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Abstract. This note deals with the following question: How many planes of a linear s@face)
must be known as projective planes to ensurethRall) is a projective space? The following answer
is given: If for any subseM of a linear spacéP, £) the restrictionM, £(M)) is locally complete,
and if for every plane® of (M, £(M)) the planeE generated byt is a projective plane, the(P, £)

is a projective space. Or more generally: If for any subgetf P the restriction M, £(M)) is locally
complete, and if for any two distinct coplanar lin€s, G, € £(M) the linesG1, G, € £ generated
by G1, G have a nonempty intersection a6d U G» satisfies the exchange condition, thigh £)

is a generalized projective space.

Mathematics Subject Classifications1991):51Dxx, 51E15.
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1. Introduction

For a subsetM c P of alinear spacé€P, £) let £(M) .= {LNM : L € £and
|L N M| > 2}. We call the linear spacgV, £(M)) arestrictionof (P, £), i.e., the
lines of (M, £(M)) are exactly parts of the lines &f.

An embeddingp: M — P of a linear spacéM, ) in a linear spacé&P, £)
is an injective mapping which maps collinear points onto collinear points and
noncollinear points onto noncollinear points. For an embeddgingy — P we
havep (M) = {¢p(G) : G € M} = L(p(M)); this means(p (M), ¢(M)) is a
restriction of(P, £). Usually we identifyM and¢ (M) for an embedding, hence
(M), (M) = (M, £(M)).

We call arestrictionM, £(M)) of (P, £) locally completeif for every nonempty
subspacerl’ of (M, £(M)) there exists exactly one subspaleof (P, £) with
T =MnNU (cf. [4, 8]).

For a restrictionM of (P, £) we consider in this paper the following property
that for every plangt of M the plane ofP generated byt is a projective plane
(property (P1) of Section 3), or as a generalization, that for any two coplanar lines
G1, G, of E the lines of P generated byG1, G, have a nonempty intersection
(property (P4) of Section 3).
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44 ALEXANDER KREUZER

In this paper it is proved that for every locally complete restriciiérof (P, £)
satisfying (P1), or one of the equivalent properties (P2) or (P3) (cf. Section 3) the
linear spacq P, £) is a generalized projective space, aid, £(M)) is locally
generalized projective and satisfies the Bundle Theorem.

Thereby a linear spad@/, ) is calledlocally (generalized) projectivef for
every pointx € M the lines and planes afM, 9t) containingx form a (gen-
eralized) projective space. We recall a result of O. Wyler [10, Theorem 6.2] and
L. M. Batten [1]:

LEMMA 1.1. A locally generalized projective space is a locally projective space
or a generalized projective space.

The Bundle Theoremtates that for four lined, B, C, D € 9, no three in a
common plane, the coplanarities {of, B}, {A, C}, {A, D}, {B, C}, {B, D} imply
the coplanarity ofC, D}.

There is a close connection of the result mentioned above to the classical Em-
bedding Theorems of O. Wyler [10], W. M. Kantor [3], J. Kahn and many oth-
ers, which state that every locally generalized projective linear spdce)) of
dim M > 3 satisfying the Bundle Theorem is embeddable in a generalized pro-
jective space. For dim = 3 the result is due to J. Kahn [2] (cf. also [5]). For
these embeddings the so-calledndle spaceP’, £) is constructed. The points
of P’ are defined byoundlesof b c 2, whereby any two lines of a bundle are
coplanar and every point @f is incident with a line of every bundle (cf. [8]). For
y e Mlet[y] :={G e M : y € G}. For any two bundles, b of the bundle space
the connecting linga, b] consists of all bundleg, for which the unigue lines of
a, b, r through every poiny € M with [y] # a, b, ¢ are coplanar.

The mappings: M — P’, x — [x] embedsV in its bundle spac®’. It is easy
to show thatp (M) is a locally complete restriction @f. Hence we have a situation
similar to that of this paper.

We want to mention the paper [9] in which it is proved that a linear space is an
affine or projective space, if every plane is an affine or projective plane.

2. The Dimension of a Locally Complete Restriction

Let (P, £) denote dinear spacewith the point sef? and the line sef. A subspace
is a subsey ¢ P such that for all distinct points, y € U the unique line passing
throughx andy, denoted byx, y, is contained inU. Let ${ denote the set of all
subspaces. For every subdetz P we define the followinglosure operation

T B(P) - 4, X+ X by YzzﬂU 1)

Ueld
Xcu

ForU e Y we call dmU := inf{|{X| —1: X c U andX = U} thedimension
of U. A subspace of dimension two isptane A subsetX C P is independentif
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A CHARACTERIZATION OF PROJECTIVE SPACES BY A SET OF PLANES 45

x & X\ {x} for everyx € X, and is abasisof a subspacé/, if X is independent
andX = U.

Alinear space is generalized projective pland any two lines have a nonempty
intersection, and projective planeif in addition every line contains at least three
points. A linear space is@eneralized) projective spacéevery plane is a (gener-
alized) projective plane. A generalized projective space can be defined equivalently
by the Axiom of Veblen—Young.

A linear space(P, £) satisfies theexchange conditionf for § c P and
x,y € Pwithx e SU{y}\ S, itfollows thaty € SU {x}.

ForM c P, let(M, £(M)) be always a restriction of the linear spadg £).
We denote byX — X the closure of(P, £) and byX — (X) the closure of
(M, £(M)). By [4, (1.1)] and [6, Lemma 2.3]:

LEMMA 2.1. (1) For every subspacé/ of (P, £), U N M is a subspace of
(M, £(M)). N L
(2) For asubsetX c M it holds that(X) ¢ X and(X) = X.
(3) If asubsetX ¢ M is independent iP, thenX is also independent in/.
(4) If M = P, thendim M > dim P.

By [4, (1.5)]:

LEMMA 2.2. For arestriction(M, £(M)) of (P, £), the following statements are
equivalent:

(1) (M, £(M)) is locally complete.
(2) For every subspac& of M and for every subspadé of P withU N M #
it holds:

U=UNM and T=TNM. (2)
(3) The propertiegG) and (E) are both satisfied, whereby

(G) ForeverylineL € £, |LNM]| # 1.
(E) For every planeE of M, E=E N M.

By Lemma 2.2(2)P = P N M = M. Hence:

LEMMA 2.3. If (M, £(M)) is a locally complete restriction ofP, £), then
M=P.

THEOREM 2.4. Let(M, £(M)) be a locally complete restriction ¢, £). Then
dim P +1>dim M > dim P.

Proof. By 2.3 and 2.1(4) dimM > dim P. Let X C P be a generating subset
of P anda € M \ X. By (G) there exists for every € X a pointb, e x,a N M
with b, # a, hence als®B := {b, : x € X} U {a} is a generating subset &f
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46 ALEXANDER KREUZER

with B ¢ M and|B| = |X| + 1. Hence by 2.1(2(B) = (B) N M = BN M =
PNM = M, sinceM is alocally complete restriction. TherefoBeis a generating
subset ofM and we have dimV/ < 1+ dim P. O

Remark 1. We remark that property (E) cannot be omitted in Theorem 2.4.
In [7] an example of an embedding of a high-dimensional projective space in a
Desarguesian projective plane satisfying (G) is given (which by 2.4 cannot satisfy
(E)

In [6] it is shown that for any:, s € N, n > 2, every Pappian projective space
(M, M) of dim M = n + s is embeddable in a Pappian projective spaeeg) of
dim P = n,i.e., we can find every Pappian projective spstef dim M = n+s as
a restriction of am-dimensional Pappian projective spa@g £). The restriction
has the property that for every subspdtef M of dim T < n — 1 it holds that
T =T N M. In particular forn > 2, (E) is satisfied (but not (G)).

We recall (cf. [6, Lemma 2.5]:

LEMMA 2.5. If (M, £(M)) is a locally complete restriction of a linear space
(P, £) satisfying the exchange condition, théim M = dim P.

3. The Planes of a Locally Complete Restriction

For a restrictionM of (P, £) we consider now the following properties:

(P1) For every plan& of (M, £(M)) , E is a generalized projective plane.

(P2) For every plang of (M, £(M)) and any linesG C E,L C E it holds
GNL#Y.

(P3) For every plan& of (M, £(M)) and any linesGy, G, C E, it holds G, N
G, # ¥, andE satisfies the exchange condition.

(P4) For every plané of (M, £(M)) and any linesG;, G, C E, it holds G; N
G, # 0.

Clearly (P1) implies (P2) and (P3), and (P4) is a consequence of every (Pi),
i=123.

ForM C P,let(M, £(M)) be in the following a locally complete restriction of
the linear spacépP, £) satisfying (P4). We recall tha&t — X denotes the closure
of (P, £) andX — (X) the closure of M, £(M)). We shall abuse the notation
when the setis listefh, b, ¢, ...} and writea, b, ¢, ... and{a, b, c, .. .).

LEMMA3.1. (1) Ifa, b, c € M are not collinear points, thea, b, ¢ = Uxema,—x
and{a,b,c) =, gza, x N M.

(2). Every planeE of M satisfies the exchange condition.

Proof. (1) Sincea, b, ¢ € a, b, ¢ and since for any point € a, b, c it holds
a,x C a,b,c we havel J, ;-a,x C a,b,c. Lety € a,b,c\ {a}, thena,y N

xeb,c
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M C {a, b, c) by (E) and (G), henca,y N M and (b, c) are coplanar in/. By
(P4)p = b,cNa,y exists andz, y = @, p, hencey € @, p C |J,7a, x and
a,b,c C U@ x.By (E),(a,b,c) =a,b,cNM =J,g:axNM.
(2) There areu,b,c € E with E = {(a,b,c). Letd € E \ (b, c), then by
() there is amx € (b, ¢) with d € (a,x), hencea € (d,x) C (b,c,d) and
= (b, c,d). O

LEMMA 3.2. LetE, F C M be distinct planes a#7 containing distinct common
pointsx, y € E N F. Then for every lings C E itholdsG N F # .

Proof.If x e M ory € M, thenx, y N M € £(M) by (G). Hence (P4) implies
G NX,y # ¥ and thereforeaG N F # ¢. Now we assume,y ¢ M. By (P4)
for distinct pointsa, b € G there existsx = @,x N b, y. Letc € F \ E and
de (c,xNM)\{c}.

By (E) and (G),(a, d), T, 2N M C @, c, x are coplanar i, hencev = a,d N
C, z exists. Again by (E) and (Gh,v N M,5;y N M Cb,c,y , y are coplanar in
M, hencew = b, v N ¢, y exists. Nowv, wea b, dandp_a b N d, w exist.
Because € a,b =G andp,w e€d,c,y C Fwehavep e G N F. O

LEMMA 3.3. (1) For any four independent points, b, c,d € M it holds that
a,b,c,d =J,gza xand(a,b,c,d) =J,5oza x M.

(2) Every3-dimensional subspack of M satisfies the exchange condition.

Proof (1) LetU := {J,gpcqa x. Clearlyb,c,d C a,b,c,d anda,x C
a,b,c,dforeveryx € b,c,d, hencelU C a,b,c,d.

Clearlya, b, ¢, d € U. We proof thatlJ is a subspace a?. Then it follows that
a,b,c,d C U = U.Fordistinct pointsc, y € b, c, d leta, € @, x,a, € @,y with
a # ay, ay. HenceE :=a,x, yNM andF := b, c,d N M are distinct planes a¥/
withx, y € ENF.ByLemma3.2 for every € a,, a, itfollows thatp =a, g N F
exists. Hencg € a, p C U, a,,a, C U andU is a subspace. Sindd is a locally
complete restriction o, a,b,c,d " M = {a,b,c,d) " M = {(a,b,c,d) =
UNM =J,5:7a xNMby2.1(2).

(2) Thereare, b,c,d e TWIthT = (a, b, ¢, d). Leta’ € {(a, b, c, d)\ (b, c, d)
be any point withu # a’. By (1) there exists an € (b, ¢, d) with a’ € a, x, hence
ac(a,xNM)Ca,b,c,d)by(1). O

THEOREM 3.4. Let M be alocally complete restriction ¢, £) satisfying(P4).
LetE, F be any planes aif withdim(E U F) =3andENF # ). ThenENF €
L£(M) is aline.

Proof Letb € ENF,c,d € E with E = (b, ¢, d), henceE = b, ¢, d. Leta €
F\E,i.e.,a,b,c,d areindependent and by Lemma 3.3(@JF) = {(a, b, c, d).
By Lemma 3.3(1),F C U,.za,x N M. Hence for a point € F \ (a,b), i.e
F = (a,b,z), there is a pointt € E with z € @,x N M. By (G), there exists
pex,bnN Mwithp #b.Wehavep e E=ENMandp € F = (a,b,z) =
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48 ALEXANDER KREUZER

a,b,zN M. Therefore(b, p) C FNE. Since diME U F) = 3, we haveE # F,
hence(b, p) = FNE. O

THEOREM 3.5 Let M be a locally complete restriction ofP, £). If dmM > 3,
then(P2)implies(P1).
Proof. Since (P2) implies (P4), we can use Theorem 3.4 and Lemma 3.2. Let

E C M be aplane and.1, L, C E be distinct lines. Since di¥ > 3 there is a
pointa € M \ E. By (E), F; = L, U {a} N M are planes oM fori = 1, 2. By
Theorem 3.4, the plands, F, C (E U {a}) intersect in a lineG = F; N F,. By
(P2),x; = G N L; exist fori = 1, 2. Sincea # E we have|G N E| = 1, hence

X1 =xp2 € L1N Lo. O

THEOREM 3.6. Let M be a locally complete restriction ofP, £). If dimM > 3
and if

(x) for any distinct planestE, F C M containing distinct points, y € E, F it
holds thatE N F = X, y,

is satisfied, then (P4) implies (P1).

Proof. Let E C M be a plane and.;, L, C E be distinct lines. Since
dimM > 3thereisapoint € M\ E.By (E), F; = L; U {a} N M are planes oM
fori = 1, 2 which by Theorem 3.4 intersect in a liage= F; N F,. By Lemma 3.2
x = G N E exists and by«) it follows x € F; N E = L; fori = 1, 2. Hence
x € LiNLo. O

COROLLARY 3.7. Let M be a locally complete restriction ofP, £). If
dim M > 3,then(P3)implies(P1).

Proof If E satisfies the exchange condition for every plahe M, obviously
the property £) of Theorem 3.6 holds. O

We summarize 3.5 and 3.7:

THEOREM 3.8. Let (M, £(M)) be a locally complete restriction afP, £) of
dim M > 3. Then the propertieéP1), (P2) and (P3re pairwise equivalent

4. Characterization of a Locally Complete Restriction

In this section we consider properties which imply tki&t £) is a generalized
projective space.

THEOREM4.1. Let (M, £(M)) be a locally complete restriction ¢, £) which

satisfies(P1),or (P2),or (P3),respectively. Idim P > 3, then(P, £) is a gene-
ralized projective space
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Proof. By Theorem 2.4, dinP > 3 implies dimM > 3, hence by Theorem 3.8,
(P1), (P2) and (P3) are equivalent.

We show the Veblen—Young—Axiom fat. Let xq, y1, x2, y2, z € P be distinct
points withxy, y1, z collinearx,, y,, z collinear andxy, y; # x5, y,. We have to
show thatry, x; Ny, y2 # 0.

Since dimP > 3 andM = P by Lemma 2.3, there exists a poimte M \
X1, X2, 2. Leth; ea, x; "M\ {a},ci ea,y;N"M\ {a}fori =1,2andd e a,zN
M\ {a} (cf. (G)), thency, co € {(a, b1, bs,d) = a, by, by, dNM =a, x1, x5, 2O M.

Since dima, by, by, d) = 3, by Theorem 3.4 there is a point (a, by, by, d) \
{a} with {a, by, by) N (a, c1, c2) = {a, e). Hencea, e C a, by, b, = a, x1, x, and
a,e C a,cy,C; = a,y1, y2. By (P2) the pointsw, = a,e Nxy, x; andw, =
a,e Ny, y, exist.

Sincea ¢ x1, x2, 2 = X1, X2, y1, y2 it follows that|a, e N x1, x2, y1, y2| = 1 and
w = w, = wy. Hencew € X1, x2, y1, y2, this is,x1, X2 N y1, y2 = w. O

The existence of a point ¢ X1, x2, z is necessary for this proof. Therefore we
must know that dimP > 3. Since by Theorem 2.4 we have dith> dim M — 1,
we obtain:

COROLLARY 4.2. Let (M, £(M)) be a locally complete restriction afP, £)
satisfying(P1), or (P2), or (P3), respectively. Ifdim M > 4, then (P, £) is a
projective space.

THEOREM 4.3. Let (M, £(M)) be a locally complete restriction afP, £) of
dim M > 3 which satisfiegP1),or (P2),or (P3),respectively. Then the following
statements are equivalent:

(1) (P, £) is a generalized projective space.

(2) (P, £) satisfies the exchange condition.

(3) The planes ofP, £) satisfy the exchange condition.
(4) dim P =dim M.

(5) dim P > 3.

Proof. As is known, a generalized projective space satisfies the exchange con-
dition, hence it suffices to show (i) ‘2 4 = 5= 1"and (ii)) ‘3= 5.

(i) By 2.5, if (P, £) satisfies the exchange condition, then dim= dim M,
hence dimP > 3. By Theorem 4.1, dinP > 3 implies that(P, £) is a
generalized projective space.

(i) For a planeE of M we have by (E)E N M = E. Therefore dimM > 3
implies E ## M andE # P. Hence, if the planes aP satisfy the exchange
condition, we have dimP > 3. O
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COROLLARY 4.4. Let(M, £(M)) be a locally complete restriction of a general-
ized projective spaceP, £). If for every planeE of M, the planekE is a projective
plane, then P, £) is a projective space.

Proof. LetL € £ anda € M \ L. ThenL U {a} is a projective plane, hence
|L| > 3. o

The question if(P, £) also for dimmM = 3 satisfies the exchange condition,
if dim M = dim P orif (P, £) is a generalized projective space, respectively, is
answered in the next section.

5. Projective Embedding

To handle the case dif¥ = 3, we will use Kahn’s Theorem which state that
every locally projective linear spaca/( 9t) of dim M = 3 satisfying the Bundle
Theorem is embeddable in a projective space. We recall that a duliset(M)

is called a bundle if any two lines, G € b are coplanar ifM, £(M)) and if for
every pointa € M thereisaline. € b witha € L.

LEMMA 5.1. Let (M, £(M)) be a locally complete restriction ofP, £) of
dim M > 3 which satisfiegP4).Then:

(1) LetA, B, L € £(M) be pairwise coplanar lines not in a common plane, then
ANB=ANL=BNL#{.

(2) Foreveryy € P, [yl :={y,an M :a € M} is abundle of M, £(M)).

(3) Letb c £(M) be a bundle, then there is a poiate P withb = {x,anN M :
ae M\ {x}}=[x].

Proof. (1) By (P4),x = AN BexistsandA N L # ¢ # BN L. SinceA, B, L
are not coplanar, by (E) alsb ¢ AU B, hencelL N AU B| < 1. It follows that
x=ANL=BNL

(2) Fora,b € M\ {y}, the linesa, y, b, y are coplanar, by (G, yNM, b, yN
M e £(M), and by (E)a, y N M, b, y N M are coplanar ir/.

(3) Leta, b € M with [a], [b] # b, and letA, B € b witha € A, b € B. Since
dim M > 3 thereis a point € M \ (AU B) and alineC € b with ¢ € C. The
linesA, B, C are not coplanar. Hence by ()= ANB = ANC = BN C exists.
For every lineG € b, G is not coplanar witd, B, or A, C, or B, C, respectively.
Therefore by (1)x € G. Hence by (G)p = [x].

THEOREM 5.2. Let (M, £(M)) be a locally complete restriction fP, £) of
dim M > 3 which satisfiegP4).Then:

(1) (M, £(M)) is locally generalized projective.
(2) (M, £(M)) satisfies the Bundle Theorem.
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Proof. (1) Letx € M. For a subspac& of M we denote byE\ = {(a,x) :
a € E \ {x}} asubset ofx]. Let £, := {E : E a plane ofM with x € E}. Since
the planes of M, £(M)) satisfy by 3.1(2) the exchange conditidifix], £,) is a
linear space. For a subspafec M of dim T = 3 containingx leta,b,c € T
with T = (a, b, c, x) (cf. 3.3 (2)). Clearlyf is a subspace afix], £,) which is
generated bya, x), (b, x), {(c, x), since for any two lines of the plane generated
by the lines is contained ifi. ThereforeT is a plane of[x], £,). By Theorem 3.4,
Tisa generalized projective plane.

(2) LetA,B,C,D € £(M), no three in a common plane, and {et, B},
{A, C},{A, D}, {B, C}, and{B, D} be pairwise coplanar. By 5.1(1}, = AUB
exists withx € C andx € D, hencex = C N D. By (E),C, D are coplanar. O

We deflneP’ := {b: bis abundle of M, £(M))}. For any two bundleg, y
P’ let [z, n] := {3 € P’ : foreverya € M with [a] # r, v, 3 the lines oft, , 3
througha are coplanar inM, £(M))}.

We defineg’ := {[z, y] : r,y € P’ distinct }.

By the Theorem of Kahn and by 1.1 we know thd@’', £') is a generalized
projective space, ifM, £(M)) is locally generalized projective, M, £(M))
satisfies the Bundle Theorem, and if divh > 3 (cf. [2, 5]).

LEMMA 5.3. Let (M, £(M)) be a locally complete restriction ofP, £) of
dim M > 3 which satisfiegP1),or (P2),or (P3), respectively. Then three points
x,y,z € P are collinear inP if and only if for everya € M \ {x, y, z} the lines
a,xNM,a,yNnM,a,zN M are coplanar in(M, £(M)).
Proof. If x, y, z are collinear and # y, thenz € a, x, y and by (E) the lines
a,xNM,a,yNM, a,zN M are coplanar.
Assumez € x,y. Leta € M\ x,y, thenE :=a,x,y N M is a plane ofM.
Since dimM > 3, there existd € M\ E = M\ E andF := b,x,yN M is
a plane ofM. By Theorem 3.8, (P1) is satisfied al F are projective planes.
Sinceb ¢ E,ENF =X, y. Hencez ¢ x, y impliesz ¢ E orz ¢ F. Therefore
a,z ¢ Eorb,z ¢ F,anda,x "M, a,y N M, a,z N M are not coplanar, or
,XxNM, b,ynNM, b,z M are not coplanar. a

THEOREM 5.4. Let (M, £(M)) be a locally complete restriction afP, £) of
dim M > 3 which satisfieqP1), or (P2), or (P3), respectively, and letP’, £)
denote the bundle space. Thet1n P — P’, y — [y] is an isomorphism.

Proof. By 5.1(2), for everyy € P, [y] is a bundle. Clearlyy] # [z] for y # z.
By 5.1(3), for every bundlés there exists a point € P with b = [x], hence
¢: P — P’, y— [y]is abijection. By 5.3 three points y, z € P are collinear
if and only if for everya € M \ {x, y,z} thelinesa,x "M, a,yNM, a,zNM
are coplanar inM, £(M)). This is equivalent to the collinearity of the bundles
[x], [y], [z] in (P’, £") by definition and by 5.1(2). O
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THEOREM 5.5. Let (M, £(M)) be a locally complete restriction afP, £) of
dim M > 3 satisfying(P1),or (P2),or (P3),respectively. TheqP, £) is a gener-
alized projective space.

Proof. We know by Theorem 5.2 thaiM, £(M)) is locally generalized pro-
jective and satisfies the Bundle Theorem. Hence the bundle $pacg’) of M is
a generalized projective space by [2,5] and Lemma 1.1. By Lemm4gB.4¢")
and(P, £) are isomorphic. a

COROLLARY 5.6. Let (M, £(M)) be a locally complete restriction ¢, £). If
for every planeE of M the planeE of P generated byE is a projective plane, then
(P, £) is a projective space.

Proof. Fordim M = 2, M = P is a projective plane. For dim/ > 3, (P, £)
is a projective space by Theorem 5.5 and Corollary 4.4.
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