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Abstract. The well-known finite Hughes planes have compact analoga with
16-dimensional point space. The automorphism group of such a plane is a 36-dimensional
Lie group. Theorem: Assume that the compact projective plane p is not isomorphic to
the classical Moufang plane over the octonions. Let D be a closed subgroup of Autp.
If dim D ^ 31 and if D has a normal torus subgroup, then p is a Hughes plane,
D � Autp, and D0 � PSL3H.

A finite Hughes planef is a projective plane of order n2 having a Desarguesian subplane
e of order n such that each linear collineation of e is induced by an automorphism of f,
compare LuÈ neburg [3]. Similarly, a compact 16-dimensional topological projective plane h
with automorphism group S is called a Hughes plane if h has a S-invariant subplane e
isomorphic to the classical Desarguesian quaternion planep2H such that S induces on e the
full automorphism group PSL3H. There exist infinitely many non-isomorphic 16-dimen-
sional Hughes planes, see [8, § 86]. These and their 8-dimensional analoga play a prominent
role in the classification of compact, connected planes with an automorphism group of
sufficiently large dimension, compare [8, Chap. 8, Introduction] and Theorem S below.

In the following, p � �P;L� will always denote a topological projective plane with
compact, 16-dimensional point space P. Taken with the compact-open topology, the
automorphism group S � Aut p is a locally compact transformation group of P, and S has a
countable basis [8, 44.3, p. 237]. Let D be a connected closed (hence locally compact)
subgroup of S. If the topological dimension dim D ^ 27, then D is even a Lie group
(Priwitzer-Salzmann [6]).

Theorem S. Assume that p is not the classical Moufang plane and that D is semi-simple.
If 28 < dim D < 36, then D � SL3H, and p is a Hughes plane.

P roof. Priwitzer [5] and HaÈhl [2].

Here, a related characterization will be given:

Theorem T. Let p be as above, and assume that D has a normal torus subgroup V � T.
If dim D > 28 and if the involution i 2 V is not a reflection, or if dim D > 30, then V fixes a
Baer subplane, D0 � SL3H and p is a Hughes plane.
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Proof of the first part. (a) Since D is connected and Aut V is finite, the normal subgroup V

is contained in the center Z of D, compare [8, 93.19]. In particular, i 2 Z.
(b) By assumption, i is not a reflection, and [8, 55.29] shows that the fixed elements of i

form a Baer subplane e.
(c) i 2 Z implies eD � e. Let D� � Dje � D=F be the effective action of D on e, and

consider its kernel F � D�e�. By the result mentioned above, D and F are Lie groups. From
[8, 83.22] it follows that F is compact and that dim F % 3. Consequently, dim D� > 25, and
e � p2H by [8, 84.27]. Moreover, the center of D� is trivial [8, 84.10], and V is contained in
the connected component F1 of F. This excludes the possibility F1 � Spin3R and shows that
V � F1, see [8, 83.22]. Hence dim D� > 27, and D� fixes no element of e. The second part of
[8, 84.27] now gives D� � PSL3H.

(d) According to [8, 94.27], the group D has a subgroup G locally isomorphic to the
simple group D�, and Theorem S may be applied to G. This shows that G � SL3H and
that p is a Hughes plane. Finally, D � GV implies that G � D0 is the commutator group
of D. h

Proof of the second part. Assume that dim D > 30 and that the involution i 2 V is a
reflection with axis W and center a2j W. Again i 2 Z and hence WD �W. Moreover, D is a
Lie group. The dimension formula

dim D � dim xD � dim Dx

will be used repeatedly, see [8, 96.10].
The following theorem of Bödi [1] plays an essential role:

(0) If the fixed elements of a connected Lie group L form a connected subplanefL , then L

is isomorphic to the compact 14-dimensional group G2 , or L � SU3C , or dim L < 8 .
(1) V acts trivially on W and consists of homologies with center a.

Otherwise, zV �j z for some z 2W. Let x 2 az n fa; zg, and consider the connected
component L of the stabilizer Dx. Because V % Z, the fixed subplane fL contains the
connected orbit zV and hence is itself connected. The dimension formula together with (0)
gives dim D % 16� 14, a contradiction. h

By combining (0) and (1) we get

(2) If L fixes any quadrangle, then dim L % 8.

We may assume, in fact, that L is connected. If L � G2, then fL would be a
2-dimensional subplane [8, 83.24], but such a plane does not admit a torus group of
homologies.

(2©) No subgroup of D is isomorphic to G2 .

P roof. Let G2 � U < D. All involutions in U are conjugate [8, 11.31(d)], and there are
commuting involutions a and b in U. These are either reflections or Baer involutions [8,
55.29]. In the first case, one of a, b, or ab would have axis W and would coincide with i, see
[8, 55. 35 and 32 (ii)], but i2j U because G2 is simple [8, 11.32]. Hence every involution in U is
planar, and from [8, 55.39 and Note 6] it follows that W � S8. Repeated application of
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[8, 96.35] shows that U fixes a quadrangle and, in fact, a 2-dimensional subplane. This is
impossible by (2). h

Four cases will be treated separately: (i) D is transitive on W, (ii) D has a fixed point
v 2W, (iii) D is doubly transitive on some orbit V �W, or (iv) D has none of these
properties. The last case will turn out to be the most difficult one.

(3) The group W � D�a;W� of homologies with axis W has dimension dim W % 2, and D

induces on W a group D=W of dimension at least 29.

P roof. Let Y be a maximal compact subgroup of the connected component W1. Then
W1 � Y or W1 � Y �R by [8, 61.2]. The compact Lie group Y does not contain commuting
involutions and hence has torus rank at most 1, see [8, 55.32(ii) or 35]. From (1) follows
V /�Y and Y �jj Spin3. This leaves only the possibility Y � V. h

(4) If D is transitive on W, then W � S8, see [8, 52.3 and 96.14]. A maximal compact
subgroup F of D is also transitive on W by [8, 96.19], and FjW � SO9, compare [8, 96.22].
According to [8, 94.27], the group D contains a covering group H of SO9, but then F ^ HV

would have torus rank > 4. This contradicts [8, 55.37], and case (i) is impossible.

(5) Lemma. Assume that G is a locally compact, connected transitive transformation group
of S � S8 n fa; bg. Consider a maximal compact subgroup K of G and the stabilizer H � Gc

of some point c 2 S. If H � SU3C, then K � SU4C .

The pr oof depends on the exact homotopy sequence

. . .! pq�1S! pqH ! pqG! pqS! pqÿ1H ! . . .

for the action of G on S, see [8, 96.12]. Note that G is a Lie group by [8, 96.14], and that there
are homotopy equivalences S ' S7 and G ' K; the second one follows from the Mal�cev-
Iwasawa theorem [8, 93.10]. Up to q � 8 (and beyond), the homotopy groups of S and of all
compact simple Lie groups are known, compare the remarks preceding 94.36 in [8]. We have
pqS � 0 for q < 7 and p7S � Z. The homotopy sequence gives pqK � pqH for q % 5. In
particular, p1K � 0 and, therefore, K is semi-simple [8, 94.31(c)]. Whenever C is compact
and almost simple, then p3C � Z, see [8, 94.36]. Hence p3K � Z, and K is even almost
simple. The dimension formula shows that 8 % dim K % 16. Because of (2©), only the groups
pqC with C � SU3, SU4, or U2H are actually needed; these can be found in Mimura
[4, x 3:2]. Generally, p5C � Z if and only if C is locally isomorphic to a group SUnC with
n > 2. Moreover, p6H � Z6 and p7H � 0. The exact sequence

p7H ! p7K ! p7S! p6H

shows that p7K � Z, and K � SU4C. h

We are now able to deal with case (ii).

(6) If vD � v 2W, then D is transitive on W n fvg.

P roof. Let v �j z 2W. Together with (2), the dimension formula implies first zD �j z and
then 31ÿ 2 � dim zD % 8� 8. Hence dim zD � 8, and zD is open in W by [8, 96.11]. Because
W n fvg is connected, the assertion follows. h
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(7) If vD � v 2W, then D is even doubly transitive on W n fvg.
P roof. Let r � Du for some u 2W, u �j v, and note that 23 % dimr % 24. If r is not

transitive on W n fu; vg, then, by similar arguments as in (6), there is a 7-dimensional orbit
zr �W, and rz is transitive on S � av n fa; vg. From (0), (2), and (5) we conclude that a
maximal subgroup F of rz must be isomorphic to SU4C, but V /F, a contradiction. h

(8) Re m ar ks. All locally compact doubly transitive transformation groups �G ;M�
have been determined by Tits [9]. Either G is simple and M is a projective space or a
sphere, or M � Rk and G is an extension of Rk by a transitive subgroup G % GLkR,
compare [8, 96. 15 ± 23]. A convenient description of the possibilities for G can be found in
VoÈ lklein [10]. The group G has an almost simple normal subgroup H which is transitive on
the �kÿ 1�-sphere S consisting of the rays in Rk, and a maximal compact subgoup K of H is
also transitive on S, see [8, 96.19]. It is now easy to detect the possible groups H among the
irreducible representations of almost simple Lie groups [8, 95.10], and G is contained in the
product of H and its centralizer. In particular, dim G=H % 4, even % 2 if CsH �jj H.

(9) If uD �W n fvg and r � Du, then r is an almost direct product of the solvable radical����rp and a group Y � Sp4C .

P roof. By (2) and (3), the effective group U � rjW � r=W satisfies 21 % dimU % 23,
and U has no subgroup locally isomorphic to Spin7 by (2©). With the remarks (8) it follows
that the commutator subgoup U0 is isomorphic to the simply connected group Sp4C . The
center Z of U is contained in C�, and U � U0Z. The group U0 is covered by a normal subgoup
Y of r. h

A maximal compact subgroup of Sp4C is isomorphic to U2H and does not contain SU3C.
Hence (0) and (9) imply

(10) Corollary. If uD �W n fvg, and if L fixes a quadrangle, then dim L % 7.

(11) If uD �W n fvg and c 2 av n fa; vg, then Dc is doubly transitive on W n fvg and
G � Dc;u � SL2H.

P roof. Let u �j z 2 uD. By (10) and the dimension formula, we have

15 % dim G � dim Gz � dim zG % 7� 8;

and dim zG � 8. Hence each orbit zG is open in W and G is transitive on W n fu; vg by the
arguments of (6). The last assertion follows with the remarks (8). h

Because of Levi�s Theorem [8, 94.28], we conclude from (9) and (11) that SL2H must be a
subgroup of Sp4C . There are several ways to show that this is impossible. A simple reason is
the following: both groups have U2H as maximal compact subgroups, but these are even
maximal among all subgroups [8, 94.34]. More generally, Tits [9, Th. IV B.3.3] has
determined all large maximal subgroups of the classical simple Lie groups. Thus, case (ii) has
finally led to a contradiction.

All actions of D on W having only fixed points and 8-dimensional orbits are covered by (i)
and (ii). Hence we may assume in case (iii) that D is doubly transitive on some orbit V �W
with 0 < dim V � k < 8. Let u; v;w 2 V, and denote the connected component of the
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stabilizer Du;v;w by X. From (2) and the dimension formula we obtain dim X % 16 and then
31 % dim D % 3k� 16. Consequently, dim V ^ 5. If V � Rk, then Du;v fixes a 1-dimensional
subspace ofRk, and we get even 2k ^ 31ÿ 16, a contradiction. Thus, V is compact and DjV is
simple by (8). If V is a projective space, then Du;v fixes the (real or complex) line through u
and v, and dim D % 2k� 2� dim X. This implies V � P7R and DjV � PSL8R, see [8, 96.17].
But then dim D > 63 would be to large. By (8) or [8, 96.17] we have

(12) If D is doubly transitive on V �W, then V is homeomorphic to a sphere Sk with
5 % k % 7.

Because k > 4, the kernel F of the action of D on vD � V acts freely on av n fa; vg, and
dim F % 8, dim DjV ^ 23. By [8, 96.19 and 23], each transitive group on S6 contains G2, and
(2©) shows that k �j 6. Therefore, only one possibility of the list [8, 96.17(b)] remains:

(13) If D is doubly transitive on V �W, then V � S7 and DjV � PSU5�C; 1�.
If D is as in (13), then D contains an almost simple subgroup Y which is locally isomorphic

to SU5�C; 1�, see [8, 94.27]. The kernel F � D�V� has dimension 7 or 8, and each
representation of Y on the Lie algebra of F is trivial [8, 95.10]. Hence F % CsDY. The
group Y has torus rank rk Y ^ 3. By [8, 55. 29 and 35], there exist involutions a;w 2 Y such
that w is planar, a is not the reflection with axis W, and aw � wa. Then a induces on the
fixed planefw either a reflection or a Baer involution. The common fixed point set C � Fa;w

is 4-dimensional, and F acts freely on some orbit cF � C, but dim F ^ 7. This contradiction
finally excludes case (iii). h

The general case (iv). Again, there is an orbit vD � V �W with 0 < dim V < 8. Let
v �j u 2 V, and consider the connected components G of Dv and r of Gu.

(14) The orbit uG � U is a 6-dimensional connected manifold.

P roof. uG � G=Gu is a connected manifold [8, 94.3(a)]. Assume that dim U � m < 6.
Choose w 2 U n fug and c 2 av n fa; vg, and denote the connected component of rc;w by L.
The dimension formula gives dim L ^ 31ÿ 7ÿ 8ÿ 2m ^ 6, and (2) implies m ^ 4. By [8,
83.22] and because V is a torus group of homologies, the fixed elements of L form a 4-
dimensional subplane fL �f. Choose z 2 U nf. Then Lz �j b and fLz � hf; zi is a Baer
subplane. From [8, 83.9] it follows that L is compact. In fact, L � SU3 or L � SO4, see
Salzmann [7, (2.1)]. In the second case, L contains a central involution h, and L induces a
group L=K on the Baer subplane fh. Now dim L=K % 1 by [8, 83.11], and dim K % 3 by
[8, 83.22]. This contradiction shows that L � SU3. For a point z as above, [8, 83.22] implies
Lz � SU2 and zL � S5. Hence m � 5 and zL is open and closed in U, compare [8, 92.14 or
96.11(a)]. Because U is connected, L must be transitive on U, but zL 7 U nf �j U. h

(15) If c 2 S � av n fa; vg, then dimrc % 10.

P roof. Note that Gc acts effectively on U and that dim Gc % 20 by (14) and (2). If Gc is
doubly transitive on U, then the remarks (8) and [8, 96.16 and 17] show that U � R6.
Moreover, a maximal semi-simple subgroup of Gc is isomorphic to SU3, and dimrc % 10.
Assume now that dimrc > 10, and let P denote the connected component of rc. Then Gc is
not doubly transitive on U, and there is some w 2 U n fug such that dim wP < 6. The
connected component L of Pw satisfies 6 % dim L % 8, and dim wP > 2. As is the proof of
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step (14) it follows that fL is 4-dimensional, that Lz �j b for z 2 wP nfL, and that L is
compact. As before, L � SU3 and zL � S5. Again L would be transitive on the connected
manifold wP , an obvious contradiction. h

(16) Corollary. dim D � 31 and r is transitive on S.

The same technique as in the proof of Lemma (5) can now be applied. However, only the
dimension of the stabilizerrc � P is known, but neither the structure nor the topology of P,
and there are several distinct possibilities. Consider maximal compact subgroups Y of P and
F of r with Y % F and the respective semi-simple commutator subgroups Y 0 and F0.
Because r is not compact and V is normal in F, we have dim F0 % 16. The group Y 0 is a
product of 3-dimensional factors, or Y 0 is locally isomorphic to SU3, or
Y 0 � P � U2H � Spin5. The exact homotopy sequence for the action of r on S becomes

. . .! pq�1S! pqY ! pqF! pqS! . . .! p1S � 0:

If C is any compact, connected Lie group and q > 1, then pqC0 � pqC by [8, 94.31(c)].
Moreover, p1Y � p1F is infinite (because V is a factor of F), and Y 0 < Y . This excludes the
possibility Y 0 � P. All the relevant homotopy groups of small compact simple Lie groups C
can be found in Mimura [4, x 3:2]. In particular, p5 SUn � Z for n ^ 3, all other groups p5C
and all groups p6C are finite.

(17) b < Y 0 < F0 and dim F0 % dim Y 0 � 7:

P roof. If Y 0 � F0, then pqY � pqF in the exact homotopy sequence, and pqS! pqÿ1Y

is injective, but p7S � Z and p6Y is finite. Hence Y 0 < F0. If Y 0 � b, then p3F0 � 0 and
F0 � b by [8, 94.36]. This contradicts the first step of the proof. From p1Y � p1F and
[8, 94.31(c)] it follows that the torus factors of F and of Y have the same dimension.
Because F is compact and Y is the connected component of Fc, we obtain
dim F0=Y 0 � dim F=Y � dim cF < 8. h

The remaining possibilities will be discussed separately. We will need the following
lemma:

(18) If F contains a reflection s with center u or axis au, then the elation group E with
center v (and axis av) is sharply transitive on U, and E is a 6-dimensional Lie group.

P roof. Assume that s has center u. Choose � � sh with h 2 G and uh �j u. Then s� is the
elation with axis av mapping u to u�. Thus, s is unique and �g 7!ssg� maps the coset space
G=Gu continuously and injectively into E. Hence dim E � dim U � 6. By [8, 96.11(a)], each
E-orbit in U is open, and uE � U because U is connected. h

(19) dim Y 0 �j 3.

P roof. If Y 0 is locally isomorphic to SU2, then p3F0 � p3Y 0 � Z, and F0 is almost
simple by [8, 94.36]. The last statement of (17) implies dim F0 % 10. Since
p5F0 � p5Y 0 � p5S3 � Z2 is finite, the group F0 is not locally isomorphic to SU3 by the
remarks preceding (17). Consequently, dim F0 � 10. Because the group SO5 cannot act on
any plane [8, 55.40], it follows that F0 � Spin5 � U2H is the simply connected covering
group of SO5. Again by [8, 55.40], the central involution s 2 F0 cannot be planar, and s is a
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reflection. If the axis of s is different from W, then (18) implies that the elation group E with
center v is a 6-dimensional connected Lie group. The group E is not known to be
commutative, but s inverts each element of E. Therefore, F0 induces a faithful
representation on the Lie algebra lE of E. The list of irreducible representations given in
[8, 95.10] shows that dim E � 8, a contradiction. Hence s has axis W, and s 2 V.

Consider now the involution b 2 F0 corresponding to the element diag �1;ÿ1� 2 U2H.
The centralizer F0 \ Csb is a direct product A� B, where A � B � SU2 and b 2 B. The
properties of U2H show that a � bs is the central involution in A, and that a and b are
conjugate in F0. If b is a reflection, then a and b have centers u and v and cannot be
conjugate within r. Hence b is a Baer involution, its fixed elements form an 8-dimensional
subplanefb � b. Either B induces the identity on b, or Bjb � SO3 (note that b 2 B). In the
latter case, the fixed elements of B would form a 2-dimensional subplane e, and V would act
as a group of homologies on e, but this is impossible by [8, 32.17 or 61.26]. Therefore,
Bjb � b and, analogously, Ajfa

� b. Because a and b commute, it follows from [8, 55.32]
that ajb �j b and, hence, that A acts faithfully on b. Consequently, AV � U2C would induce
a 4-dimensional compact group of homologies on b. This contradicts [8, 61.26]. h

The next case can be treated in the same way:

(20) dim Y 0 �j 6.

P roof. If Y 0 is locally isomorphic to SO4, then F0 has two almost simple factors by
[8, 94.36]. With (17) we obtain dim F0 � 13, and F0 has a factor X � Spin5. As in the last
step, the existence of such a group leads to a contradiction. h

(21) dim Y 0 �j 9.

P roof. If Y 0 is a product of 3 almost simple factors, then so is F0, again by [8, 94.36].
Because Y 0 < F0, one of the factors of F0 must have torus rank at least 2. This implies that
rkF0 ^ 4 and then rk VF0 > 4. According to [8, 55.37], however, the torus rank can never
exceed 4. h

(22) dim Y 0 �j 8.

P roof. We argue as in step (19). If Y 0 is locally isomorphic to SU3, then p3F0 � Z and F0

is almost simple. From p5F0 � Z and 8 < dim F0 % 15 we infer that F0 is locally isomorphic
to SU4C � Spin6. Because SO5 cannot act on a plane, F0 is even isomorphic to SU4, and its
central involution s is a reflection. In fact, s has the axis W, or else F0 would act effectively
on the elation group E, see (18). The involution b corresponding to diag �1; 1;ÿ1;ÿ1� 2 SU4

fixes a Baer subplane b because it commutes with 5 conjugates, see [8, 55.35]. The
centralizer of b contains a direct product A� B, where A � B � SU2 and b 2 B. Exactly as
in (19), it follows that VA induces on b a compact, 4-dimensional group of homologies with
axis W \b. This final contradiction completes the proof of Theorem T.
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