \leqq 16+14$, a contradiction.

By combining (0) and (1) we get
(2) If Λ fixes any quadrangle, then $\operatorname{dim} \Lambda \leqq 8$.

We may assume, in fact, that Λ is connected. If $\Lambda \cong \mathrm{G}_{2}$, then \mathscr{F}_{Λ} would be a 2-dimensional subplane [8, 83.24], but such a plane does not admit a torus group of homologies.
(2') No subgroup of Δ is isomorphic to G_{2}.
Proof. Let $\mathrm{G}_{2} \cong \Upsilon<\Delta$. All involutions in Υ are conjugate [8, 11.31(d)], and there are commuting involutions α and β in Υ. These are either reflections or Baer involutions [8, 55.29]. In the first case, one of α, β, or $\alpha \beta$ would have axis W and would coincide with ι, see [$8,55.35$ and 32 (ii)], but $\iota \nsubseteq \Upsilon$ because G_{2} is simple [8, 11.32]. Hence every involution in Υ is planar, and from [8, 55.39 and Note 6] it follows that $W \approx \mathbb{S}_{8}$. Repeated application of
[8, 96.35] shows that Υ fixes a quadrangle and, in fact, a 2 -dimensional subplane. This is impossible by (2).

Four cases will be treated separately: (i) Δ is transitive on W, (ii) Δ has a fixed point $v \in W$, (iii) Δ is doubly transitive on some orbit $V \subset W$, or (iv) Δ has none of these properties. The last case will turn out to be the most difficult one.
(3) The group $\Omega=\Delta_{[a, W]}$ of homologies with axis W has dimension $\operatorname{dim} \Omega \leqq 2$, and Δ induces on W a group Δ / Ω of dimension at least 29 .

Proof. Let Ψ be a maximal compact subgroup of the connected component Ω^{1}. Then $\Omega^{1}=\Psi$ or $\Omega^{1} \cong \Psi \times \mathbb{R}$ by $[8,61.2]$. The compact Lie group Ψ does not contain commuting involutions and hence has torus rank at most 1, see [8, 55.32(ii) or 35]. From (1) follows $\Theta \unlhd \Psi$ and $\Psi \cong \operatorname{Spin}_{3}$. This leaves only the possibility $\Psi=\Theta$.
(4) If Δ is transitive on W, then $W \approx \mathbb{S}_{8}$, see $[8,52.3$ and 96.14$]$. A maximal compact subgroup Φ of Δ is also transitive on W by [8, 96.19], and $\left.\Phi\right|_{W} \cong \mathrm{SO}_{9}$, compare [8, 96.22]. According to [8, 94.27], the group Δ contains a covering group H of SO_{9}, but then $\Phi \geqq H \Theta$ would have torus rank >4. This contradicts [8,55.37], and case (i) is impossible.
(5) Lemma. Assume that G is a locally compact, connected transitive transformation group of $S \approx \mathbb{S}_{8} \backslash\{a, b\}$. Consider a maximal compact subgroup K of G and the stabilizer $H=G_{c}$ of some point $c \in S$. If $H \cong \mathrm{SU}_{3} \mathbb{C}$, then $K \cong \mathrm{SU}_{4} \mathbb{C}$.

The proof depends on the exact homotopy sequence

$$
\ldots \rightarrow \pi_{q+1} S \rightarrow \pi_{q} H \rightarrow \pi_{q} G \rightarrow \pi_{q} S \rightarrow \pi_{q-1} H \rightarrow \ldots
$$

for the action of G on S, see [8, 96.12]. Note that G is a Lie group by [8, 96.14], and that there are homotopy equivalences $S \simeq \mathbb{S}_{7}$ and $G \simeq K$; the second one follows from the Mal'cevIwasawa theorem [8, 93.10]. Up to $q=8$ (and beyond), the homotopy groups of S and of all compact simple Lie groups are known, compare the remarks preceding 94.36 in [8]. We have $\pi_{q} S=0$ for $q<7$ and $\pi_{7} S \cong \mathbb{Z}$. The homotopy sequence gives $\pi_{q} K \cong \pi_{q} H$ for $q \leqq 5$. In particular, $\pi_{1} K=0$ and, therefore, K is semi-simple [8, 94.31(c)]. Whenever C is compact and almost simple, then $\pi_{3} C \cong \mathbb{Z}$, see [8, 94.36]. Hence $\pi_{3} K \cong \mathbb{Z}$, and K is even almost simple. The dimension formula shows that $8 \leqq \operatorname{dim} K \leqq 16$. Because of (2^{\prime}), only the groups $\pi_{q} C$ with $C \cong \mathrm{SU}_{3}, \mathrm{SU}_{4}$, or $\mathrm{U}_{2} \mathbb{H}$ are actually needed; these can be found in Mimura [4, §3.2]. Generally, $\pi_{5} C \cong \mathbb{Z}$ if and only if C is locally isomorphic to a group $\mathrm{SU}_{n} \mathbb{C}$ with $n>2$. Moreover, $\pi_{6} H \cong \mathbb{Z}_{6}$ and $\pi_{7} H=0$. The exact sequence

$$
\pi_{7} H \rightarrow \pi_{7} K \rightarrow \pi_{7} \mathbb{S} \rightarrow \pi_{6} H
$$

shows that $\pi_{7} K \cong \mathbb{Z}$, and $K \cong \mathrm{SU}_{4} \mathbb{C}$.
We are now able to deal with case (ii).
(6) If $v^{\Delta}=v \in W$, then Δ is transitive on $W \backslash\{v\}$.

Proof. Let $v \neq z \in W$. Together with (2), the dimension formula implies first $z^{4} \neq z$ and then $31-2 \cdot \operatorname{dim} z^{4} \leqq 8+8$. Hence $\operatorname{dim} z^{4}=8$, and z^{4} is open in W by [8, 96.11]. Because $W \backslash\{v\}$ is connected, the assertion follows.
(7) If $v^{\Delta}=v \in W$, then Δ is even doubly transitive on $W \backslash\{v\}$.

Proof. Let $\nabla=\Delta_{u}$ for some $u \in W, u \neq v$, and note that $23 \leqq \operatorname{dim} \nabla \leqq 24$. If ∇ is not transitive on $W \backslash\{u, v\}$, then, by similar arguments as in (6), there is a 7-dimensional orbit $z^{\nabla} \subset W$, and ∇_{z} is transitive on $S=a v \backslash\{a, v\}$. From (0), (2), and (5) we conclude that a maximal subgroup Φ of ∇_{z} must be isomorphic to $\mathrm{SU}_{4} \mathbb{C}$, but $\Theta \triangleleft \Phi$, a contradiction.
(8) Remarks. All locally compact doubly transitive transformation groups (Γ, M) have been determined by Tits [9]. Either Γ is simple and M is a projective space or a sphere, or $M \approx \mathbb{R}^{k}$ and Γ is an extension of \mathbb{R}^{k} by a transitive subgroup $G \leqq \mathrm{GL}_{k} \mathbb{R}$, compare $[8,96.15-23]$. A convenient description of the possibilities for G can be found in Völklein [10]. The group G has an almost simple normal subgroup H which is transitive on the $(k-1)$-sphere S consisting of the rays in \mathbb{R}^{k}, and a maximal compact subgoup K of H is also transitive on S, see [8, 96.19]. It is now easy to detect the possible groups H among the irreducible representations of almost simple Lie groups [8, 95.10], and G is contained in the product of H and its centralizer. In particular, $\operatorname{dim} G / H \leqq 4$, even $\leqq 2$ if $\mathrm{Cs} H \cong \mathbb{H}$.
(9) If $u^{\Delta}=W \backslash\{v\}$ and $\nabla=\Delta_{u}$, then ∇ is an almost direct product of the solvable radical $\sqrt{\nabla}$ and a group $\Psi \cong \mathrm{Sp}_{4} \mathbb{C}$.

Proof. By (2) and (3), the effective group $\Upsilon=\left.\nabla\right|_{W} \cong \nabla / \Omega$ satisfies $21 \leqq \operatorname{dim} \Upsilon \leqq 23$, and Υ has no subgroup locally isomorphic to Spin_{7} by (2^{\prime}). With the remarks (8) it follows that the commutator subgoup Υ^{\prime} is isomorphic to the simply connected group $\mathrm{Sp}_{4} \mathbb{C}$. The center Z of Υ is contained in \mathbb{C}^{\times}, and $\Upsilon=\Upsilon^{\prime} Z$. The group Υ^{\prime} is covered by a normal subgoup Ψ of ∇.

A maximal compact subgroup of $\mathrm{Sp}_{4} \mathbb{C}$ is isomorphic to $\mathrm{U}_{2} \mathbb{H}$ and does not contain $\mathrm{SU}_{3} \mathbb{C}$. Hence (0) and (9) imply
(10) Corollary. If $u^{\Lambda}=W \backslash\{v\}$, and if Λ fixes a quadrangle, then $\operatorname{dim} \Lambda \leqq 7$.
(11) If $u^{\Delta}=W \backslash\{v\}$ and $c \in a v \backslash\{a, v\}$, then Δ_{c} is doubly transitive on $W \backslash\{v\}$ and $\Gamma=\Delta_{c, u} \cong \mathrm{SL}_{2} \mathbb{H}$.

Proof. Let $u \neq z \in u^{\Delta}$. By (10) and the dimension formula, we have

$$
15 \leqq \operatorname{dim} \Gamma=\operatorname{dim} \Gamma_{z}+\operatorname{dim} z^{\Gamma} \leqq 7+8
$$

and $\operatorname{dim} z^{\Gamma}=8$. Hence each orbit z^{Γ} is open in W and Γ is transitive on $W \backslash\{u, v\}$ by the arguments of (6). The last assertion follows with the remarks (8).

Because of Levi's Theorem [8, 94.28], we conclude from (9) and (11) that $\mathrm{SL}_{2} \mathbb{H}$ must be a subgroup of $\mathrm{Sp}_{4} \mathbb{C}$. There are several ways to show that this is impossible. A simple reason is the following: both groups have $\mathrm{U}_{2} \mathbb{H}$ as maximal compact subgroups, but these are even maximal among all subgroups [8, 94.34]. More generally, Tits [9, Th. IV B.3.3] has determined all large maximal subgroups of the classical simple Lie groups. Thus, case (ii) has finally led to a contradiction.

All actions of Δ on W having only fixed points and 8-dimensional orbits are covered by (i) and (ii). Hence we may assume in case (iii) that Δ is doubly transitive on some orbit $V \subset W$ with $0<\operatorname{dim} V=k<8$. Let $u, v, w \in V$, and denote the connected component of the
stabilizer $\Delta_{u, v, w}$ by Ξ. From (2) and the dimension formula we obtain $\operatorname{dim} \Xi \leqq 16$ and then $31 \leqq \operatorname{dim} \Delta \leqq 3 k+16$. Consequently, $\operatorname{dim} V \geqq 5$. If $V \approx \mathbb{R}^{k}$, then $\Delta_{u, v}$ fixes a 1 -dimensional subspace of \mathbb{R}^{k}, and we get even $2 k \geqq 31-16$, a contradiction. Thus, V is compact and $\left.\Delta\right|_{V}$ is simple by (8). If V is a projective space, then $\Delta_{u, v}$ fixes the (real or complex) line through u and v, and $\operatorname{dim} \Delta \leqq 2 k+2+\operatorname{dim} \Xi$. This implies $V \approx \mathrm{P}_{7} \mathbb{R}$ and $\left.\Delta\right|_{V} \cong \operatorname{PSL}_{8} \mathbb{R}$, see [8, 96.17]. But then $\operatorname{dim} \Delta>63$ would be to large. By (8) or [8, 96.17] we have
(12) If Δ is doubly transitive on $V \subset W$, then V is homeomorphic to a sphere \mathbb{S}_{k} with $5 \leqq k \leqq 7$.

Because $k>4$, the kernel Φ of the action of Δ on $v^{\Delta}=V$ acts freely on $a v \backslash\{a, v\}$, and $\operatorname{dim} \Phi \leqq 8,\left.\operatorname{dim} \Delta\right|_{V} \geqq 23$. By [8, 96.19 and 23], each transitive group on \mathbb{S}_{6} contains G_{2}, and (2') shows that $k \neq 6$. Therefore, only one possibility of the list [8, 96.17(b)] remains:
(13) If Δ is doubly transitive on $V \subset W$, then $V \approx \mathbb{S}_{7}$ and $\left.\Delta\right|_{V} \cong \operatorname{PSU}_{5}(\mathbb{C}, 1)$.

If Δ is as in (13), then Δ contains an almost simple subgroup Ψ which is locally isomorphic to $\mathrm{SU}_{5}(\mathbb{C}, 1)$, see $[8,94.27]$. The kernel $\Phi=\Delta_{[V]}$ has dimension 7 or 8 , and each representation of Ψ on the Lie algebra of Φ is trivial [8, 95.10]. Hence $\Phi \leqq \mathrm{Cs}_{\Delta} \Psi$. The group Ψ has torus rank rk $\Psi \geqq 3$. By [8, 55. 29 and 35], there exist involutions $\alpha, \omega \in \Psi$ such that ω is planar, α is not the reflection with axis W, and $\alpha \omega=\omega \alpha$. Then α induces on the fixed plane \mathscr{F}_{ω} either a reflection or a Baer involution. The common fixed point set $C=F_{\alpha, \omega}$ is 4-dimensional, and Φ acts freely on some orbit $c^{\Phi} \subset C$, but $\operatorname{dim} \Phi \geqq 7$. This contradiction finally excludes case (iii).

The general case (iv). Again, there is an orbit $v^{\Delta}=V \subset W$ with $0<\operatorname{dim} V<8$. Let $v \neq u \in V$, and consider the connected components Γ of Δ_{v} and ∇ of Γ_{u}.
(14) The orbit $u^{\Gamma}=U$ is a 6 -dimensional connected manifold.

Proof. $u^{\Gamma} \approx \Gamma / \Gamma_{u}$ is a connected manifold [8, 94.3(a)]. Assume that $\operatorname{dim} U=m<6$. Choose $w \in U \backslash\{u\}$ and $c \in a v \backslash\{a, v\}$, and denote the connected component of $\nabla_{c, w}$ by Λ. The dimension formula gives $\operatorname{dim} \Lambda \geqq 31-7-8-2 m \geqq 6$, and (2) implies $m \geqq 4$. By [8, 83.22] and because Θ is a torus group of homologies, the fixed elements of Λ form a 4dimensional subplane $\mathscr{F}_{\Lambda}=\mathscr{F}$. Choose $z \in U \backslash \mathscr{F}$. Then $\Lambda_{z} \neq \mathbb{1}$ and $\mathscr{F}_{\Lambda_{z}}=\langle\mathscr{F}, z\rangle$ is a Baer subplane. From [8, 83.9] it follows that Λ is compact. In fact, $\Lambda \cong \mathrm{SU}_{3}$ or $\Lambda \cong \mathrm{SO}_{4}$, see Salzmann [7, (2.1)]. In the second case, Λ contains a central involution η, and Λ induces a group Λ / K on the Baer subplane \mathscr{F}_{η}. Now $\operatorname{dim} \Lambda / K \leqq 1$ by [8, 83.11], and $\operatorname{dim} K \leqq 3$ by [$8,83.22$]. This contradiction shows that $\Lambda \cong \mathrm{SU}_{3}$. For a point z as above, [8, 83.22] implies $\Lambda_{z} \cong \mathrm{SU}_{2}$ and $z^{\Lambda} \approx \mathbb{S}_{5}$. Hence $m=5$ and z^{4} is open and closed in U, compare [8, 92.14 or 96.11(a)]. Because U is connected, Λ must be transitive on U, but $z^{\Lambda} \subseteq U \backslash \mathscr{F} \neq U$.
(15) If $c \in S=a v \backslash\{a, v\}$, then $\operatorname{dim} \nabla_{c} \leqq 10$.

Proof. Note that Γ_{c} acts effectively on U and that $\operatorname{dim} \Gamma_{c} \leqq 20$ by (14) and (2). If Γ_{c} is doubly transitive on U, then the remarks (8) and [8, 96.16 and 17] show that $U \approx \mathbb{R}^{6}$. Moreover, a maximal semi-simple subgroup of Γ_{c} is isomorphic to SU_{3}, and $\operatorname{dim} \nabla_{c} \leqq 10$. Assume now that $\operatorname{dim} \nabla_{c}>10$, and let Π denote the connected component of ∇_{c}. Then Γ_{c} is not doubly transitive on U, and there is some $w \in U \backslash\{u\}$ such that $\operatorname{dim} w^{\Pi}<6$. The connected component Λ of Π_{w} satisfies $6 \leqq \operatorname{dim} \Lambda \leqq 8$, and $\operatorname{dim} w^{\Pi}>2$. As is the proof of
step (14) it follows that \mathscr{F}_{Λ} is 4-dimensional, that $\Lambda_{z} \neq \mathbb{1}$ for $z \in w^{\Pi} \backslash \mathscr{F}_{\Lambda}$, and that Λ is compact. As before, $\Lambda \cong \mathrm{SU}_{3}$ and $z^{\Lambda} \approx \mathrm{S}_{5}$. Again Λ would be transitive on the connected manifold w^{Π}, an obvious contradiction.
(16) Corollary. $\operatorname{dim} \Delta=31$ and ∇ is transitive on S.

The same technique as in the proof of Lemma (5) can now be applied. However, only the dimension of the stabilizer $\nabla_{c}=\Pi$ is known, but neither the structure nor the topology of Π, and there are several distinct possibilities. Consider maximal compact subgroups Ψ of Π and Φ of ∇ with $\Psi \leqq \Phi$ and the respective semi-simple commutator subgroups Ψ^{\prime} and Φ^{\prime}. Because ∇ is not compact and Θ is normal in Φ, we have $\operatorname{dim} \Phi^{\prime} \leqq 16$. The group Ψ^{\prime} is a product of 3-dimensional factors, or Ψ^{\prime} is locally isomorphic to SU_{3}, or $\Psi^{\prime}=\Pi \cong \mathrm{U}_{2} \mathbb{H} \cong \operatorname{Spin}_{5}$. The exact homotopy sequence for the action of ∇ on S becomes

$$
\ldots \rightarrow \pi_{q+1} S \rightarrow \pi_{q} \Psi \rightarrow \pi_{q} \Phi \rightarrow \pi_{q} S \rightarrow \ldots \rightarrow \pi_{1} S=0
$$

If C is any compact, connected Lie group and $q>1$, then $\pi_{q} C^{\prime} \cong \pi_{q} C$ by [8, 94.31(c)]. Moreover, $\pi_{1} \Psi \cong \pi_{1} \Phi$ is infinite (because Θ is a factor of Φ), and $\Psi^{\prime}<\Psi$. This excludes the possibility $\Psi^{\prime}=\Pi$. All the relevant homotopy groups of small compact simple Lie groups C can be found in Mimura [4, §3.2]. In particular, $\pi_{5} \mathrm{SU}_{n} \cong \mathbb{Z}$ for $n \geqq 3$, all other groups $\pi_{5} C$ and all groups $\pi_{6} C$ are finite.
(17) $\mathbb{1}<\Psi^{\prime}<\Phi^{\prime}$ and $\operatorname{dim} \Phi^{\prime} \leqq \operatorname{dim} \Psi^{\prime}+7$.

Proof. If $\Psi^{\prime}=\Phi^{\prime}$, then $\pi_{q} \Psi \cong \pi_{q} \Phi$ in the exact homotopy sequence, and $\pi_{q} S \rightarrow \pi_{q-1} \Psi$ is injective, but $\pi_{7} S \cong \mathbb{Z}$ and $\pi_{6} \Psi$ is finite. Hence $\Psi^{\prime}<\Phi^{\prime}$. If $\Psi^{\prime}=\mathbb{1}$, then $\pi_{3} \Phi^{\prime}=0$ and $\Phi^{\prime}=\mathbb{1}$ by $[8,94.36]$. This contradicts the first step of the proof. From $\pi_{1} \Psi \cong \pi_{1} \Phi$ and [8, 94.31(c)] it follows that the torus factors of Φ and of Ψ have the same dimension. Because Φ is compact and Ψ is the connected component of Φ_{c}, we obtain $\operatorname{dim} \Phi^{\prime} / \Psi^{\prime}=\operatorname{dim} \Phi / \Psi=\operatorname{dim} c^{\Phi}<8$.

The remaining possibilities will be discussed separately. We will need the following lemma:
(18) If Φ contains a reflection σ with center u or axis au, then the elation group E with center v (and axis av) is sharply transitive on U, and E is a 6-dimensional Lie group.

Proof. Assume that σ has center u. Choose $\rho=\sigma^{\eta}$ with $\eta \in \Gamma$ and $u^{\eta} \neq u$. Then $\sigma \rho$ is the elation with axis $a v$ mapping u to u^{ρ}. Thus, σ is unique and ($\gamma \mapsto \sigma \sigma^{\gamma}$) maps the coset space Γ / Γ_{u} continuously and injectively into E. Hence $\operatorname{dim} E=\operatorname{dim} U=6$. By [8, 96.11(a)], each E-orbit in U is open, and $u^{E}=U$ because U is connected.
(19) $\operatorname{dim} \Psi^{\prime} \neq 3$.

Proof. If Ψ^{\prime} is locally isomorphic to SU_{2}, then $\pi_{3} \Phi^{\prime} \cong \pi_{3} \Psi^{\prime} \cong \mathbb{Z}$, and Φ^{\prime} is almost simple by $[8, ~ 94.36]$. The last statement of (17) implies $\operatorname{dim} \Phi^{\prime} \leqq 10$. Since $\pi_{5} \Phi^{\prime} \cong \pi_{5} \Psi^{\prime} \cong \pi_{5} S_{3} \cong \mathbb{Z}_{2}$ is finite, the group Φ^{\prime} is not locally isomorphic to SU_{3} by the remarks preceding (17). Consequently, $\operatorname{dim} \Phi^{\prime}=10$. Because the group SO_{5} cannot act on any plane $[8,55.40]$, it follows that $\Phi^{\prime} \cong \operatorname{Spin}_{5} \cong \mathrm{U}_{2} \mathbb{H}$ is the simply connected covering group of SO_{5}. Again by [8,55.40], the central involution $\sigma \in \Phi^{\prime}$ cannot be planar, and σ is a
reflection. If the axis of σ is different from W, then (18) implies that the elation group E with center v is a 6-dimensional connected Lie group. The group E is not known to be commutative, but σ inverts each element of E. Therefore, Φ^{\prime} induces a faithful representation on the Lie algebra $\lfloor E$ of E. The list of irreducible representations given in [8, 95.10] shows that $\operatorname{dim} E=8$, a contradiction. Hence σ has axis W, and $\sigma \in \Theta$.

Consider now the involution $\beta \in \Phi^{\prime}$ corresponding to the element $\operatorname{diag}(1,-1) \in \mathrm{U}_{2} \mathbb{H}$. The centralizer $\Phi^{\prime} \cap \mathrm{Cs} \beta$ is a direct product $A \times B$, where $A \cong B \cong \mathrm{SU}_{2}$ and $\beta \in B$. The properties of $U_{2} \mathbb{H}$ show that $\alpha=\beta \sigma$ is the central involution in A, and that α and β are conjugate in Φ^{\prime}. If β is a reflection, then α and β have centers u and v and cannot be conjugate within ∇. Hence β is a Baer involution, its fixed elements form an 8 -dimensional subplane $\mathscr{F _ { \beta }}=\mathscr{B}$. Either B induces the identity on \mathscr{B}, or $\left.B\right|_{\mathscr{B}} \cong \mathrm{SO}_{3}$ (note that $\beta \in B$). In the latter case, the fixed elements of B would form a 2 -dimensional subplane \mathscr{E}, and Θ would act as a group of homologies on \mathscr{E}, but this is impossible by [$8,32.17$ or 61.26]. Therefore, $\left.B\right|_{\mathscr{B}}=\mathbb{1}$ and, analogously, $\left.A\right|_{\mathscr{F}_{a}}=\mathbb{1}$. Because α and β commute, it follows from $[8,55.32]$ that $\left.\alpha\right|_{\mathscr{B}} \neq \mathbb{1}$ and, hence, that A acts faithfully on \mathscr{B}. Consequently, $A \Theta \cong \mathrm{U}_{2} \mathbb{C}$ would induce a 4-dimensional compact group of homologies on \mathscr{B}. This contradicts [8, 61.26].

The next case can be treated in the same way:
(20) $\operatorname{dim} \Psi^{\prime} \neq 6$.

Proof. If Ψ^{\prime} is locally isomorphic to SO_{4}, then Φ^{\prime} has two almost simple factors by [$8,94.36]$. With (17) we obtain $\operatorname{dim} \Phi^{\prime}=13$, and Φ^{\prime} has a factor $\Xi \cong \operatorname{Spin}_{5}$. As in the last step, the existence of such a group leads to a contradiction.
(21) $\operatorname{dim} \Psi^{\prime} \neq 9$.

Proof. If Ψ^{\prime} is a product of 3 almost simple factors, then so is Φ^{\prime}, again by [8, 94.36]. Because $\Psi^{\prime}<\Phi^{\prime}$, one of the factors of Φ^{\prime} must have torus rank at least 2 . This implies that $\operatorname{rk} \Phi^{\prime} \geqq 4$ and then $\operatorname{rk} \Theta \Phi^{\prime}>4$. According to [8, 55.37], however, the torus rank can never exceed 4.
(22) $\operatorname{dim} \Psi^{\prime} \neq 8$.

Proof. We argue as in step (19). If Ψ^{\prime} is locally isomorphic to SU_{3}, then $\pi_{3} \Phi^{\prime} \cong \mathbb{Z}$ and Φ^{\prime} is almost simple. From $\pi_{5} \Phi^{\prime} \cong \mathbb{Z}$ and $8<\operatorname{dim} \Phi^{\prime} \leqq 15$ we infer that Φ^{\prime} is locally isomorphic to $\mathrm{SU}_{4} \mathbb{C} \cong \operatorname{Spin}_{6}$. Because SO_{5} cannot act on a plane, Φ^{\prime} is even isomorphic to SU_{4}, and its central involution σ is a reflection. In fact, σ has the axis W, or else Φ^{\prime} would act effectively on the elation group E, see (18). The involution β corresponding to diag $(1,1,-1,-1) \in \mathrm{SU}_{4}$ fixes a Baer subplane \mathscr{B} because it commutes with 5 conjugates, see [8, 55.35]. The centralizer of β contains a direct product $A \times B$, where $A \cong B \cong \mathrm{SU}_{2}$ and $\beta \in B$. Exactly as in (19), it follows that ΘA induces on \mathscr{B} a compact, 4-dimensional group of homologies with axis $W \cap \mathscr{B}$. This final contradiction completes the proof of Theorem T.

References

[1] R. BödI, On the dimensions of automorphism groups of eight-dimensional ternary fields, II. Geom. Dedicata 53, 201-216 (1994).
[2] H. HÄHL, Charakterisierung der kompakten, zusammenhängenden Moufang-Hughes-Ebenen anhand ihrer Kollineationen. Math. Z. 191, 117-136 (1986).
[3] H. Lüneburg, Characterizations of the generalized Hughes planes. Canad. J. Math. 28, 376-402 (1976).
[4] M. Mimura, Homotopy theory of Lie groups. In: Handbook of algebraic topology, I. M. James, ed., Chap. 19, 951-991. Amsterdam 1995.
[5] B. Priwitzer, Large almost simple groups acting on 16-dimensional compact projective planes. Monatsh. Math., to be published (1998).
[6] B. Priwitzer and H. Salzmann, Large automorphism groups of 16-dimensional planes are Lie groups. J. Lie Theory 8, 1-11 (1998).
[7] H. Salzmann, Automorphismengruppen 8-dimensionaler Ternärkörper. Math. Z. 166, 265-275 (1979).
[8] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen and M. Stroppel, Compact projective planes. Berlin-New York 1995.
[9] J. Tits, Sur certaines classes d'espaces homogènes de groupes de Lie. Mém. de l'Académie Royale de Belgique, Classe des Sciences XXIX, Fasc. 3 (1955).
[10] H. Völklein, Transitivitätsfragen bei linearen Liegruppen. Arch. Math. 36, $23-34$ (1981).
Eingegangen am 19. 8. 1997
Anschrift des Autors:
Helmut Salzmann
Mathematisches Institut
der Universität
D-72076 Tübingen

