Automorphisms of Symmetric and Double Symmetric Chain Structures

Helmut Karzel, Jarosław Kosiorek and Andrzej Matraś

Dedicated to Mario Marchi

Abstract

We give a description of automorphisms of symmetric and double symmetric chain structures. We use our results for double symmetric $1,2,3-$ structures to shed some new light on their groups of automorphisms.

Mathematics Subject Classification (2000). 51B20.
Keywords. Symmetric and double symmetric chain structures, automorphisms.

Introduction

A chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is a net $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}\right)$ together with a set \mathfrak{K} of chains. A subset $C \subseteq P$ is called a chain if C intersects each generator $X \in \mathfrak{G}_{1} \cup \mathfrak{G}_{2}$ in exactly one point. If \mathfrak{C} denotes the set of all chains of the net $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}\right)$ then $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{C}\right)$ is called maximal chain structure. Chain structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ can be classified by claiming properties in particular incidence axioms and in this frame one can characterize webs, 2-structures, hyperbola structures or Minkowski planes. Another aspect of chain structures is the fact that one can associate to each pair (A, B) of chains in a natural way a permutation $\widetilde{A B}$ of P : For $p \in P$ and $i \in\{1,2\}$ let $[p]_{i}$ denote the generator of \mathfrak{G}_{i} passing through p then

$$
\widetilde{A B}(p):=\left[[p]_{1} \cap A\right]_{2} \cap\left[[p]_{2} \cap B\right]_{1} .
$$

For $A=B$ we set $\widetilde{A}:=\widetilde{A A}$ and call \widetilde{A} a reflection in the chain A. The map $\widetilde{A B}$ has the nice property that the image $\widetilde{A B}(C)$ of a chain is again a chain. Therefore $\tau: \mathfrak{C}^{3} \rightarrow \mathfrak{C}$ with $\tau(A, B, C):=\widetilde{A C}(B)$ is a ternary operation on the set \mathfrak{C} of all chains and if one fixes a chain $E \in \mathfrak{C}$ then (\mathfrak{C}, \cdot) with $A \cdot B:=\tau(A, E, B)$ becomes a group which is isomorphic to the symmetric group SymE (cf. 1.2). These facts
allow us to define the class of double symmetric and of symmetric chain structures ($\left.P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ by:

$$
\forall A, B, C \in \mathfrak{K}: \tau(A, B, C) \in \mathfrak{K} \quad \text { and } \quad \forall A, B \in \mathfrak{K}: \tau(A, B, A) \in \mathfrak{K}
$$

respectively which can be also characterized by:
" $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is double symmetric \Leftrightarrow for $K \in \mathfrak{K}, K^{-1} \cdot \mathfrak{K}$ is a subgroup of (\mathfrak{C}, \cdot) "
(cf. 1.5) and
$"\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is symmetric $\Leftrightarrow \forall K \in \mathfrak{K}: K \cdot \mathfrak{K} \cdot K=\mathfrak{K}$ and $\mathfrak{K}^{-1}=\mathfrak{K} "$
(cf. Theorem 2.1.(8)) .
In this paper we are interested in automorphism groups $\Gamma^{+}(\mathfrak{K}), \Gamma(\mathfrak{K})$ of a chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ which are subgroups of $\Gamma^{+}:=\operatorname{Aut}(P, \square)$ where $a \square b:=$ $[a]_{1} \cap[b]_{2}$ and of $\Gamma:=\Gamma^{+} \cup \Gamma^{-}$where Γ^{-}consists of all antiautomorphisms of (P, \square). Hence: $\Gamma(\mathfrak{K}):=\{\gamma \in \Gamma \mid \gamma(\mathfrak{K})=\mathfrak{K}\}$ or $\Gamma^{+}(\mathfrak{K}):=\left\{\gamma \in \Gamma^{+} \mid \gamma(\mathfrak{K})=\mathfrak{K}\right\}$.

If $\Gamma(\mathfrak{K})$ contains a subgroup Ξ acting transitively on \mathfrak{K} then $\Gamma(\mathfrak{K})$ is determined by Ξ and the stabilizer $\Gamma_{E}(\mathfrak{K}):=\{\gamma \in \Gamma(\mathfrak{K}) \mid \gamma(E)=E\}$ (cf. 2.1.(8)). This is the case if the chain structure is double symmetric (cf. 3.1.(4)). Then $\Gamma(\mathfrak{K})$ is essentially determined by $\Gamma_{E}(\mathfrak{K})=\Gamma_{E}^{+}(\mathfrak{K}) \circ\{i d, \widetilde{E}\}$ and by 3.2.(4), $\Gamma_{E}^{+}(\mathfrak{K})$ is isomorphic to $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$ the normalizer of \mathfrak{K} in the group (\mathfrak{C}, \cdot).

Between chain structures and permutation sets there is a one-to-one correspondence via a bijection $\Pi_{E}: \mathfrak{C} \rightarrow \operatorname{Sym} E$ which maps each chain $C \in \mathfrak{C}$ onto a permutation of the symmetric group SymE of the point set of a fixed chain $E \in \mathfrak{C}$ (cf. 1.1.(2),(3) and 1.2.(1)) and the inverse map κ_{E}.

In Section 3 we discuss the automorphism groups of Double Symmetric $1-, 2$ - and 3 -Structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$. For this purpose let $\mathbf{K}:=\Pi_{E}(\mathfrak{K}), \mathbf{N}:=$ $\Pi_{E}\left(\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})\right)$.

The double symmetric 1 -structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ are exactly the webs satisfying the Reidemeister condition and the map Π_{E} (cf. 1.1.(2)) takes \mathfrak{K} onto a permutation group \mathbf{K} acting regularly on the point set of the chain E. This allows us to turn E into a group $(E,+)$ and then $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$ is isomorphic to the semidirect product $(E,+) \rtimes \operatorname{Aut}(E,+)$.

Double symmetric 2 -structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ satisfy the rectangle axiom and correspond to near domains $(E,+, *)$. The group (\mathfrak{K}, \cdot) is isomorphic to the affine group $T_{2}(E)$ of the near domain consisting of the maps $\tau_{m, n}(x)=m+n * x$ with $m, n \in E, n \neq o$. The permutation set $(E, \mathbf{K})=\left(E, T_{2}(E)\right)$ is a group acting sharply 2 -transitive on the set E.

Also the 3 -structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ - also called hyperbola structures - which are double symmetric are characterized by the rectangle axiom. Here the pair (E, \mathbf{K}) is a group acting sharply 3 -transitive on the set E. Therefore after fixing an element $\infty \in E$ the set $F:=E \backslash \infty$ can be furnished with an addition + and a multiplication $*$ such that $(F,+, *)$ becomes a neardomain and moreover there is a certain permutation ϵ of F such that $(F,+, *, \epsilon)$ becomes even KT-field.

Finally in Section 4 we consider the larger class of symmetric chain structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ where we make always the assumption $E \in \mathfrak{K}$ and $(\mathfrak{C}, \cdot):=(\mathfrak{C}, \cdot ; E)$. Then $\mathfrak{K}^{-1}=\mathfrak{K}$ and $\forall K \in \mathfrak{K}: K \cdot \mathfrak{K} \cdot K=\mathfrak{K}$ (cf. 4.1.). To the set \mathfrak{K} of chains one can associate various other subsets of chains of \mathfrak{C} (cf. Definition 4.2.) which are needed in order to describe the automorphism groups of the symmetric chain structure (cf. Theorem 4.4.).

Symmetric 1-Structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ are webs where each reflection in a chain $K \in \mathfrak{K}$ is an automorphism of the web. These were studied in several papers (cf. $[2,4]$) and they correspond to the class of K-loops or what is the same to the Bruck loops. In a forthcoming paper we will investigate more thoroughly the class of symmetric 2 -structures.

1. Notations and known results

1.1. Properties of maximal chain structures

First we collect some properties of maximal chain structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{C}\right)$ (cf. for instance [9](2.7.5)). We recall that all chains $C \in \mathfrak{C}$ and all generators $X \in \mathfrak{G}_{1} \cup \mathfrak{G}_{2}$ have the same cardinality which we call the order of the chain structure and that the cardinality of the point set P is the square of the order. To any non empty set \mathcal{E} there corresponds a 2 -net $\kappa(\mathcal{E})=\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}\right)$ where $P:=\mathcal{E} \times \mathcal{E}$ is the product set, $\mathfrak{G}_{1}:=\{\{a\} \times \mathcal{E} \mid a \in \mathcal{E}\}$ and $\mathfrak{G}_{2}:=\{\mathcal{E} \times\{a\} \mid a \in \mathcal{E}\}$ with the binary operation $\square: P \times P \rightarrow P ;\left(a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)\right) \mapsto a \square b:=\left(a_{1}, b_{2}\right)$, and the diagonal $E:=\{(x, x) \mid x \in \mathcal{E}\}$.

For $a \in P$ let $[a]_{1}:=a \square P$ and $[a]_{2}:=P \square a$.
If $\sigma \in S y m E$ is a permutation of E then the subset $\kappa(\sigma):=\{x \square \sigma(x) \mid x \in E\}$ of P is a chain of the net. Hence the diagonal E is a chain and $E=\kappa(i d)$. For $\Sigma \subseteq \operatorname{Sym} E$ let $\kappa(\Sigma):=\{\kappa(\sigma) \mid \sigma \in \Sigma\}$ and $\kappa(E, \Sigma):=\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \kappa(\Sigma)\right) . \kappa(E, \Sigma)$ is a chain structure and a maximal chain structure if $\Sigma=$ SymE.

With a maximal chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{C}\right)$ there are connected the following sets of maps:

$$
\begin{aligned}
& \Gamma^{+}:=\operatorname{Aut}(P, \square):=\{\sigma \in \operatorname{Sym} P \mid \forall x, y \in P: \sigma(x \square y)=\sigma(x) \square \sigma(y)\} \\
&=\operatorname{Aut}\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}\right) . \\
& \Gamma^{-}:=\{\sigma \in \operatorname{SymP} \mid \forall x, y \in P: \sigma(x \square y)=\sigma(y) \square \sigma(x)\}
\end{aligned}
$$

(the set of antiisomorphism).

$$
\begin{aligned}
\Gamma & :=\Gamma^{+} \cup \Gamma^{-}=\operatorname{Aut}\left(P, \mathfrak{G}_{1} \cup \mathfrak{G}_{2}\right) . \\
\operatorname{Aut}(P, \mathfrak{C}) & :=\{\sigma \in \operatorname{SymP} \mid \forall C \in \mathfrak{C}: \sigma(C) \in \mathfrak{C}\} . \\
\Gamma_{i} & :=\left\{\sigma \in \Gamma^{+} \mid \forall x \in P:[\sigma(x)]_{i}=[x]_{i}\right\}, \quad \text { for } \quad i=1 \quad \text { or } \quad i=2
\end{aligned}
$$

(the elements of Γ_{i} are called i-maps).

If $p \in P$ and $C \in \mathfrak{C}$, let $p C:=[p]_{1} \cap C$ and $C p:=[p]_{2} \cap C$. For any $A, B \in \mathfrak{C}$ we have a map $\widetilde{A B}: P \rightarrow P ; \widetilde{A B}: x \mapsto(B x) \square(x A)$. We denote $\widetilde{A}:=\widetilde{A A}$. Moreover we have:

Theorem 1.1. Let $A, B, C \in \mathfrak{C}$ then:

1. $\widetilde{A B} \in \operatorname{SymP}$ with $\widetilde{A B}(A)=B, \widetilde{A B}(B)=A$ and $\widetilde{A B}^{-1}=\widetilde{B A}$.
2. The map $\Pi_{E}: \mathfrak{C} \rightarrow$ SymE $; C \mapsto \widetilde{C E} \circ \widetilde{C E}_{\mid E}$ is a bijection (hence the cardinality of \mathfrak{C} and of SymE are equal).
3. $\kappa_{E}: \operatorname{SymE} \rightarrow \mathfrak{C} ; \sigma \mapsto\{x \square \sigma(x) \mid x \in E\}$ is the inverse bijection of Π_{E} (cf. [1, Sec.4]).
4. $\widetilde{A B}(C) \in \mathfrak{C}$, i.e. $\widetilde{A B}$ induces a permutation $\widetilde{A B}_{\mathfrak{C}}$ of Sym \mathfrak{C}.
5. " $\widetilde{A B}$ is involutory $\Leftrightarrow A=B$ ".
6. Fix $\widetilde{A B}=A \cap B$ in particular Fix $\widetilde{A}=A$.

1.2. Notations concerning groups

Fixing an element $E \in \mathfrak{C}$ we can define by 1.1.(4) on \mathfrak{C} a binary operation:

$$
\cdot: \mathfrak{C} \times \mathfrak{C} \rightarrow \mathfrak{C} ;(A, B) \mapsto \widetilde{A B}(E)
$$

and for $(\mathfrak{C}, \cdot):=(\mathfrak{C}, \cdot ; E)$ we have:
Theorem 1.2. $(\mathfrak{C}, \cdot):=(\mathfrak{C}, \cdot ; E)$ is a group where E is the neutral element such that:

1. Π_{E} is an isomorphism from (\mathfrak{C}, \cdot) onto the symmetric group SymE and κ_{E} is the inverse isomorphism.
2. The map $\widetilde{A B}_{\mathfrak{C}}$ defined in 1.1.(4) has the representation (cf. [9, (2.8)]):

$$
\widetilde{A B}_{\mathfrak{C}}: \mathfrak{C} \rightarrow \mathfrak{C} ; C \mapsto A \cdot C^{-1} \cdot B
$$

3. $\widetilde{A B} \circ \widetilde{C D} \circ \widetilde{F G}=\left(A D^{-1} \widetilde{F)(G C} C^{-1} B\right) .(c f .[9,(2.10 .2)])$
4. $\widetilde{A} \circ \widetilde{B} \circ \widetilde{A}=A \cdot \widetilde{B^{-1}} \cdot A=\widetilde{\widetilde{A}(B)} .(c f .[9,(2.10 .4)])$.
5. $\widetilde{E}(A)=A^{-1}$.
6. If the order of $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{C}\right)$ is greater than 2 then the representation " $\widetilde{A B} \mapsto$ $\widetilde{A B}_{\mathbb{C}} "$ is faithful. More exactly:
(i) If $\widetilde{A B}(X)=\widetilde{C D}(X)$ for all $X \in \mathfrak{C}$, then $A=C$ and $B=D$.
(ii) If $\widetilde{A B} \circ \widetilde{E}(X)=\widetilde{C D} \circ \widetilde{E}(X)$ for all $X \in \mathfrak{C}$, then $A=C$ and $B=D$.
(iii) Any automorphism and any anti-automorphism induce different bijections of the set of chains.
Proof. (6) (i) $\widetilde{A B}(X)=\widetilde{C D}(X) \Leftrightarrow A \cdot X^{-1} \cdot B=C \cdot X^{-1} \cdot D \Leftrightarrow C^{-1} \cdot A \cdot X^{-1}$. $B \cdot D^{-1}=X^{-1}$, hence it is enough to prove:

$$
\left(\forall X \in \mathfrak{C}: \widetilde{A B}(X)=X^{-1}\right) \Rightarrow A=B=E
$$

From $\widetilde{A B}(E)=E$ we have $B=A^{-1}$. If $\widetilde{A A^{-1}}(X)=X^{-1}$, then $A \cdot X^{-1}=$ $X^{-1} \cdot A$, hence $A \in \mathfrak{Z}\left(X^{-1}\right)$ where $\mathfrak{Z}\left(X^{-1}\right)$ is a centralizer of X^{-1}. Thus $A \in \mathfrak{Z}(\mathfrak{C})$.

For $|E|>2$ the center of SymE is trivial and so the center of (\mathfrak{C}, \cdot) since these groups are isomorphic by (1).
(iii)

$$
\widetilde{A B} \circ \widetilde{E}(X)=\widetilde{C D}(X) \Leftrightarrow \widetilde{D C} \circ \widetilde{A B} \circ \widetilde{E}(X)=X \Leftrightarrow\left(D \cdot B^{-1)\left(A^{-1}\right.} \cdot C\right)(X)=X
$$

thus it is enough to proof:

$$
\forall A, B \in \mathfrak{C}: \exists X \in \mathfrak{C}: \widetilde{A B}(X) \neq X
$$

From $\widetilde{A B}(E)=E$ and $\widetilde{A B}(B)=B$ it follows that $B=A^{-1}=A$, thus $\widetilde{A B}=\widetilde{A}$ and A is an involution in (\mathfrak{C}, \cdot).

If we fix besides E a further chain $E^{\prime} \in \mathfrak{C}$ then there are chains $A, B \in \mathfrak{C}$ such that $E^{\prime}=\widetilde{A B}(E)=A \cdot B$ and with E^{\prime} we define on \mathfrak{C} the further binary operation $(\mathfrak{C},):.=\left(\mathfrak{C}, \cdot ; E^{\prime}\right)$ hence $X \cdot Y:=\widetilde{X Y}\left(E^{\prime}\right)$. Then:

Theorem 1.3.

1. $\widetilde{A B}$ induces an anti-isomorphism and $\widetilde{A B} \circ \widetilde{E}$ an isomorphism from (\mathfrak{C}, \cdot, E) onto $\left(\mathfrak{C}, \cdot E^{\prime}\right)$.
2. $\widetilde{A B}$ induces an anti-automorphism and $\widetilde{A B} \circ \widetilde{E}$ an automorphism on (\mathfrak{C}, \cdot, E) if and only if $B=A^{-1}$. Hence if $B=A^{-1}$ then $\widetilde{A B} \circ \widetilde{E}$ is the inner automorphism $X \mapsto A \cdot X \cdot A^{-1}$.
3. If the order of the chain structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{C}\right)$ is not 6 then each automorphism of (\mathfrak{C}, \cdot, E) is an inner automorphism.
Proof. (1) By 1.2.(2), $X \cdot Y=\widetilde{X Y}\left(E^{\prime}\right)=\widetilde{X Y}(A \cdot B)=X \cdot B^{-1} \cdot A^{-1} \cdot Y$ and so $\widetilde{A B}(X \cdot Y)=A \cdot Y^{-1} \cdot X^{-1} \cdot B=\left(A \cdot Y^{-1} \cdot B\right) \cdot\left(A \cdot X^{-1} \cdot B\right)=\widetilde{A B}(Y) \cdot \widetilde{A B}(X)$, i.e. $\widetilde{A B}$ is an anti-isomorphism from (\mathfrak{C}, \cdot, E) onto $\left(\mathfrak{C}, \cdot, E^{\prime}\right)$. By 1.3.(1), \widetilde{E} is an antiautomorphism of (\mathfrak{C}, \cdot, E) hence $\widetilde{A B} \circ \widetilde{E}$ is an isomorphism from (\mathfrak{C}, \cdot, E) onto $\left(\mathfrak{C}, ., E^{\prime}\right)$.
(3) By 1.2.(1), the group (\mathfrak{C}, \cdot, E) is isomorphic to the symmetric group SymE and any automorphism of SymE is an inner automorphism if $|E| \neq 6$ (cf. e.g. [3, p. 175, Satz 5.5]).

For a group in particular for our group $(\mathfrak{C}, \cdot):=(\mathfrak{C}, \cdot ; E)$ we will use the following notations:

$$
\iota: \mathfrak{C} \rightarrow \mathfrak{C} ; X \mapsto X^{-1}
$$

For $C \in \mathfrak{C}$ let be
$" C_{l}: \mathfrak{C} \rightarrow \mathfrak{C} ; X \mapsto C \cdot X "$ the left translation,
$" C_{r}: \mathfrak{C} \rightarrow \mathfrak{C} ; X \mapsto X \cdot C$ " the right translation and
$" i_{C}: \mathfrak{C} \rightarrow \mathfrak{C} ; X \mapsto C \cdot X \cdot C^{-1}$ " the inner automorphism of (\mathfrak{C}, \cdot)
and if $\mathfrak{K} \subseteq \mathfrak{C}$ is a subset, we set $\mathfrak{K}_{l}:=\left\{K_{l} \mid K \in \mathfrak{K}\right\}, \mathfrak{K}_{r}:=\left\{K_{r} \mid K \in \mathfrak{K}\right\}$, $i_{\mathfrak{K}}:=\left\{i_{K} \mid K \in \mathfrak{K}\right\}, \widetilde{\mathfrak{K}}:=\{\widetilde{K} \mid K \in \mathfrak{K}\}$ and denote by $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}):=\{C \in \mathfrak{C} \mid$ $\left.C \cdot \mathfrak{K} \cdot C^{-1}=\mathfrak{K}\right\}$ the normalizer of \mathfrak{K} in \mathfrak{C}.

If $\mathfrak{A}, \mathfrak{B} \leq$ Sym \mathfrak{C} are two subgroups then we denote by $\mathfrak{A} \rtimes \mathfrak{B}$ the semidirect product, i.e. $\mathfrak{A} \cap \mathfrak{B}=\{i d\}$ and $\mathfrak{B} \subseteq \mathfrak{N}_{\mathfrak{C}}(\mathfrak{A})$ and by $\mathfrak{A} \oplus \mathfrak{B}$ the direct product, i.e. $\mathfrak{A} \rtimes \mathfrak{B}$ and $\mathfrak{B} \rtimes \mathfrak{A}$. We denote $\widehat{\mathfrak{C}}:=\left\langle\mathfrak{C}_{l}, \mathfrak{C}_{r}, \iota\right\rangle=\left(\mathfrak{C}_{l} \circ \mathfrak{C}_{r}\right) \rtimes\{i d, \iota\}$ the subgroup of Syme.

For $A, B \in \mathfrak{C}$ the map $\widetilde{A B}_{\mathfrak{C}}$ can be written in the form:

$$
\widetilde{A B}_{\mathfrak{C}}=(A \cdot B)_{r} \circ i_{A} \circ \iota=(A \cdot B)_{l} \circ i_{B^{-1}} \circ \iota .
$$

Now we can state for a maximal chain structures $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{C}\right)$ the following theorem $($ cf. $[9,(2.4),(2.11)])$ where $(\mathfrak{C}, \cdot):=(\mathfrak{C}, \cdot ; E)$:
Theorem 1.4. If $|E|>2$ then the map

$$
\psi: \Gamma \rightarrow \widehat{\mathfrak{C}} ; \widetilde{A B} \circ \widetilde{E} \mapsto A_{l} \circ B_{r}, \widetilde{A B} \mapsto A_{l} \circ B_{r} \circ \iota
$$

is an isomorphism and:

1. For $A, B, C \in \mathfrak{C}$ we have: $C_{l}=\psi(\widetilde{C E} \circ \widetilde{E}), C_{r}=\psi(\widetilde{E C} \circ \widetilde{E}), A \cdot B=A_{l}(B)=$ $B_{r}(A),(A \cdot B)_{l}=A_{l} \circ B_{l},(A \cdot B)_{r}=B_{r} \circ A_{r}, A_{l} \circ B_{r}=B_{r} \circ A_{l}=\psi(\widetilde{A B} \circ \widetilde{E})$, and $\Pi_{E}(C)=\psi^{-1}\left(C_{l} \circ C_{r}^{-1}\right)_{\mid E}$.
2. $\left(\mathfrak{C}_{l}, \circ\right)$ and $\left(\mathfrak{C}_{r}, \circ\right)$ are subgroups of Sym \mathfrak{C} where $\left(\mathfrak{C}_{l}, \circ\right)$ is isomorphic and $\left(\mathfrak{C}_{r}, \circ\right)$ antiisomorphic to (\mathfrak{C}, \cdot) and $\mathfrak{C}_{l} \circ \mathfrak{C}_{r}=\mathfrak{C}_{l} \oplus \mathfrak{C}_{r}$ is the direct product.
3. $\Gamma=\operatorname{Aut}(P, \mathfrak{C})=\Gamma^{-} \dot{\cup} \Gamma^{+}$and $\iota=\psi(\widetilde{E})$.
4. $\Gamma^{-}=\{\widetilde{A B} \mid A, B \in \mathfrak{C}\}, \psi\left(\Gamma^{-}\right)=\mathfrak{C}_{r} \circ i_{\mathfrak{C}} \circ \iota=\mathfrak{C}_{l} \circ i_{\mathfrak{C}} \circ \iota, \Gamma^{+}=\Gamma^{-} \circ \widetilde{E}$, $\psi\left(\Gamma^{+}\right)=\mathfrak{C}_{l} \rtimes i_{\mathbb{C}}$.
5. $\Gamma_{1}=\{\widetilde{A E} \circ \widetilde{E} \mid A \in \mathfrak{C}\}, \Gamma_{2}=\{\widetilde{E A} \circ \widetilde{E} \mid A \in \mathfrak{C}\}, \psi\left(\Gamma_{1}\right)=\mathfrak{C}_{l}, \psi\left(\Gamma_{2}\right)=\mathfrak{C}_{r}$ $([9,(2.12 .3)])$ and $\Gamma^{+}=\operatorname{Aut}(P, \square)=\Gamma_{1} \oplus \Gamma_{2}(c f .[9,(1.2 .5)])$.
6. $\Gamma_{E}^{-}:=\left\{\gamma \in \Gamma^{-} \mid \gamma(E)=E\right\}=\left\{\widetilde{C C^{-1}} \mid C \in \mathfrak{C}\right\}, \psi\left(\Gamma_{E}^{-}\right)=i_{\mathfrak{C}} \circ \iota$, $\Gamma_{E}^{+}:=\left\{\gamma \in \Gamma^{+} \mid \gamma(E)=E\right\}=\left\{\widetilde{C C^{-1}} \circ \widetilde{E} \mid C \in \mathfrak{C}\right\}, \psi\left(\Gamma_{E}^{+}\right)=i_{\mathfrak{C}}$.

1.3. Substructures

If $\emptyset \neq \mathfrak{K} \subseteq \mathfrak{C}$ then $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is called a substructure of $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{C}\right)$. Moreover following [1] sec. 6 , we call \mathfrak{K} symmetric if " $\forall A, B \in \mathfrak{K}: \widetilde{A}(B) \in \mathfrak{K}$ " and double symmetric if " $\forall A, B, C \in \mathfrak{K}: \widetilde{A B}(C) \in \mathfrak{K}$ " (cf. [9, (1.4)]). Clearly any double symmetric chain structure is symmetric.

For $E \in \mathfrak{C}$ the permutation set $\Pi_{E}(\mathfrak{K})$ of SymE shall be called the germ of the chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ in E. On the other hand if $\Sigma \subseteq$ Sym E then $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \kappa_{E}(\Sigma)\right)$ is a chain structure - called chain derivation. If $E \in \mathfrak{K}$ we call the subgroup $\left\langle\Pi_{E}(\mathfrak{K})\right\rangle$ of SymE generated by the germ $\Pi_{E}(\mathfrak{K})$ the von STAUDT group of the chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ (cf. [7, p. 60]). If $F \in \mathfrak{K}$ is an other chain then the groups $\left\langle\Pi_{E}(\mathfrak{K})\right\rangle$ and $\left\langle\Pi_{F}(\mathfrak{K})\right\rangle$ are isomorphic but not necessarly the germs $\Pi_{E}(\mathfrak{K})$ and $\Pi_{F}(\mathfrak{K})$. We note:

Theorem 1.5. Let $\emptyset \neq \mathfrak{K} \subseteq \mathfrak{C}$ then:

1. \mathfrak{K} is double symmetric \Leftrightarrow For $K \in \mathfrak{K}: \mathfrak{K} \cdot K^{-1} \leq(\mathfrak{C}, \cdot)$, i.e. \mathfrak{K} is the coset of a subgroup of (\mathfrak{C}, \cdot).
2. If $E \in \mathfrak{K}$ then: \mathfrak{K} is double symmetric $\Leftrightarrow \mathfrak{K} \leq(\mathfrak{C}, \cdot)$.

For $A, B \in \mathfrak{K}$ and $i \in\{1,2\}$ we consider the i-perspectivities

$$
[A \xrightarrow{i} B]: A \rightarrow B ; a \mapsto[a]_{i} \cap B \quad(\text { cf. }[9,(1.4 .3)])
$$

and call a map π which can be decomposed into a product of i-perspectivities a projectivity of $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$. For $E \in \mathfrak{K}$ the set of all projectivities $\pi: E \rightarrow E$ mapping E onto E forms a group which coincides with the von STAUDT group $\left\langle\Pi_{E}(\mathfrak{K})\right\rangle$ of the chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ (cf. [7, p. 60]). Furthermore we have:

Theorem 1.6. $\kappa_{A}\left(\left\langle\Pi_{A}(\mathfrak{K})\right\rangle\right)=\kappa_{B}\left(\left\langle\Pi_{B}(\mathfrak{K})\right\rangle\right)$, i.e. the chain derivations of the von Staudt groups belonging to the chains A and B result in the same chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \overline{\mathfrak{K}}\right)$ with $\overline{\mathfrak{K}}=\kappa_{A}\left(\left\langle\Pi_{A}(\mathfrak{K})\right\rangle\right)=\kappa_{B}\left(\left\langle\Pi_{B}(\mathfrak{K})\right\rangle\right)$ having the following properties:
(1) $\forall K, L, M \in \overline{\mathfrak{K}}: \widetilde{K L}(M) \in \overline{\mathfrak{K}}$. (I.e. $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \overline{\mathfrak{K}}\right)$ is the smallest double symmetric chain structure with $\mathfrak{K} \subseteq \overline{\mathfrak{K}})$.
(2) If $E \in \overline{\mathfrak{K}}$ and $(\mathfrak{C}, \cdot):=(\mathfrak{C}, \cdot ; E)$ then $\overline{\mathfrak{K}}$ is a subgroup of (\mathfrak{C}, \cdot) and $\overline{\mathfrak{K}}$ is generated by \mathfrak{K}.

Definition 1.7. The chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \overline{\mathfrak{K}}\right)$ formed according to 1.6 . is called the group envelope or the double symmetric envelope of the chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$.

Theorem 1.8. Let $\mathfrak{K} \subseteq \mathfrak{C}$ then:
(1) $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})\right)$ is a double symmetric chain structure,
(2) If \mathfrak{K} is double symmetric and $E \in \mathfrak{K}$ then $\mathfrak{K} \unlhd \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$ hence $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}\right.$, $\left.\mathfrak{K}\right)$ is a substructure of $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})\right)$ and $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})\right)$ is called the normal envelope .

1.4. Sharply n transitive permutation sets and their chain structures

We recall, if $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}\right)$ is a 2-net then a subset $A \subseteq P$ is called joinable if $\forall X \in$ $\mathfrak{G}_{1} \cup \mathfrak{G}_{2}:|X \cap A| \leq 1$ and for $n \in \mathbf{N}$ we set $P^{(n)}:=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in P^{n} \mid\right.$ $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is joinable set of pairwise different points $\}$.
Definition 1.9. A chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is called a n-structure if the axiom: (n). $\forall\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in P^{(n)} \exists_{1} K \in \mathfrak{K}: p_{1}, p_{2}, \ldots, p_{n} \in K$.
is satisfied. Then for $n=1, n=2$ and $n=3\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is called a web, a 2 -struture and a hyperbola structure respectively.

A Minkowski planes is a hyperbola structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{M}\right)$ satisfying the touching axiom:
(T) $\forall M \in \mathfrak{M}, \forall m \in M, \forall p \in P \backslash\left(M \cup[m]_{1} \cup[m]_{2}\right): \exists_{1} N \in \mathfrak{M}: p \in N$ and $N \cap M=\{m\}$.

Theorem 1.10. Let $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}\right.$, $\left.\mathfrak{K}\right)$ be a chain structure, let $E \in \mathfrak{K}$ be fixed and let $\Sigma:=\Pi_{E}(\mathfrak{K})$ be its germ in E then:

1. (E, Σ) is a sharply n transitive permutation set $\Leftrightarrow\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is a n structure.
2. (E, Σ) is a permutation group $\Leftrightarrow\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is double symmetric.
3. (E, Σ) is a sharply n transitive permutation group $\Leftrightarrow\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is a double symmetric n-structure.
1.5. The symmetric stabilizer of a chain structure

Definition 1.11. For any $\mathfrak{K} \subseteq \mathfrak{C}$ the set $\mathfrak{K}^{s}:=\{C \in \mathfrak{C} \mid \widetilde{C}(\mathfrak{K})=\mathfrak{K}\}$ is called symmetric stabilizer of \mathfrak{K} and the chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}^{s}\right)$ is called the symmetric stabilizer of $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$.
Theorem 1.12. For $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}^{s}\right)$ we have:

1. $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}^{s}\right)$ is a symmetric chain structure.
2. If $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is symmetric then $\mathfrak{K} \subseteq \mathfrak{K}^{s}$.
3. $\mathfrak{K}^{s} \subseteq\left(\mathfrak{K}^{s}\right)^{s}$.
4. If $E \in \mathfrak{K}$ and $(\mathfrak{C}, \cdot ; E)$ is turned in a group then $\mathfrak{K}^{s} \subseteq\left\{A \in \mathfrak{C} \mid A^{2} \in \mathfrak{K}\right\}$.

Proof. (1) Let $A, B \in \mathfrak{K}^{s}$ then $\widetilde{\widetilde{A}(B)}=\widetilde{A} \circ \widetilde{B} \circ \widetilde{A}$ and so $\widetilde{\widetilde{A}(B)(\mathfrak{K})}=\widetilde{A} \circ \widetilde{B} \circ \widetilde{A}(\mathfrak{K})=$ $\widetilde{A} \circ \widetilde{B}(\mathfrak{K})=\widetilde{A}(\mathfrak{K})=\mathfrak{K}$, i.e. $\widetilde{A}(B) \in \mathfrak{K}^{s}$. (3) By (1) and (2), $\mathfrak{K}^{s} \subseteq\left(\mathfrak{K}^{s}\right)^{s}$. (4) follows from $\widetilde{A}(E) \in \mathfrak{K}$.

2. Automorphisms of a chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$

In this section we will consider for an arbitrary chain structure $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ the following automorphism groups:

$$
\begin{aligned}
\Gamma(\mathfrak{K}) & :=\operatorname{Aut}\left(P, \mathfrak{G}_{1} \cup \mathfrak{G}_{2}, \mathfrak{K}\right)=\{\gamma \in \Gamma \mid \gamma(\mathfrak{K})=\mathfrak{K}\}, \\
\Gamma^{+}(\mathfrak{K}) & :=\operatorname{Aut}\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)=\left\{\gamma \in \Gamma^{+} \mid \gamma(\mathfrak{K})=\mathfrak{K}\right\}, \\
\Gamma^{-}(\mathfrak{K}) & :=\operatorname{Aut}\left(P, \mathfrak{G}_{1} \cup \mathfrak{G}_{2}, \mathfrak{K}\right)^{-}=\left\{\gamma \in \Gamma^{-} \mid \gamma(\mathfrak{K})=\mathfrak{K}\right\}, \\
\Gamma_{i}(\mathfrak{K}) & :=\operatorname{Aut}\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)_{i}=\left\{\gamma \in \Gamma_{i} \mid \gamma(\mathfrak{K})=\mathfrak{K}\right\} \quad \text { for } \quad i=1,2 . \\
\Gamma_{E}^{+}(\mathfrak{K}) & :=\left\{\gamma \in \Gamma^{+}(\mathfrak{K}) \mid \gamma(E)=E\right\}, \\
\Gamma_{E}^{-}(\mathfrak{K}) & :=\left\{\gamma \in \Gamma^{-}(\mathfrak{K}) \mid \gamma(E)=E\right\}, \\
\Gamma_{E}(\mathfrak{K}) & :=\{\gamma \in \Gamma(\mathfrak{K}) \mid \gamma(E)=E\}=\Gamma_{E}^{+}(\mathfrak{K}) \dot{\cup} \Gamma_{E}^{-}(\mathfrak{K}) .
\end{aligned}
$$

For this purpose let $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{C}\right)$ be the corresponding maximal chain structure, let $E \in \mathfrak{K}$ be fixed and let $(\mathfrak{C}, \cdot):=(\mathfrak{C}, \cdot, E)$ be the group defined according to 1.2.(2) by $A \cdot B:=\widetilde{A B}(E)$. To characterize these automorphism groups we need the additional notation: $\cdot \mathfrak{K}:=\{C \in \mathfrak{C} \mid C \cdot \mathfrak{K}=\mathfrak{K}\}, \mathfrak{K} \cdot:=\{C \in \mathfrak{C} \mid \mathfrak{K} \cdot C=\mathfrak{K}\}$.
Theorem 2.1. $\Gamma(\mathfrak{K}) \leq \Gamma, \Gamma^{+}(\mathfrak{K}) \leq \Gamma^{+}, \Gamma^{-}(\mathfrak{K}) \subseteq \Gamma^{-}, \Gamma_{i}(\mathfrak{K}) \leq \Gamma_{i}$ for $i=1,2$. Moreover:

1. $\Gamma^{-}(\mathfrak{K})=\left\{\widetilde{A B} \mid A, B \in \mathfrak{C}: A \cdot \mathfrak{K}^{-1} \cdot B=\mathfrak{K}\right\}$
2. $\Gamma^{+}(\mathfrak{K})=\{\widetilde{A B} \circ \widetilde{E} \mid A, B \in \mathfrak{C}: A \cdot \mathfrak{K} \cdot B=\mathfrak{K}\} \supseteq \Gamma_{1}(\mathfrak{K}) \oplus \Gamma_{2}(\mathfrak{K})$,
3. $\Gamma_{1}(\mathfrak{K})=\{\widetilde{A E} \circ \widetilde{E} \mid A \in \cdot \mathfrak{K}\} \unlhd \Gamma^{+}(\mathfrak{K})$,
4. $\Gamma_{2}(\mathfrak{K})=\{\widetilde{E A} \circ \widetilde{E} \mid A \in \mathfrak{K}\} \unlhd \Gamma^{+}(\mathfrak{K})$,
5. If $\widetilde{E}(\mathfrak{K})=\mathfrak{K}$ then $\mathfrak{K}^{-1}=\mathfrak{K}, \Gamma^{-}(\mathfrak{K})=\{\widetilde{A B} \mid A \cdot \mathfrak{K} \cdot B=\mathfrak{K}\} \supseteq\left(\Gamma_{1}(\mathfrak{K}) \oplus\right.$ $\left.\Gamma_{2}(\mathfrak{K})\right) \circ \widetilde{E}$,
6. $\Gamma_{E}^{+}(\mathfrak{K})=\left\{\widetilde{A A^{-1}} \circ \widetilde{E} \mid A \in \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})\right\}$,
7. $\Gamma_{E}^{-}(\mathfrak{K})=\left\{\widetilde{A A^{-1}} \mid A \in \mathfrak{N}_{\mathbb{C}}(\mathfrak{K})\right\}$,
8. $\Gamma_{1}(\mathfrak{K}) \rtimes \Gamma_{E}^{+}(\mathfrak{K}) \leq \Gamma^{+}(\mathfrak{K})$.
9. If there is a subgroup $\Xi \leq \Gamma(\mathfrak{K})$ acting transitively on \mathfrak{K} then $\Gamma(\mathfrak{K})=\Xi \circ$ $\Gamma_{E}(\mathfrak{K})$.
10. \mathfrak{K} is symmetric $\Leftrightarrow \widetilde{\mathfrak{K}}:=\{\widetilde{K} \mid K \in \mathfrak{K}\} \subseteq \Gamma^{-}(\mathfrak{K}) \Leftrightarrow$ $\forall K \in \mathfrak{K}: K \cdot \mathfrak{K} \cdot K=\mathfrak{K}$ and $\mathfrak{K}^{-1}=\mathfrak{K} \Leftrightarrow \forall \widetilde{A}, \widetilde{B} \in \widetilde{\mathfrak{K}}: \widetilde{A} \circ \widetilde{B} \circ \widetilde{A} \in \widetilde{\mathfrak{K}}$.
11. \mathfrak{K} is double symmetric $\Leftrightarrow \widetilde{\widetilde{K}}:=\{\widetilde{A B} \mid A, B \in \mathfrak{K}\} \subseteq \Gamma^{-}(\mathfrak{K}) \Leftrightarrow \mathfrak{K} \leq(\mathfrak{C}, \cdot)$.

Proof. (1), (2), and the first parts of (3) and (4) follow directly from 1.2.(2), 1.4.(4) and 1.4.(5).

The second part of (3) Let $\gamma:=\widetilde{A B} \circ \widetilde{E} \in \Gamma^{+}(\mathfrak{K})$ (hence $\left.A \cdot \mathfrak{K} \cdot B=\mathfrak{K}\right)$ and $\kappa:=\widetilde{C E} \circ \widetilde{E} \in \Gamma_{1}(\mathfrak{K})$ (hence $\left.C \cdot \mathfrak{K}=\mathfrak{K}\right)$ then $\gamma^{-1} \circ \kappa \circ \gamma=\widetilde{E} \circ \widetilde{B A} \circ \widetilde{C E} \circ \widetilde{E} \circ \widetilde{A B} \circ \widetilde{E}=$ $\left(\widetilde{A^{-1} C A}\right) E \circ \widetilde{E}$. Hence $\gamma^{-1} \circ \kappa \circ \gamma \in \Gamma_{1}(\mathfrak{K}) \Longleftrightarrow A^{-1} C A \cdot \mathfrak{K}=\mathfrak{K}$.

We have $A^{-1} C A \cdot \mathfrak{K}=A^{-1} C \cdot \mathfrak{K} \cdot B^{-1}=A^{-1} \cdot \mathfrak{K} \cdot B^{-1}=\mathfrak{K}$.
(5) Let $K \in \mathfrak{K}$ then by 1.2.(2), $\widetilde{E}(K)=E \cdot K^{-1} \cdot E=K^{-1}$ hence $\mathfrak{K}^{-1}=\mathfrak{K}$ and $\overline{A B}\left(K^{-1}\right)=A \cdot K \cdot B$. Thus (5) follows from (1).
(6), (7) follow directly from 1.4. (6). (8) If $\gamma:=\widetilde{A B} \circ \widetilde{E} \in \Gamma^{+}(\mathfrak{K})$ (hence $A \cdot \mathfrak{K} \cdot B=\mathfrak{K})$ then $\widetilde{A B} \circ \widetilde{E}=\left((\widetilde{A B) E} \circ \widetilde{E}) \circ\left(\widetilde{B^{-1} B} \circ \widetilde{E}\right)\right)$.
(10) If \mathfrak{K} is symmetric hence " $\forall A, B \in \mathfrak{K}: \widetilde{A}(B)=A \cdot B^{-1} \cdot A \in \mathfrak{K}$ " then by $E \in \mathfrak{K}, \widetilde{E}(\mathfrak{K})=\mathfrak{K}^{-1}=\mathfrak{K}$ and so (10) is a consequence of (1) and (5).
(11) Since by 1.2.(2), $\overline{A B}(C)=A \cdot C^{-1} \cdot B$ and since $E \in \mathfrak{K}$ we have:
\mathfrak{K} is double symmetric $\Leftrightarrow \forall A, B, C \in \mathfrak{K}: A \cdot B^{-1} \cdot C \in \mathfrak{K} \Rightarrow$
(for $C=E$) $\forall A, B \in \mathfrak{K}: A \cdot B^{-1} \in \mathfrak{K} \Leftrightarrow \mathfrak{K} \leq(\mathfrak{C}, \cdot, E) \Rightarrow$ $\forall A, B, C \in \mathfrak{K}: \widetilde{A B}(C)=A \cdot C^{-1} \cdot B \in \mathfrak{K}$.
Corollary 2.2. Let ψ be the isomorphism defined in Theorem 1.4, then:

1. $\psi\left(\Gamma_{1}(\mathfrak{K})\right)=\cdot \mathfrak{K}_{l}, \psi\left(\Gamma_{2}(\mathfrak{K})\right)=\mathfrak{K}_{r}$,
2. $\psi\left(\Gamma^{+}(\mathfrak{K})\right) \supseteq\left(\mathfrak{K}_{r}^{\cdot} \oplus \cdot \mathfrak{K}_{l}\right)$,
3. If $\widetilde{E}(\mathfrak{K})=\mathfrak{K}$ then $\psi\left(\Gamma^{-}(\mathfrak{K})\right) \supseteq\left(\mathfrak{K}_{r} \oplus \cdot \mathfrak{K}_{l}\right) \circ \iota$.

3. Automorphisms of double symmetric chain structures

In this section let $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ be a double symmetric chain structure and $\left(P, \mathfrak{G}_{1}\right.$, $\left.\mathfrak{G}_{2}, \mathfrak{C}\right)$ the corresponding maximal chain structure, let $E \in \mathfrak{K}$ be fixed and let $(\mathfrak{C}, \cdot):=(\mathfrak{C}, \cdot, E)$ be the group defined according to 1.2.

Theorem 3.1. Let \mathfrak{K} be double symmetric and $E \in \mathfrak{K}$, then:

1. $\Gamma_{1}(\mathfrak{K})=\{\widetilde{K E} \circ \widetilde{E} \mid K \in \mathfrak{K}\}$ and $\Gamma_{2}(\mathfrak{K})=\{\widetilde{E K} \circ \widetilde{E} \mid K \in \mathfrak{K}\}$ are subgroups of $\Gamma(\mathfrak{K})$ each acting transitively on \mathfrak{K},
2. $\Gamma^{-}(\mathfrak{K})=\left\{A\left(\widehat{A^{-1} \cdot K}\right) \mid A \in \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}), K \in \mathfrak{K}\right\}=\Gamma_{2}(\mathfrak{K}) \circ \Gamma_{E}^{-}(\mathfrak{K})=\Gamma_{E}^{-}(\mathfrak{K}) \circ \Gamma_{1}(\mathfrak{K})$,
3. $\Gamma^{+}(\mathfrak{K})=\left\{\widetilde{E K} \circ \widetilde{A A^{-1}} \mid A \in \mathfrak{N}_{\mathbb{C}}(\mathfrak{K}), K \in \mathfrak{K}\right\}=\Gamma_{2}(\mathfrak{K}) \rtimes \Gamma_{E}^{+}(\mathfrak{K})=\Gamma_{1}(\mathfrak{K}) \rtimes$ $\Gamma_{E}^{+}(\mathfrak{K})$,
4. $\Gamma(\mathfrak{K})=\left\langle\widetilde{\mathfrak{K}} \cup \Gamma_{E}^{+}(\mathfrak{K})\right\rangle=\Gamma_{2}(\mathfrak{K}) \rtimes \Gamma_{E}(\mathfrak{K})=\Gamma_{1}(\mathfrak{K}) \rtimes \Gamma_{E}(\mathfrak{K})$.

Proof. (1) follows from 2.1.(3) and 2.1.(4). (2) Let $A, B \in \mathfrak{C}$ with $A \cdot \mathfrak{K} \cdot B=\mathfrak{K}$ (cf. Theorem 2.1.(1), (2)). Then $A \cdot E \cdot B=A \cdot B=: K_{o} \in \mathfrak{K}$ hence $B=A^{-1} \cdot K_{o}$ and $A \cdot \mathfrak{K} \cdot A^{-1} \cdot K_{o}=\mathfrak{K}$. This shows $\widetilde{A B} \in \Gamma(\mathfrak{K}) \Leftrightarrow A$ is the normalizer of \mathfrak{K} and $A \cdot B \in \mathfrak{K}$. Thus $\Gamma(\mathfrak{K})^{-}=\left\{\left(\widetilde{A^{-1}} \cdot K\right) \mid A \in \mathfrak{C}: A \cdot \mathfrak{K} \cdot A^{-1}=\mathfrak{K}, K \in \mathfrak{K}\right\}$. Additionally we have $A\left(\widetilde{A^{-1} \cdot K}\right)=(\widetilde{E K} \circ \widetilde{E}) \circ \widetilde{A A^{-1}}$ by 1.2.(2). Therefore the rest of (2) follows from (1) and 2.1.(7). By 1.2.(5) and our assumptions, $\widetilde{E}(\mathfrak{K})=\mathfrak{K}^{-1}=$ \mathfrak{K} hence by 1.4.(4), $\Gamma^{+}(\mathfrak{K})=\Gamma^{-}(\mathfrak{K}) \circ \widetilde{E}$ and since (by 1.2.(3)), $\widehat{A\left(A^{-1} K\right)} \circ \widetilde{E}=$ $\widetilde{E K} \circ \widetilde{A A^{-1}},(3)$ follows from (2).
Corollary 3.2. Let \mathfrak{K} be double symmetric, $E \in \mathfrak{K}$ and let ψ be the isomorphism defined in Theorem 1.4, then $\cdot \mathfrak{K}=\mathfrak{K} \cdot \mathfrak{K}$ and:

1. $\psi\left(\underset{\sim}{\Gamma_{1}}(\mathfrak{K})\right)=\mathfrak{K}_{l}, \psi\left(\Gamma_{2}(\mathfrak{K})\right)=\mathfrak{K}_{r}$,
2. $\psi(\langle\widetilde{\mathfrak{K}}\rangle)=\mathfrak{K}_{l} \circ \mathfrak{K}_{r} \circ\{i d, \iota\}$,
3. $i_{\mathfrak{K}} \unlhd i_{\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})}=\psi\left(\Gamma_{E}^{+}(\mathfrak{K})\right)$,
4. $\psi\left(\bar{\Gamma}_{E}(\mathfrak{K})\right)=i_{\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})} \oplus\{i d, \iota\}$,
5. $\psi\left(\Gamma^{-}(\mathfrak{K})\right)=\mathfrak{K}_{r} \circ i_{\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})} \circ \iota$,
6. $\psi\left(\Gamma^{+}(\mathfrak{K})\right)=\mathfrak{K}_{r} \rtimes i_{\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})}=\mathfrak{K}_{l} \rtimes i_{\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})}$
7. $\psi(\Gamma(\mathfrak{K}))=\mathfrak{K}_{r} \rtimes\left(i_{\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})} \oplus\{\iota, i d\}\right)=\mathfrak{K}_{l} \rtimes\left(i_{\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})} \oplus\{\iota, i d\}\right)$.

Remark 3.3. We have: $\psi\left(\Gamma^{+}(\mathfrak{K})\right)=\mathfrak{K}_{r} \rtimes i_{\mathfrak{C}} \Leftrightarrow \mathfrak{K} \unlhd \mathfrak{C}$ and if $5 \leq\left|\mathfrak{G}_{1}\right|<\infty$ and $\mathfrak{K} \unlhd \mathfrak{C}$ then (\mathfrak{K}, \cdot) is isomorphic to the alternative group Alt \mathfrak{G}_{1}.

Remark 3.4. $\Gamma^{+}(\mathfrak{K})$ acts transitively on the set \mathfrak{K} and $\Gamma_{1}(\mathfrak{K})$ is a normal subgroup acting regularly on the set \mathfrak{K}.
Corollary 3.5. Let \mathfrak{D} be a subgroup of \mathfrak{C} with $\mathfrak{K} \cap \mathfrak{D}=\{E\}$. Then

$$
\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})=\mathfrak{K} \rtimes \mathfrak{D} \Leftrightarrow \Gamma(\mathfrak{K})=\langle\widetilde{\mathfrak{K}}\rangle \rtimes\left\{\widetilde{D D^{-1}} \circ \widetilde{E} \mid D \in \mathfrak{D}\right\}
$$

In this case $\psi\left(\Gamma^{+}(\mathfrak{K})\right)=\left(\mathfrak{K}_{r} \rtimes i_{\mathfrak{K}}\right) \rtimes i_{\mathfrak{D}}$ and $\psi(\Gamma(\mathfrak{K}))=\left(\mathfrak{K}_{r} \rtimes\left(i_{\mathfrak{K}} \oplus\{\iota, i d\}\right)\right) \rtimes i_{\mathfrak{D}}$.
Proof. " \Rightarrow " Let $C=K \cdot D$ with $K \in \mathfrak{K}$ and $D \in \mathfrak{D}$. By 1.2.(3) we have $\widetilde{C C^{-1}}=$ $\widetilde{K K^{-1}} \circ \widetilde{E} \circ \widetilde{D D^{-1}}=\widetilde{K K^{-1}} \circ \widetilde{D D^{-1}} \circ \widetilde{E}$ and so $\Gamma_{E}(\mathfrak{K})=\left\{\widetilde{K K^{-1}} \circ \widetilde{E} \mid K \in\right.$ $\mathfrak{K}\} \oplus\left\{\widetilde{D D^{-1}} \circ \widetilde{E} \mid D \in \mathfrak{D}\right\} \oplus\{i d, \widetilde{E}\}$ implying $\Gamma(\mathfrak{K})=\Gamma_{1}(\mathfrak{K}) \rtimes \Gamma_{E}(\mathfrak{K})=\{\widetilde{K E} \circ$ $\widetilde{E} \mid K \in \mathfrak{K}\} \rtimes\left(\left\{\widetilde{K K^{-1}} \circ \widetilde{E} \mid K \in \mathfrak{K}\right\} \oplus\left\{\widetilde{D D^{-1}} \circ \widetilde{E} \mid D \in \mathfrak{D}\right\} \oplus\{i d, \widetilde{E}\}\right)=$
$\left(\{\widetilde{\widetilde{K E}} \circ \widetilde{E} \mid K \in \mathfrak{K}\} \rtimes\left(\left\{\widetilde{K_{K}^{-1}} \circ \widetilde{E} \mid K \in \mathfrak{K}\right\} \oplus\{i d, \widetilde{E}\}\right) \rtimes\left\{\widetilde{D D^{-1}} \circ \widetilde{E} \mid D \in \mathfrak{D}\right\}\right)=$ $\langle\widetilde{\mathfrak{K}}\rangle \rtimes\left\{\widetilde{D D^{-1}} \circ \widetilde{E} \mid D \in \mathfrak{D}\right\}$.
$" \Leftarrow "$ If $M \in \mathfrak{N}_{\mathbb{C}}(\mathfrak{K})$ then by 2.1.(7), 3.1. and assumption, $\widetilde{M M^{-1}} \in \Gamma_{E}(\mathfrak{K}) \leq$ $\Gamma(\mathfrak{K})=\langle\widetilde{\mathfrak{K}}\rangle \rtimes\left\{\widetilde{D D^{-1}} \circ \widetilde{E} \mid D \in \mathfrak{D}\right\}$, i.e. $\exists_{1}(A, B, D) \in \mathfrak{K} \times \mathfrak{K} \times \mathfrak{D}$ such that $\widetilde{M M^{-1}}=\widetilde{A B} \circ \widetilde{D D^{-1}} \circ \widetilde{E}=\left(A D \widetilde{\left(D^{-1}\right.} B\right)$ by 1.2.(3) hence $M=A D=B^{-1} D$ and $B=A^{-1}$, and so $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}) \leq \mathfrak{K} \cdot \mathfrak{D}$. Now let $K \in \mathfrak{K}, D \in \mathfrak{D}$ and let $N:=$ $K \cdot D$ then $\widehat{K K^{-1}} \circ \widetilde{D D^{-1}} \circ \widetilde{E} \in \Gamma(\mathfrak{K})$ and $\widehat{K K^{-1}} \circ \widehat{D D^{-1}} \circ \widetilde{E}(E)=E$ hence $\widetilde{K K^{-1}} \circ \widetilde{D D^{-1}} \circ \widetilde{E}=\widetilde{N N^{-1}} \in \Gamma_{E}^{-}(\mathfrak{K})$ and so by 2.1.(7), $N:=K \cdot D \in \mathfrak{N}_{\mathbb{C}}(\mathfrak{K})$, i.e. $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})=\mathfrak{K} \cdot \mathfrak{D}$. Finally $\widetilde{D D^{-1}} \circ \widetilde{K K^{-1}} \circ\left(\widetilde{\left.D D^{-1}\right)^{-1}}=\left(D K D^{-1}\right) \widetilde{\left(D K^{-1}\right.} D^{-1}\right) \in\langle\widetilde{\tilde{\mathfrak{K}}}\rangle$ showing $D K D^{-1} \in \mathfrak{K}$, i.e. $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})=\mathfrak{K} \rtimes \mathfrak{D}$.

Examples. Automorphisms of double symmetric 1-,2- and 3-structures

In the following let $E \in \mathfrak{C}$ and $(\mathfrak{C}, \cdot):=(\mathfrak{C}, \cdot, E), \mathfrak{K} \leq(\mathfrak{C}, \cdot)$ and let $\mathbf{K}:=$ $\Pi_{E}(\mathfrak{K}), \mathbf{N}:=\Pi_{E}\left(\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})\right)$. Then by 1.1., $\mathbf{K} \unlhd \mathbf{N} \leq \operatorname{SymE}$ and \mathbf{N} is the normalizer of \mathbf{K} in SymE. Since an Automorphism of a permutation group (E, \mathbf{G}) is a permutation $\sigma \in$ SymE with $\sigma \mathbf{G} \sigma^{-1}=\mathbf{G}$ (cf. [11])we have:

$$
\mathbf{N}=A u t(E, \mathbf{K})
$$

If we set " $\nu: \operatorname{SymE} \rightarrow \operatorname{SymE} ; \sigma \mapsto \sigma^{-1}$ " then by Corollary $3.2, \Gamma^{+}(\mathfrak{K})$ is isomorphic to the group $\mathbf{K}^{\circ} \rtimes i_{\mathbf{N}}$ and $\Gamma(\mathfrak{K})$ to $\mathbf{K}^{\circ} \rtimes\left(i_{\mathbf{N}} \oplus\{i d, \nu\}\right)$ where $\mathbf{K}^{\circ}:=\left\{k^{\circ} \mid k \in \mathbf{K}\right\}$ and $k^{\circ}: \mathbf{K} \rightarrow \mathbf{K} ; x \mapsto k \circ x$. By Theorem 1.10.(2), we have:

Example. $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is a double symmetric web $\Longleftrightarrow\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is a web satisfying the Reidemeister Condition $\Longleftrightarrow(E, \mathbf{K})$ is a regular permutation group.

If $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is a double symmetric web, if $o \in E$ is fixed and if for $a \in E, a^{+} \in \mathbf{K}$ denotes the map uniquely determined by $a^{+}(o)=a$ then $(E,+)$ with $a+b:=a^{+}(b)$ is a group isomorphic to (\mathbf{K}, \circ) and to (\mathfrak{K}, \cdot). In this case we have $\mathbf{N}=\operatorname{Aut}(E, \mathbf{K})=\mathbf{K} \rtimes \operatorname{Aut}(E,+)$ and, by Corollary 3.5, $\Gamma^{+}(\mathfrak{K})$ is isomorphic to $\left(\mathbf{K}^{\circ} \rtimes i_{\mathbf{K}}\right) \rtimes i_{\operatorname{Aut(E,+)}}$ and $\Gamma(\mathfrak{K})$ is isomorphic to $\left(\mathbf{K}^{\circ} \rtimes\left(i_{\mathbf{K}} \oplus\{i d, \nu\}\right)\right) \rtimes i_{A u t(E,+)}$. Example. $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is a double symmetric 2 -structure $\Longleftrightarrow\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ is a 2 -structure satisfying the rectangle axiom $\Longleftrightarrow(E, \mathbf{K})$ is a sharply 2-transitive permutation group.

If (E, \mathbf{K}) is a sharply 2-transitive permutation group then the set E can be turned into a neardomain $(E,+, *)$ by (cf. [5] § 11):

Let $\mathbf{J}:=\left\{\sigma \in \mathbf{K} \mid \sigma^{2}=i d \neq \sigma\right\}$ be the set of all involutory permutations then \mathbf{J} acts semiregularly on E and all elements of \mathbf{J} are conjugate under \mathbf{K}. Therefore we can define:

$$
\operatorname{char}(\mathbf{K}):=2 \Longleftrightarrow \forall \sigma \in \mathbf{J}: \text { Fix } \sigma=\emptyset \quad \text { and } \quad \operatorname{char}(\mathbf{K}): \neq 2 \text { otherwise } .
$$

Now let $o, e \in E$ be two distinct fixed elements and let $\mathbf{K}_{o}:=\{\sigma \in \mathbf{K} \mid \sigma(o)=o\}$. If $\operatorname{char}(\mathbf{K}):=2$ let $\mathbf{A}=\mathbf{J} \cup\{i d\}$ and if $\operatorname{char}(\mathbf{K}): \neq 2$, let $\omega \in \mathbf{J}$ with $\omega(o)=o$ and $\mathbf{A}:=\mathbf{J} \circ \omega$. In both cases the permutation set \mathbf{A} acts regularly on the set E and
therefore if $a \in E$ then there is exactly one element $a^{+} \in \mathbf{A}$ such that $a^{+}(o)=a$. Since \mathbf{K}_{o} acts regularly on the set $E^{*}:=E \backslash\{o\}$, there is also exactly one element $a^{*} \in \mathbf{K}_{o}$ such that $a^{*}(e)=a$ if $a \neq o$, if $a=o$ we set $o^{*}:=0$ (the zero map). For $a+b:=a^{+}(b)$ and $a * b:=a^{*}(b),(E,+, *)$ becomes a neardomain.

In this case (\mathfrak{K}, \cdot) and so also (\mathbf{K}, \circ), is isomorphic to the group $T_{2}(E):=$ $\left\{\tau_{m, n} \mid m, n \in E, n \neq o\right\}$ where $\tau_{m, n}: x \mapsto m+n * x$. The group $T_{2}(E)$ can be represented as quasidirect product $T_{2}(E)=(E,+) \rtimes_{Q}\left(E^{*}, *\right)$ between the K-loop $(E .+)$ and the group $(E, *)$.

By [11, (1.6), p. 218], the automorphism group $\operatorname{Aut}\left(E, T_{2}(E)\right)$ of the sharply 2-transitive permutation group $\left(E, T_{2}(E)\right)$ is isomorphic to the semidirect product $T_{2}(E) \rtimes \operatorname{Aut}(E,+, *)$. Thus we have $\mathbf{N}=T_{2}(E) \rtimes \operatorname{Aut}(E,+, *)$ and, by Corollary $3.5, \Gamma^{+}(\mathfrak{K})$ is isomorphic to $\left(\mathbf{K}^{\circ} \rtimes i_{\mathbf{K}}\right) \rtimes i_{\operatorname{Aut(E,+,*)}}$ and $\Gamma(\mathfrak{K})$ is isomorphic to $\left(\mathbf{K}^{\circ} \rtimes\left(i_{\mathbf{K}} \oplus\{i d, \nu\}\right)\right) \rtimes i_{\text {Aut }(E,+, *)}$.

Example. Let $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ be a hyperbola structure satisfying the rectangle axiom. Then (E, \mathbf{K}) with $\mathbf{K}:=\Pi_{\mathbf{E}}(\mathfrak{K})$ is a subgroup of Sym E acting sharply 3-transitive on E. If one chooses an element $\infty \in E$ and puts $F:=E \backslash\{\infty\}$ then the stabilizer $\mathbf{K}_{\infty}:=\{\sigma \in \mathbf{K} \mid \sigma(\infty)=\infty\}$ of ∞ acts sharply 2-transitive on F and so - like in Ex $2-F$ can be turned in a neardomain $(F,+, *)$. There is exactly one involutory permutation $\varepsilon \in \mathbf{K}$ with $\varepsilon(o)=\infty$ and $\varepsilon(e)=e=: 1$ and the restriction of ε onto $F^{*}:=F \backslash\{o\}$ is an involutory automorphism of the group $\left(F^{*}, *\right)$ satisfying the functional equation

$$
\varepsilon(1-\varepsilon(x))=1-\varepsilon(1-x) \quad \text { for all } \quad x \in F \backslash\{0,1\} .
$$

Such a structure $(F,+, *, \varepsilon)$ is called a $K T$-field.
Now let T_{2} be the sharply 2 -transitive permutation group of the neardomain $(F,+, *)$ according to Example 2 where the maps $\tau \in T_{2}(F,+, *)$ are extended on E by $\tau(\infty)=\infty$ then $T_{2}=\mathbf{K}_{\infty}$ and $\mathbf{K}=T_{3}(F, \varepsilon):=T_{2} \cup\left(T_{2} \circ \varepsilon \circ T_{2}\right)(c f$. [12], [11, (3.1), p. 235]).

Conversely if $(F,+, *, \varepsilon)$ is a KT-field, if the set F is extended by an element ∞ to $E:=F \cup\{\infty\}$ and if additionally we put $\varepsilon(\infty)=0, \varepsilon(0)=\infty$ and $\tau(\infty)=\infty$ for $\tau \in T_{2}(F,+, *)$ then $\left(E, T_{3}(F, \varepsilon)\right)$ is a sharply 3 -transitive permutation group (cf. [11, (3.3), p. 236]).

Again, by [11, (3.4.(b)), p. 237]), $\operatorname{Aut}\left(E, T_{3}(F, \varepsilon)\right)=T_{3}(F, \varepsilon) \rtimes \operatorname{Aut}(F, \varepsilon)$. Thus we have $\mathbf{N}=T_{3}(F, \varepsilon) \rtimes \operatorname{Aut}(F, \varepsilon)$ and, by Corollary $3.5, \Gamma^{+}(\mathfrak{K})$ is isomorphic to $\left(\mathbf{K}^{\circ} \rtimes i_{\mathbf{K}}\right) \rtimes i_{\operatorname{Aut}(F, \varepsilon)}$ and $\Gamma(\mathfrak{K})$ is isomorphic to $\left(\mathbf{K}^{\circ} \rtimes\left(i_{\mathbf{K}} \oplus\{i d, \nu\}\right)\right) \rtimes i_{\operatorname{Aut}(F, \varepsilon)}$.

4. Automorphisms of symmetric chain structures

In this section let $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{K}\right)$ be a symmetric chain structure, let $\left(P, \mathfrak{G}_{1}, \mathfrak{G}_{2}, \mathfrak{C}\right)$ be the corresponding maximal chain structure, let $E \in \mathfrak{K}$ be fixed, let $(\mathfrak{C}, \cdot):=$ $(\mathfrak{C}, \cdot ; E)$ and let $\overline{\mathfrak{K}}:=\langle\mathfrak{K}\rangle$ be the subgroup of (\mathfrak{C}, \cdot) generated by \mathfrak{K}.

Proposition 4.1. For each $K \in \mathfrak{K}$ let $\langle K\rangle$ be the subgroup of (\mathfrak{C}, \cdot) generated by K and let $\widetilde{\mathfrak{K}}(E):=\left\{A_{n} \cdots \cdot A_{1} \cdot A_{1} \cdots \cdot A_{n} \mid n \in \mathbb{N}: A_{1}, \ldots, A_{n} \in \mathfrak{K}\right\}$ then:

1. $\mathfrak{K}^{-1}=\mathfrak{K}, \forall K \in \mathfrak{K}: K \cdot \mathfrak{K} \cdot K=\mathfrak{K}$ and $\langle K\rangle \subseteq \mathfrak{K}$.
2. $\widetilde{\mathfrak{K}}(E) \subset \mathfrak{K}$.
3. $\forall X \in \overline{\mathfrak{K}} \exists K_{1}, K_{2}, \ldots, K_{n} \in \mathfrak{K}: X=K_{1} \cdot K_{2} \cdots K_{n}$.
4. $\forall A, B \in \mathfrak{K}: \widetilde{\widetilde{A}(B)}=\widetilde{A} \circ \widetilde{B} \circ \widetilde{A}$.

Proof. (1). Since $E \in \mathfrak{K}, K^{-1}=\widetilde{E}(K) \in \mathfrak{K}$ and so $\mathfrak{K}^{-1}=\mathfrak{K}$ implying $K \cdot \mathfrak{K} \cdot K=\mathfrak{K}$. Consequently, $K^{2}=K \cdot E \cdot K \in \mathfrak{K}, K^{3}=K \cdot K \cdot K \in \mathfrak{K}$ and by induction, $K^{n} \in \mathfrak{K}$ for all $n \in \mathbb{N}$. This shows $\langle K\rangle \subseteq \mathfrak{K}$ and moreover the validity of statement (2). (3) is a consequence of (1).

Definition 4.2. For each $C \in \mathfrak{C}, K \in \mathfrak{K}$ let:

1. $\mathfrak{K}_{C}:=\left\{K \in \mathfrak{K} \mid C \cdot \mathfrak{K} \cdot C^{-1} \cdot K=\mathfrak{K}\right\}$,
2. $K_{\mathfrak{C}}:=\left\{C \in \mathfrak{C} \mid C \cdot \mathfrak{K} \cdot C^{-1} \cdot K=\mathfrak{K}\right\}$,
3. $\mathfrak{K}_{\mathfrak{C}}:=\bigcup\left\{\mathfrak{K}_{C} \mid C \in \mathfrak{C}: \mathfrak{K}_{C} \neq \emptyset\right\}$,
4. $\mathfrak{C}_{\mathfrak{K}}:=\left\{C \in \mathfrak{C} \mid \mathfrak{K}_{C} \neq \emptyset\right\}$,
5. $\mathbf{s}(\mathfrak{K}):=\{K \in \mathfrak{K} \mid K \cdot \mathfrak{K}=\mathfrak{K}\}$.

Proposition 4.3. $\mathbf{s}(\mathfrak{K}) \cdot \mathfrak{K}=\mathfrak{K} \cdot \mathbf{s}(\mathfrak{K})=\mathfrak{K}$ hence $\mathbf{s}(\mathfrak{K})$ is a normal subgroup of $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$ contained in \mathfrak{K}.

Proof. For any $K \in \mathfrak{K}$ we have by (4.1), $K \cdot \mathfrak{K} \cdot K=\mathfrak{K}$. Thus for $S \in \mathbf{s}(\mathfrak{K})$ we have $\mathfrak{K}=S^{-1} \cdot \mathfrak{K}=S^{-1} \cdot S \cdot \mathfrak{K} \cdot S=\mathfrak{K} \cdot K$, hence $S \cdot \mathfrak{K}=\mathfrak{K}=\mathfrak{K} \cdot S$, i.e. $S \in \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$.

Theorem 4.4. $\mathfrak{K} \subseteq \overline{\mathfrak{K}}:=\langle\mathfrak{K}\rangle \leq \mathfrak{C}_{\mathfrak{K}} \leq(\mathfrak{C}, \cdot)$ and

1. $\Gamma^{-}(\mathfrak{K})=\left\{C\left(\widetilde{C^{-1} \cdot K}\right) \mid C \in \mathfrak{C}_{\mathfrak{K}}, K \in \mathfrak{K}_{C}\right\}$,
2. $\Gamma^{+}(\mathfrak{K})=\left\{C\left(\widetilde{C^{-1}} \cdot K\right) \circ \widetilde{E} \mid C \in \mathfrak{C}_{\mathfrak{K}}, K \in \mathfrak{K}_{C}\right\}$,
3. $\Gamma_{1}(\mathfrak{K})=\{\widetilde{A E} \circ \widetilde{E} \mid A \in \mathbf{s}(\mathfrak{K})\}$,
4. $\Gamma_{2}(\mathfrak{K})=\{\widetilde{E A} \circ \widetilde{E} \mid A \in \mathbf{s}(\mathfrak{K})\}$.

Proof. Let $C, D \in \mathfrak{C}_{\mathfrak{K}}$ and $K_{C}, K_{D} \in \mathfrak{K}$ with $C \cdot \mathfrak{K} \cdot C^{-1} \cdot K_{C}=D \cdot \mathfrak{K} \cdot D^{-1} \cdot K_{D}=$ \mathfrak{K}. Then $\mathfrak{K}=D \cdot C \cdot \mathfrak{K} \cdot C^{-1} \cdot K_{C} \cdot D^{-1} \cdot K_{D}=D \cdot C \cdot \mathfrak{K} \cdot C^{-1} \cdot D^{-1} \cdot D \cdot K_{C}$. $D^{-1} \cdot K_{D}$ and $D \cdot K_{C} \cdot D^{-1} \cdot K_{D} \in D \cdot \mathfrak{K} \cdot D^{-1} \cdot K_{D}=\mathfrak{K}$ hence $D \cdot C \in \mathfrak{C}_{\mathfrak{K}}$. Moreover $\mathfrak{K}=C^{-1} \cdot \mathfrak{K} \cdot K_{C}^{-1} \cdot C=C^{-1} \cdot \mathfrak{K} \cdot C \cdot C^{-1} \cdot K_{C}^{-1} \cdot C$ and $C^{-1} \cdot K_{C}^{-1} \cdot C=C^{-1}$. $E \cdot K_{C}^{-1} \cdot C \in C^{-1} \cdot \mathfrak{K} \cdot K_{C}^{-1} \cdot C=\mathfrak{K}$, i.e. $C^{-1} \in \mathfrak{C}_{\mathfrak{K}}$. Thus $\mathfrak{C}_{\mathfrak{K}} \leq(\mathfrak{C}, \cdot)$. If $K \in \mathfrak{K}$ then by 4.1., $K^{2} \in \mathfrak{K}$ and $\mathfrak{K}=K \cdot \mathfrak{K} \cdot K=K \cdot \mathfrak{K} \cdot K^{-1} \cdot K^{2}$ hence $K^{2} \in \mathfrak{K}_{K}$, i.e. $K \in \mathfrak{C}_{\mathfrak{K}}$ and so $\mathfrak{K} \subseteq \mathfrak{C}_{\mathfrak{K}}$.
(1) Let $\widetilde{A B} \in \Gamma^{-}(\mathfrak{K})$. Then by 2.1.(5), $A \cdot \mathfrak{K} \cdot B=\mathfrak{K}^{-1}=\mathfrak{K}$ hence $A \cdot B=$ $A \cdot E \cdot B=: K \in \mathfrak{K}$, i.e. $B=A^{-1} \cdot K$ and $\widetilde{A B}=A\left(\widetilde{A^{-1} \cdot K}\right)$ with $K \in \mathfrak{K}_{A}$ and so $A \in \mathfrak{C}_{\mathfrak{K}}$.
(4) $\widetilde{E A} \circ \widetilde{E}(\mathfrak{K})=\mathfrak{K} \Leftrightarrow \mathfrak{K} \cdot A=\mathfrak{K} \Leftrightarrow A \in \mathbf{s}(\mathfrak{K})$.
(2) follows from (1) and 4.1.(1). By 4.3., (3) follows analogous to the proof of (4).

Corollary 4.5. $\Gamma(\mathfrak{K}) \leq \Gamma(\overline{\mathfrak{K}})$.

Proof. Let $A, B \in \mathfrak{K}, C \in \mathfrak{C}_{\mathfrak{K}}, K \in \mathfrak{K}_{C}$ then $C\left(\widetilde{C^{-1} \cdot K}\right) \circ \widetilde{E}(A \cdot B)=C \cdot A \cdot B$. $C^{-1} \cdot K=\left(C \cdot A \cdot C^{-1} \cdot K\right) \cdot K^{-1} \cdot\left(C \cdot B \cdot C^{-1} \cdot K\right) \in \mathfrak{K} \cdot \mathfrak{K} \cdot \mathfrak{K} \subseteq \overline{\mathfrak{K}}$. Moreover if $A_{1}, A_{2}, \ldots, A_{n} \in \mathfrak{K}$ then $\widetilde{E}\left(A_{1} \cdot A_{2} \cdots \cdot A_{n}\right)=A_{n}^{-1} \cdots \cdot A_{2}^{-1} \cdot A_{1}^{-1} \in \overline{\mathfrak{K}}$.

Using Theorem 4.4. we can rewrite Theorem 1.12.(4) in a stronger form:
Corollary 4.6. $\mathfrak{K}^{s} \subseteq \mathfrak{C}_{\mathfrak{K}} \cap\left\{A \in \mathfrak{C} \mid A^{2} \in \mathfrak{K}_{\mathfrak{C}}\right\}$.
Proof. By Theorem 4.4(1), since $E \in \mathfrak{K}=\mathfrak{K}^{-1}$, if $\widetilde{A}(\mathfrak{K})=A \cdot \mathfrak{K}^{-1} \cdot A=\mathfrak{K}$ then $K:=A^{2} \in \mathfrak{K}$ and so $A \cdot \mathfrak{K} \cdot A^{-1} \cdot K=A \cdot \mathfrak{K} \cdot A=\mathfrak{K}$, i.e. $K \in \mathfrak{K}_{A}$ and so $A \in \mathfrak{C}_{\mathfrak{K}}$.

Theorem 4.7. $\mathrm{s}(\mathfrak{K}) \unlhd \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}) \leq \mathfrak{C}_{\mathfrak{K}} \leq \mathfrak{N}_{\mathfrak{C}}(\overline{\mathfrak{K}})$.
Proof. By 4.3., $\mathbf{s}(\mathfrak{K}) \leq \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$. Let $C \in \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$ then $E \in \mathfrak{K}_{C}$ hence $C \in \mathfrak{C}_{\mathfrak{K}}$, i.e. $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}) \subseteq \mathfrak{C}_{\mathfrak{K}}$ and by 4.4., $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}) \leq \mathfrak{C}_{\mathfrak{K}}$. For any $C \in \mathfrak{C}_{\mathfrak{K}}$ there is a $K \in \mathfrak{K}_{C} \subseteq \mathfrak{K}$ such that $C \cdot \mathfrak{K} \cdot C^{-1}=\mathfrak{K} \cdot K^{-1} \subseteq \mathfrak{K} \cdot \mathfrak{K} \subset \overline{\mathfrak{K}}$ implying $\mathfrak{C}_{\mathfrak{K}} \leq \mathfrak{N}_{\mathfrak{C}}(\overline{\mathfrak{K}})$.

Theorem 4.8.

1. If $K \in \mathfrak{K}_{\mathfrak{C}}$, then $K_{\mathfrak{C}}=C \cdot \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$ for any $C \in K_{\mathfrak{C}}$ hence $K_{\mathfrak{C}}=K_{\mathfrak{C}} \cdot \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$.
2. If $C \in \mathfrak{C}_{\mathfrak{K}}$, then $\mathfrak{K}_{C}=K \cdot \mathbf{s}(\mathfrak{K})$ for any $K \in \mathfrak{K}_{C}$ hence $\mathfrak{K}_{C}=\mathfrak{K}_{C} \cdot \mathbf{s}(\mathfrak{K})$.

Proof. (1) For $C, D \in K_{\mathfrak{C}}$ we have: $\mathfrak{K} \cdot K^{-1}=C \cdot \mathfrak{K} \cdot C^{-1}=D \cdot \mathfrak{K} \cdot D^{-1}$, hence $C^{-1} \cdot D \in \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$, i.e. $D \in C \cdot \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$ and so $K_{\mathfrak{C}} \subseteq C \cdot \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$. If $N \in \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$ and $C \in K_{\mathfrak{C}}$ hence $N \cdot \mathfrak{K} \cdot N^{-1}=\mathfrak{K}$ and $C \cdot \mathfrak{K} \cdot C^{-1} \cdot K=\mathfrak{K}$ then $C \cdot N \cdot \mathfrak{K} \cdot N^{-1}$. $C^{-1} \cdot K=C \cdot \mathfrak{K} \cdot C^{-1} \cdot K=\mathfrak{K}$ hence $C \cdot N \in K_{\mathfrak{C}}$.
(2) For $K, L \in \mathfrak{K}_{C}$ we have: $\mathfrak{K} \cdot K^{-1}=\mathfrak{K} \cdot L^{-1}=C \cdot \mathfrak{K} \cdot C^{-1}$, hence by $\mathfrak{K}^{-1}=$ $\mathfrak{K}, \mathfrak{K}=\mathfrak{K} \cdot L^{-1} \cdot K=K^{-1} \cdot L \cdot \mathfrak{K}$, i.e. $K^{-1} \cdot L \in \mathbf{s}(\mathfrak{K})$.
Theorem 4.9. $\widetilde{\mathfrak{K}}(E) \subset \mathfrak{K}_{\mathbb{C}}$ and $\bigcup_{C \in \overline{\mathfrak{K}}} \mathfrak{K}_{C}=\widetilde{\mathfrak{K}}(E) \cdot \mathbf{s}(\mathfrak{K})$.
Proof. Let $K:=A_{1} \cdots A_{n} \cdot A_{n} \cdots A_{1} \in \widetilde{\mathfrak{K}}(E)$ with $A_{1}, \ldots, A_{n} \in \mathfrak{K}$ (cf. 4.1.(3)) and let $C:=A_{1} \cdots A_{n}$. Then $C \in \overline{\mathfrak{K}}$, by 4.1.(1), $C \cdot \mathfrak{K} \cdot C^{-1} \cdot K=A_{1} \cdot A_{2} \cdots A_{n}$. $\mathfrak{K} \cdot A_{n} \cdots A_{1}=\mathfrak{K}$, i.e. $K \in \mathfrak{K}_{C} \subseteq \mathfrak{K}_{\mathbb{C}}$ and $C \in \mathfrak{C}_{\mathfrak{K}}$ hence $\widetilde{\mathfrak{K}}(E) \subseteq \bigcup_{C \in \overline{\mathfrak{K}}} \mathfrak{K}_{C} \subseteq \mathfrak{K}_{\mathfrak{C}}$. Therefore by 4.8.(2), $\widetilde{\mathfrak{K}}(E) \cdot \mathbf{s}(\mathfrak{K}) \subseteq \bigcup_{C \in \overline{\mathfrak{K}}} \mathfrak{K}_{C}$.

Now let $X \in \bigcup_{C \in \overline{\mathfrak{K}}} \mathfrak{K}_{C}$, i.e. $\exists C \in \overline{\mathfrak{K}}: X \in \mathfrak{K}_{C}$. Then $\exists A_{1}, \ldots, A_{n} \in \mathfrak{K}$: $C=A_{1} \cdots A_{n}, C \cdot \mathfrak{K} \cdot C^{-1} \cdot X=\mathfrak{K}$ and $D:=C \cdot A_{n} \cdots A_{1} \in \widetilde{\mathfrak{K}}(E)$. Therefore $\mathfrak{K}=C \cdot \mathfrak{K} \cdot C^{-1} \cdot X=A_{1} \cdots A_{n} \cdot \mathfrak{K} \cdot A_{n} \cdots A_{1} \cdot D^{-1} \cdot X=\mathfrak{K} \cdot D^{-1} \cdot X$ implying $S:=D^{-1} \cdot X \in \mathfrak{K}$ and by 4.3., $S \in \mathbf{s}(\mathfrak{K})$. Thus $X=D \cdot S \in \widetilde{\mathfrak{K}}(E) \cdot \mathbf{s}(\mathfrak{K})$.
Corollary 4.10. $\mathfrak{C}_{\mathfrak{K}}=\left\langle\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}) \cup \overline{\mathfrak{K}}\right\rangle \Leftrightarrow \mathfrak{K}_{\mathfrak{C}}=\widetilde{\mathfrak{K}}(E) \cdot \mathbf{s}(\mathfrak{K})$. In this case we have:

$$
\Gamma(\mathfrak{K})=\left\langle\widetilde{\mathfrak{K}} \cup\left\{\widetilde{C C^{-1}} \mid C \in \mathfrak{N}_{\mathbb{C}}(\mathfrak{K})\right\} \cup\{\widetilde{S E} \mid S \in \mathbf{s}(\mathfrak{K})\}\right\rangle .
$$

Corollary 4.11. If $\mathfrak{C}_{\mathfrak{K}}=\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})$, then $\Gamma(\mathfrak{K})=\left\langle\left\{\widetilde{C C^{-1}} \mid C \in \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K})\right\} \cup\{\widetilde{S E} \mid S \in\right.$ $\mathbf{s}(\mathfrak{K})\}\rangle$, and any anti-automorphism is a composition of an anti-automorphisms from stabilizer of E with an automorphism from $\Gamma_{2}(\mathfrak{K})$,

$$
C\left(\widetilde{C^{-1} \cdot K_{C}}\right)=\left(\widetilde{E K_{C}} \circ \widetilde{E}\right) \circ \widetilde{C C^{-1}}
$$

Proposition 4.12. $\mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}) \cap \mathfrak{K}=\left\{A \in \mathfrak{K} \mid A^{2} \in \mathbf{s}(\mathfrak{K})\right\}$.
Proof. Let $A \in \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}) \cap \mathfrak{K}$ then $\mathfrak{K}=A \cdot \mathfrak{K} \cdot A^{-1}=A^{2} \cdot\left(A^{-1} \cdot \mathfrak{K} \cdot A^{-1}\right)=A^{2} \cdot \mathfrak{K}$, i.e. $A \in \mathfrak{K}$ and $A^{2} \in \mathbf{s}(\mathfrak{K})$. Conversely if $A \in \mathfrak{K}$ with $A^{2} \in \mathbf{s}(\mathfrak{K})$ then $\mathfrak{K}=A^{2} \cdot \mathfrak{K}=$ $A \cdot(A \cdot \mathfrak{K} \cdot A) \cdot A^{-1}=A \cdot \mathfrak{K} \cdot A^{-1}$, i.e. $A \in \mathfrak{N}_{\mathfrak{C}}(\mathfrak{K}) \cap \mathfrak{K}$.

References

[1] B. Alinovi, H. Karzel, C. Tonesi, Halforders and automorphisms of chain structures, J. Geom. 71 (2001), 1-18.
[2] E. Gabrieli, B. Im, H. Karzel, Webs related to K-loops and reflection structures, Abh. Math. Sem. Univ. Hamburg 69 (1999), 89-102.
[3] B. Huppert, Endliche Gruppen I, Grundlehren Bd. 134, Springer Verlag, Berlin, Heidelberg, New York, 1967.
[4] B. Im, H. Karzel, H.-J. Ko, Webs with rotation and reflection properties and their relations with certain loops, Abh. Math. Sem. Univ. Hamburg 72 (2002), 9-20.
[5] H. Karzel, INZIDENZGRUPPEN (Vorlesungsausarbeitung von I. Pieper und K. Sörensen), Hamburg 1965.
[6] H. Karzel, Loops related to geometric structures, Quasigroups and Related Systems 15 (2007), 47 - 76.
[7] H. Karzel and H.-J. Kroll, Perspectivities in circle geometries, in: Geometry - von Staudt's point of view, P. Plaumann et al., Eds., Proc. NATO Adv. Study Inst., Bad Windsheim 1980, D. Reidel, Dordrecht, 1981, pp. 51-99.
[8] H. Karzel and H.-J. Kroll, Geschichte der Geometrie seit Hilbert, Wissenschaftliche Buchgesellschaft, Darmstadt, 1988.
[9] H. Karzel, J. Kosiorek and A. Matraś, Properties of auto- and antiautomorphisms of maximal chain structures and their relations to i-perspectivities, Result.Math. 50 (2007), 81-92.
[10] H. Karzel, S. Pianta and E. Zizioli, From involution sets, graphs and loops to loopnearrings, in: Nearrings and Nearfields, Proceedings of the Conference on Nearrings and Nearfields, Hamburg, July 27-August 3,2003, Springer, 2005, pp. 235-252.
[11] H. Wähling, Theorie der Fastkörper Thales Verlag, Essen 1987.
[12] H. Wefelscheid, Über die Automorphismengruppen von Hyperbelstrukturen, Beitr. geom. Algebra, Proc. Symp. Duisburg 1976, 1977, 337-343.

Helmut Karzel
Zentrum Mathematik
T.U. München

D-80290 München
Germany
e-mail: karzel@ma.tum.de

Jarosław Kosiorek and Andrzej Matraś
Department of Mathematics and Informatics
UWM Olsztyn
Żołnierska 14
PL-10-561 Olsztyn
Poland
e-mail: kosiorek@matman.uwm.edu.pl
matras@uwm.edu.pl
Received: July 1, 2009.
Revised: August 18, 2009.

