A Characterization of Projective Spaces by a Set of Planes

ALEXANDER KREUZER

Mathematisches Seminar, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany

(Received: 26 March 1998; revised version: 2 July 1998)

Abstract. This note deals with the following question: How many planes of a linear space (P,\mathfrak{L}) must be known as projective planes to ensure that (P,\mathfrak{L}) is a projective space? The following answer is given: If for any subset M of a linear space (P,\mathfrak{L}) the restriction $(M,\mathfrak{L}(M))$ is locally complete, and if for every plane E of $(M,\mathfrak{L}(M))$ the plane \overline{E} generated by E is a projective plane, then (P,\mathfrak{L}) is a projective space. Or more generally: If for any subset M of P the restriction $(M,\mathfrak{L}(M))$ is locally complete, and if for any two distinct coplanar $\underline{\text{lines } G_1, G_2 \in \mathfrak{L}(M)}$ the lines $\overline{G_1}, \overline{G_2} \in \mathfrak{L}$ generated by G_1, G_2 have a nonempty intersection and $\overline{G_1} \cup \overline{G_2}$ satisfies the exchange condition, then (P,\mathfrak{L}) is a generalized projective space.

Mathematics Subject Classifications (1991): 51Dxx, 51E15.

Key words: projective spaces, embeddings, planes of linear spaces.

1. Introduction

For a subset $M \subset P$ of a linear space (P, \mathfrak{L}) let $\mathfrak{L}(M) := \{L \cap M : L \in \mathfrak{L} \text{ and } | L \cap M| \ge 2\}$. We call the linear space $(M, \mathfrak{L}(M))$ a *restriction* of (P, \mathfrak{L}) , i.e., the lines of $(M, \mathfrak{L}(M))$ are exactly parts of the lines of \mathfrak{L} .

An *embedding* $\phi: M \to P$ of a linear space (M, \mathfrak{M}) in a linear space (P, \mathfrak{L}) is an injective mapping which maps collinear points onto collinear points and noncollinear points onto noncollinear points. For an embedding $\phi: M \to P$ we have $\phi(\mathfrak{M}) := \{\phi(G) : G \in \mathfrak{M}\} = \mathfrak{L}(\phi(M))$; this means, $(\phi(M), \phi(\mathfrak{M}))$ is a restriction of (P, \mathfrak{L}) . Usually we identify M and $\phi(M)$ for an embedding ϕ , hence $(\phi(M), \phi(\mathfrak{M})) = (M, \mathfrak{L}(M))$.

We call a restriction $(M, \mathfrak{L}(M))$ of (P, \mathfrak{L}) locally complete, if for every nonempty subspace T of $(M, \mathfrak{L}(M))$ there exists exactly one subspace U of (P, \mathfrak{L}) with $T = M \cap U$ (cf. [4, 8]).

For a restriction M of (P, \mathfrak{L}) we consider in this paper the following property that for every plane E of M the plane of P generated by E is a projective plane (property (P1) of Section 3), or as a generalization, that for any two coplanar lines G_1, G_2 of E the lines of P generated by G_1, G_2 have a nonempty intersection (property (P4) of Section 3).

In this paper it is proved that for every locally complete restriction M of (P, \mathfrak{L}) satisfying (P1), or one of the equivalent properties (P2) or (P3) (cf. Section 3) the linear space (P, \mathfrak{L}) is a generalized projective space, and $(M, \mathfrak{L}(M))$ is locally generalized projective and satisfies the Bundle Theorem.

Thereby a linear space (M, \mathfrak{M}) is called *locally (generalized) projective*, if for every point $x \in M$ the lines and planes of (M, \mathfrak{M}) containing x form a (generalized) projective space. We recall a result of O. Wyler [10, Theorem 6.2] and L. M. Batten [1]:

LEMMA 1.1. A locally generalized projective space is a locally projective space or a generalized projective space.

The Bundle Theorem states that for four lines $A, B, C, D \in \mathfrak{M}$, no three in a common plane, the coplanarities of $\{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}$ imply the coplanarity of $\{C, D\}$.

There is a close connection of the result mentioned above to the classical Embedding Theorems of O. Wyler [10], W. M. Kantor [3], J. Kahn and many others, which state that every locally generalized projective linear space (M, \mathfrak{M}) of dim $M \geq 3$ satisfying the Bundle Theorem is embeddable in a generalized projective space. For dim M=3 the result is due to J. Kahn [2] (cf. also [5]). For these embeddings the so-called *bundle space* (P', \mathfrak{L}') is constructed. The points of P' are defined by *bundles* of $\mathfrak{b} \subset \mathfrak{M}$, whereby any two lines of a bundle are coplanar and every point of M is incident with a line of every bundle (cf. [8]). For $y \in M$ let $[y] := \{G \in \mathfrak{M} : y \in G\}$. For any two bundles \mathfrak{a} , \mathfrak{b} of the bundle space the connecting line $[\mathfrak{a}, \mathfrak{b}]$ consists of all bundles \mathfrak{x} , for which the unique lines of \mathfrak{a} , \mathfrak{b} , \mathfrak{x} through every point $y \in M$ with $[y] \neq \mathfrak{a}$, \mathfrak{b} , \mathfrak{x} are coplanar.

The mapping $\phi \colon M \to P', x \mapsto [x]$ embeds M in its bundle space P'. It is easy to show that $\phi(M)$ is a locally complete restriction of P. Hence we have a situation similar to that of this paper.

We want to mention the paper [9] in which it is proved that a linear space is an affine or projective space, if every plane is an affine or projective plane.

2. The Dimension of a Locally Complete Restriction

Let (P, \mathfrak{L}) denote a *linear space* with the point set P and the line set \mathfrak{L} . A *subspace* is a subset $U \subset P$ such that for all distinct points $x, y \in U$ the unique line passing through x and y, denoted by $\overline{x, y}$, is contained in U. Let \mathfrak{U} denote the set of all subspaces. For every subset $X \subset P$ we define the following *closure operation*

$$\overline{}: \mathfrak{P}(P) \to \mathfrak{U}, \qquad X \mapsto \overline{X} \quad \text{by} \quad \overline{X}:= \bigcap_{U \in \mathfrak{U} \atop X \subset U} U \tag{1}$$

For $U \in \mathfrak{U}$ we call dim $U := \inf\{|X| - 1 : X \subset U \text{ and } \overline{X} = U\}$ the *dimension* of U. A subspace of dimension two is a *plane*. A subset $X \subset P$ is *independent*, if

 $x \notin \overline{X \setminus \{x\}}$ for every $x \in X$, and is a *basis* of a subspace U, if X is independent and $\overline{X} = U$.

A linear space is a *generalized projective plane*, if any two lines have a nonempty intersection, and a *projective plane*, if in addition every line contains at least three points. A linear space is a *(generalized) projective space*, if every plane is a *(generalized) projective space* can be defined equivalently by the Axiom of Veblen–Young.

A linear space (P, \mathfrak{L}) satisfies the *exchange condition* if for $S \subset P$ and $x, y \in P$ with $x \in \overline{S \cup \{y\}} \setminus \overline{S}$, it follows that $y \in \overline{S \cup \{x\}}$.

For $M \subset P$, let $(M, \mathfrak{L}(M))$ be always a restriction of the linear space (P, \mathfrak{L}) . We denote by $X \mapsto \overline{X}$ the closure of (P, \mathfrak{L}) and by $X \mapsto \langle X \rangle$ the closure of $(M, \mathfrak{L}(M))$. By [4, (1.1)] and [6, Lemma 2.3]:

LEMMA 2.1. (1) For every subspace U of (P, \mathfrak{L}) , $U \cap M$ is a subspace of $(M, \mathfrak{L}(M))$.

- (2) For a subset $X \subset M$ it holds that $\langle X \rangle \subset \overline{X}$ and $\overline{\langle X \rangle} = \overline{X}$.
- (3) If a subset $X \subset M$ is independent in P, then X is also independent in M.
- (4) If $\overline{M} = P$, then dim $M \ge \dim P$.

By [4, (1.5)]:

LEMMA 2.2. For a restriction $(M, \mathfrak{L}(M))$ of (P, \mathfrak{L}) , the following statements are equivalent:

- (1) $(M, \mathfrak{L}(M))$ is locally complete.
- (2) For every subspace T of M and for every subspace U of P with $U \cap M \neq \emptyset$ it holds:

$$U = \overline{U \cap M} \quad and \quad T = \overline{T} \cap M. \tag{2}$$

- (3) The properties (G) and (E) are both satisfied, whereby
 - (G) For every line $L \in \mathfrak{L}$, $|L \cap M| \neq 1$.
 - (E) For every plane E of M, $E = \overline{E} \cap M$.

By Lemma 2.2(2) $P = \overline{P \cap M} = \overline{M}$. Hence:

LEMMA 2.3. If $(M, \mathfrak{L}(M))$ is a locally complete restriction of (P, \mathfrak{L}) , then $\overline{M} = P$.

THEOREM 2.4. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) . Then dim $P + 1 \ge \dim M \ge \dim P$.

Proof. By 2.3 and 2.1(4) dim $M \ge \dim P$. Let $X \subset P$ be a generating subset of P and $a \in M \setminus X$. By (G) there exists for every $x \in X$ a point $b_x \in \overline{x, a} \cap M$ with $b_x \ne a$, hence also $B := \{b_x : x \in X\} \cup \{a\}$ is a generating subset of P

with $B \subset M$ and |B| = |X| + 1. Hence by 2.1(2), $\langle B \rangle = \overline{\langle B \rangle} \cap M = \overline{B} \cap M = P \cap M = M$, since M is a locally complete restriction. Therefore B is a generating subset of M and we have dim $M \leq 1 + \dim P$.

Remark 1. We remark that property (E) cannot be omitted in Theorem 2.4. In [7] an example of an embedding of a high-dimensional projective space in a Desarguesian projective plane satisfying (G) is given (which by 2.4 cannot satisfy (E))

In [6] it is shown that for any $n, s \in \mathbb{N}$, $n \ge 2$, every Pappian projective space (M, \mathfrak{M}) of dim M = n + s is embeddable in a Pappian projective space (P, \mathfrak{L}) of dim P = n, i.e., we can find every Pappian projective space M of dim M = n + s as a restriction of an n-dimensional Pappian projective space (P, \mathfrak{L}) . The restriction has the property that for every subspace T of M of dim $T \le n - 1$ it holds that $T = \overline{T} \cap M$. In particular for $n \ge 2$, (E) is satisfied (but not (G)).

We recall (cf. [6, Lemma 2.5]:

LEMMA 2.5. If $(M, \mathfrak{L}(M))$ is a locally complete restriction of a linear space (P, \mathfrak{L}) satisfying the exchange condition, then dim $M = \dim P$.

3. The Planes of a Locally Complete Restriction

For a restriction M of (P, \mathfrak{L}) we consider now the following properties:

- (P1) For every plane E of $(M, \mathfrak{L}(M))$, \overline{E} is a generalized projective plane.
- (P2) For every plane E of $(M, \mathfrak{L}(M))$ and any lines $G \subset E, L \subset \overline{E}$ it holds $\overline{G} \cap L \neq \emptyset$.
- (P3) For every plane E of $(M, \mathfrak{L}(M))$ and any lines $G_1, G_2 \subset E$, it holds $\overline{G}_1 \cap \overline{G}_2 \neq \emptyset$, and \overline{E} satisfies the exchange condition.
- (P4) For every plane E of $(M, \mathfrak{L}(M))$ and any lines $G_1, G_2 \subset E$, it holds $\overline{G}_1 \cap \overline{G}_2 \neq \emptyset$.

Clearly (P1) implies (P2) and (P3), and (P4) is a consequence of every (Pi), i = 1, 2, 3.

For $M \subset P$, let $(M, \mathfrak{L}(M))$ be in the following a locally complete restriction of the linear space (P, \mathfrak{L}) satisfying (P4). We recall that $X \mapsto \overline{X}$ denotes the closure of (P, \mathfrak{L}) and $X \mapsto \langle X \rangle$ the closure of $(M, \mathfrak{L}(M))$. We shall abuse the notation when the set is listed $\{a, b, c, \ldots\}$ and write $\overline{a, b, c, \ldots}$ and $\langle a, b, c, \ldots \rangle$.

LEMMA 3.1. (1) If $a, b, c \in M$ are not collinear points, then $\overline{a, b, c} = \bigcup_{x \in \overline{b, c}} \overline{a, x}$ and $\langle a, b, c \rangle = \bigcup_{x \in \overline{b, c}} \overline{a, x} \cap M$.

(2). Every plane E of M satisfies the exchange condition.

<u>Proof.</u> (1) Since $a, b, c \in \overline{a, b, c}$ and since for any point $x \in \overline{a, b, c}$ it holds $\overline{a, x} \subset \overline{a, b, c}$ we have $\bigcup_{x \in \overline{b, c}} \overline{a, x} \subset \overline{a, b, c}$. Let $y \in \overline{a, b, c} \setminus \{a\}$, then $\overline{a, y} \cap \overline{a, b, c} \subset \overline{a, b, c}$.

- $M \subset \langle a, b, c \rangle$ by (E) and (G), hence $\overline{a, y} \cap M$ and $\langle b, c \rangle$ are coplanar in M. By (P4) $p = \overline{b, c} \cap \overline{a, y}$ exists and $\overline{a, y} = \overline{a, p}$, hence $y \in \overline{a, p} \subset \bigcup_{x \in \overline{b, c}} \overline{a, x}$ and $\overline{a, b, c} \subset \bigcup_{x \in \overline{b, c}} \overline{a, x}$. By (E), $\langle a, b, c \rangle = \overline{a, b, c} \cap M = \bigcup_{x \in \overline{b, c}} \overline{a, x} \cap M$.
- (2) There are $a, b, c \in E$ with $E = \langle a, b, c \rangle$. Let $d \in E \setminus \langle b, c \rangle$, then by (1) there is an $x \in \langle b, c \rangle$ with $d \in \langle a, x \rangle$, hence $a \in \langle d, x \rangle \subset \langle b, c, d \rangle$ and $E = \langle b, c, d \rangle$.
- LEMMA 3.2. Let $E, F \subset M$ be distinct planes of M containing distinct common points $x, y \in \overline{E} \cap \overline{F}$. Then for every line $G \subset E$ it holds $\overline{G} \cap \overline{F} \neq \emptyset$.

Proof. If $x \in M$ or $y \in M$, then $\overline{x}, \overline{y} \cap M \in \mathfrak{L}(M)$ by (G). Hence (P4) implies $\overline{G} \cap \overline{x}, \overline{y} \neq \emptyset$ and therefore $\overline{G} \cap \overline{F} \neq \emptyset$. Now we assume $x, y \notin M$. By (P4) for distinct points $a, b \in G$ there exists $z = \overline{a}, \overline{x} \cap \overline{b}, \overline{y}$. Let $c \in F \setminus E$ and $d \in (\overline{c}, \overline{x} \cap M) \setminus \{c\}$.

By (E) and (G), $\langle a, d \rangle$, \overline{c} , $\overline{z} \cap M \subset \overline{a}$, \overline{c} , \overline{x} are coplanar in M, hence $v = \overline{a}$, $\overline{d} \cap \overline{c}$, \overline{z} exists. Again by (E) and (G), \overline{b} , $\overline{v} \cap M$, \overline{c} , $\overline{y} \cap M \subset \overline{b}$, \overline{c} , \overline{y} are coplanar in M, hence $w = \overline{b}$, $\overline{v} \cap \overline{c}$, \overline{y} exists. Now v, $w \in \overline{a}$, \overline{b} , \overline{d} and $\overline{p} = \overline{a}$, $\overline{b} \cap \overline{d}$, \overline{w} exist. Because $\overline{p} \in \overline{a}$, $\overline{b} = \overline{G}$ and \overline{p} , $\overline{w} \in \overline{d}$, \overline{c} , $\overline{y} \subset \overline{F}$ we have $\overline{p} \in \overline{G} \cap \overline{F}$.

- LEMMA 3.3. (1) For any four independent points $a, b, c, d \in M$ it holds that $\overline{a, b, c, d} = \bigcup_{x \in \overline{b, c, d}} \overline{a, x}$ and $\langle a, b, c, d \rangle = \bigcup_{x \in \overline{b, c, d}} \overline{a, x} \cap M$.
 - (2) Every 3-dimensional subspace T of M satisfies the exchange condition.
- *Proof* (1) Let $U := \bigcup_{x \in \overline{b,c,d}} \overline{a,x}$. Clearly $\overline{b,c,d} \subset \overline{a,b,c,d}$ and $\overline{a,x} \subset \overline{a,b,c,d}$ for every $x \in \overline{b,c,d}$, hence $U \subset \overline{a,b,c,d}$.

Clearly $a, b, c, d \in U$. We proof that U is a subspace of P. Then it follows that $\overline{a, b, c, d} \subset \overline{U} = U$. For distinct points $x, y \in \overline{b, c, d}$ let $a_x \in \overline{a, x}, a_y \in \overline{a, y}$ with $a \neq a_x, a_y$. Hence $E := \overline{a, x, y} \cap M$ and $F := \overline{b, c, d} \cap M$ are distinct planes of M with $x, y \in \overline{E} \cap \overline{F}$. By Lemma 3.2 for every $q \in \overline{a_x, a_y}$ it follows that $p = \overline{a, q} \cap \overline{F}$ exists. Hence $q \in \overline{a, p} \subset U$, $\overline{a_x, a_y} \subset U$ and U is a subspace. Since M is a locally complete restriction of P, $\overline{a, b, c, d} \cap M = \overline{\langle a, b, c, d \rangle} \cap M = \langle a, b, c, d \rangle = U \cap M = \bigcup_{x \in \overline{b, c, d}} \overline{a, x} \cap M$ by 2.1(2).

(2) There are $a, b, c, d \in T$ with $T = \langle a, b, c, d \rangle$. Let $a' \in \langle a, b, c, d \rangle \setminus \langle b, c, d \rangle$ be any point with $a \neq a'$. By (1) there exists an $x \in \langle b, c, d \rangle$ with $a' \in \overline{a, x}$, hence $a \in (\overline{a'}, x \cap M) \subset \langle a', b, c, d \rangle$ by (1).

THEOREM 3.4. Let M be a locally complete restriction of (P, \mathfrak{L}) satisfying (P4). Let E, F be any planes of M with $\dim(E \cup F) = 3$ and $E \cap F \neq \emptyset$. Then $E \cap F \in \mathfrak{L}(M)$ is a line.

Proof Let $b \in E \cap F$, $c, d \in E$ with $E = \langle b, c, d \rangle$, hence $\overline{E} = \overline{b, c, d}$. Let $a \in F \setminus E$, i.e., a, b, c, d are independent and by Lemma 3.3(2), $\langle E \cup F \rangle = \langle a, b, c, d \rangle$. By Lemma 3.3(1), $F \subset \bigcup_{x \in \overline{E}} \overline{a, x} \cap M$. Hence for a point $z \in F \setminus \langle a, b \rangle$, i.e. $F = \langle a, b, z \rangle$, there is a point $x \in \overline{E}$ with $z \in \overline{a, x} \cap M$. By (G), there exists $p \in \overline{x, b} \cap M$ with $p \neq b$. We have $p \in E = \overline{E} \cap M$ and $p \in F = \langle a, b, z \rangle = \overline{E} \cap M$

 $\overline{a,b,z} \cap M$. Therefore $\langle b,p \rangle \subset F \cap E$. Since $\dim \langle E \cup F \rangle = 3$, we have $E \neq F$, hence $\langle b,p \rangle = F \cap E$.

THEOREM 3.5 Let M be a locally complete restriction of (P, \mathfrak{L}) . If dim $M \geqslant 3$, then (P2) implies (P1).

Proof. Since (P2) implies (P4), we can use Theorem 3.4 and Lemma 3.2. Let $E \subset M$ be a plane and $L_1, L_2 \subset \overline{E}$ be distinct lines. Since dim $M \geqslant 3$ there is a point $a \in M \setminus E$. By (E), $F_i = \overline{L_i \cup \{a\}} \cap M$ are planes of M for i = 1, 2. By Theorem 3.4, the planes $F_1, F_2 \subset \langle E \cup \{a\} \rangle$ intersect in a line $G = F_1 \cap F_2$. By (P2), $x_i = \overline{G} \cap \overline{L_i}$ exist for i = 1, 2. Since $a \neq \overline{E}$ we have $|\overline{G} \cap \overline{E}| = 1$, hence $x_1 = x_2 \in L_1 \cap L_2$.

THEOREM 3.6. Let M be a locally complete restriction of (P, \mathfrak{L}) . If dim $M \geqslant 3$ and if

(*) for any distinct planes $E, F \subset M$ containing distinct points $x, y \in \overline{E}, \overline{F}$ it holds that $\overline{E} \cap \overline{F} = \overline{x}, \overline{y}$,

is satisfied, then (P4) implies (P1).

Proof. Let $E \subset M$ be a plane and $L_1, L_2 \subset \overline{E}$ be distinct lines. Since $\dim M \geqslant 3$ there is a point $a \in M \setminus E$. By (E), $F_i = \overline{L_i \cup \{a\}} \cap M$ are planes of M for i = 1, 2 which by Theorem 3.4 intersect in a line $G = F_1 \cap F_2$. By Lemma 3.2 $X = \overline{G} \cap \overline{E}$ exists and by (*) it follows $X \in \overline{F_i} \cap \overline{E} = L_i$ for i = 1, 2. Hence $X \in L_1 \cap L_2$.

COROLLARY 3.7. Let M be a locally complete restriction of (P, \mathfrak{L}) . If $\dim M \geq 3$, then (P3) implies (P1).

Proof If \overline{E} satisfies the exchange condition for every plane $E \subset M$, obviously the property (*) of Theorem 3.6 holds.

We summarize 3.5 and 3.7:

THEOREM 3.8. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) of dim $M \ge 3$. Then the properties (P1), (P2) and (P3) are pairwise equivalent.

4. Characterization of a Locally Complete Restriction

In this section we consider properties which imply that (P, \mathfrak{L}) is a generalized projective space.

THEOREM 4.1. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) which satisfies (P1), or (P2), or (P3), respectively. If dim $P \geqslant 3$, then (P, \mathfrak{L}) is a generalized projective space.

Proof. By Theorem 2.4, dim $P \ge 3$ implies dim $M \ge 3$, hence by Theorem 3.8, (P1), (P2) and (P3) are equivalent.

We show the Veblen–Young–Axiom for P. Let $x_1, y_1, x_2, y_2, z \in P$ be distinct points with x_1, y_1, z collinear x_2, y_2, z collinear and $\overline{x_1, y_1} \neq \overline{x_2, y_2}$. We have to show that $\overline{x_1, x_2} \cap \overline{y_1, y_2} \neq \emptyset$.

Since dim $P \geqslant 3$ and $\overline{M} = P$ by Lemma 2.3, there exists a point $a \in M \setminus \overline{x_1, x_2, z}$. Let $b_i \in \overline{a, x_i} \cap M \setminus \{a\}$, $c_i \in \overline{a, y_i} \cap M \setminus \{a\}$ for i = 1, 2 and $d \in \overline{a, z} \cap M \setminus \{a\}$ (cf. (G)), then $c_1, c_2 \in \langle a, b_1, b_2, d \rangle = \overline{a, b_1, b_2, d} \cap M = \overline{a, x_1, x_2, z} \cap M$. Since dim $\langle a, b_1, b_2, d \rangle = 3$, by Theorem 3.4 there is a point $e \in \langle a, b_1, b_2, d \rangle \setminus \{a\}$ with $\langle a, b_1, b_2 \rangle \cap \langle a, c_1, c_2 \rangle = \langle a, e \rangle$. Hence $\overline{a, e} \subset \overline{a, b_1, b_2} = \overline{a, x_1, x_2}$ and $\overline{a, e} \subset \overline{a, c_1, c_2} = \overline{a, y_1, y_2}$. By (P2) the points $w_x = \overline{a, e} \cap \overline{x_1, x_2}$ and $w_y = \overline{a, e} \cap \overline{y_1, y_2}$ exist.

Since $a \notin \overline{x_1, x_2, z} = \overline{x_1, x_2, y_1, y_2}$ it follows that $|\overline{a}, e \cap \overline{x_1, x_2, y_1, y_2}| = 1$ and $w := w_x = w_y$. Hence $w \in \overline{x_1, x_2}, \overline{y_1, y_2}$, this is, $\overline{x_1, x_2} \cap \overline{y_1, y_2} = w$.

The existence of a point $a \notin \overline{x_1, x_2, z}$ is necessary for this proof. Therefore we must know that dim $P \geqslant 3$. Since by Theorem 2.4 we have dim $P \geqslant \dim M - 1$, we obtain:

COROLLARY 4.2. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) satisfying (P1), or (P2), or (P3), respectively. If dim $M \geq 4$, then (P, \mathfrak{L}) is a projective space.

THEOREM 4.3. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) of dim $M \ge 3$ which satisfies (P1), or (P2), or (P3), respectively. Then the following statements are equivalent:

- (1) (P, \mathfrak{L}) is a generalized projective space.
- (2) (P, \mathfrak{L}) satisfies the exchange condition.
- (3) The planes of (P, \mathfrak{L}) satisfy the exchange condition.
- (4) dim $P = \dim M$.
- (5) dim $P \geqslant 3$.

Proof. As is known, a generalized projective space satisfies the exchange condition, hence it suffices to show (i) $^{\circ}2 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1^{\circ}$ and (ii) $^{\circ}3 \Rightarrow 5^{\circ}$.

- (i) By 2.5, if (P, \mathfrak{L}) satisfies the exchange condition, then dim $P = \dim M$, hence dim $P \geqslant 3$. By Theorem 4.1, dim $P \geqslant 3$ implies that (P, \mathfrak{L}) is a generalized projective space.
- (ii) For a plane E of M we have by (E), $\overline{E} \cap M = E$. Therefore dim $M \geqslant 3$ implies $E \neq M$ and $\overline{E} \neq P$. Hence, if the planes of P satisfy the exchange condition, we have dim $P \geqslant 3$.

COROLLARY 4.4. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of a generalized projective space (P, \mathfrak{L}) . If for every plane E of M, the plane \overline{E} is a projective plane, then (P, \mathfrak{L}) is a projective space.

Proof. Let $L \in \mathfrak{L}$ and $a \in M \setminus L$. Then $\overline{L \cup \{a\}}$ is a projective plane, hence $|L| \geqslant 3$.

The question if (P, \mathfrak{L}) also for dim M=3 satisfies the exchange condition, if dim $M=\dim P$ or if (P, \mathfrak{L}) is a generalized projective space, respectively, is answered in the next section.

5. Projective Embedding

To handle the case dim M=3, we will use Kahn's Theorem which state that every locally projective linear space (M,\mathfrak{M}) of dim M=3 satisfying the Bundle Theorem is embeddable in a projective space. We recall that a subset $\mathfrak{b}\subset \mathfrak{L}(M)$ is called a bundle if any two lines $L,G\in\mathfrak{b}$ are coplanar in $(M,\mathfrak{L}(M))$ and if for every point $a\in M$ there is a line $L\in\mathfrak{b}$ with $a\in L$.

LEMMA 5.1. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) of dim $M \geqslant 3$ which satisfies (P4). Then:

- (1) Let $A, B, L \in \mathfrak{L}(M)$ be pairwise coplanar lines not in a common plane, then $\overline{A} \cap \overline{B} = \overline{A} \cap \overline{L} = \overline{B} \cap \overline{L} \neq \emptyset$.
- (2) For every $y \in P$, $[y] := \{\overline{y, a} \cap M : a \in M\}$ is a bundle of $(M, \mathfrak{L}(M))$.
- (3) Let $\mathfrak{b} \subset \mathfrak{L}(M)$ be a bundle, then there is a point $x \in P$ with $\mathfrak{b} = \{\overline{x}, \overline{a} \cap M : a \in M \setminus \{x\}\} = [x]$.
- *Proof.* (1) By (P4), $x = \overline{A} \cap \overline{B}$ exists and $\overline{A} \cap \overline{L} \neq \emptyset \neq \overline{B} \cap \overline{L}$. Since A, B, L are not coplanar, by (E) also $\overline{L} \not\subset \overline{A \cup B}$, hence $|\overline{L} \cap \overline{A \cup B}| \leqslant 1$. It follows that $x = \overline{A} \cap \overline{L} = \overline{B} \cap \overline{L}$
- (2) For $a, b \in M \setminus \{y\}$, the lines $\overline{a, y}$, $\overline{b, y}$ are coplanar, by (G) $\overline{a, y} \cap M$, $\overline{b, y} \cap M \in \mathfrak{L}(M)$, and by (E), $\overline{a, y} \cap M$, $\overline{b, y} \cap M$ are coplanar in M.
- (3) Let $a, b \in M$ with $[a], [b] \neq \mathfrak{b}$, and let $A, B \in \mathfrak{b}$ with $a \in A, b \in B$. Since dim $M \geqslant 3$ there is a point $c \in M \setminus \langle A \cup B \rangle$ and a line $C \in \mathfrak{b}$ with $c \in C$. The lines A, B, C are not coplanar. Hence by (1), $x = \overline{A} \cap \overline{B} = \overline{A} \cap \overline{C} = \overline{B} \cap \overline{C}$ exists. For every line $G \in \mathfrak{b}$, G is not coplanar with A, B, or A, C, or B, C, respectively. Therefore by (1), $x \in \overline{G}$. Hence by (G), $\mathfrak{b} = [x]$.

THEOREM 5.2. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) of dim $M \ge 3$ which satisfies (P4). Then:

- (1) $(M, \mathfrak{L}(M))$ is locally generalized projective.
- (2) $(M, \mathfrak{L}(M))$ satisfies the Bundle Theorem.

- *Proof.* (1) Let $x \in M$. For a subspace E of M we denote by $\widehat{E} := \{\langle a, x \rangle : a \in E \setminus \{x\}\}$ a subset of [x]. Let $\mathcal{L}_x := \{\widehat{E} : E \text{ a plane of } M \text{ with } x \in E\}$. Since the planes of $(M, \mathcal{L}(M))$ satisfy by 3.1(2) the exchange condition, $([x], \mathcal{L}_x)$ is a linear space. For a subspace $T \subset M$ of dim T = 3 containing x let $a, b, c \in T$ with $T = \langle a, b, c, x \rangle$ (cf. 3.3 (2)). Clearly \widehat{T} is a subspace of $([x], \mathcal{L}_x)$ which is generated by $\langle a, x \rangle$, $\langle b, x \rangle$, $\langle c, x \rangle$, since for any two lines of T the plane generated by the lines is contained in T. Therefore \widehat{T} is a plane of $([x], \mathcal{L}_x)$. By Theorem 3.4, \widehat{T} is a generalized projective plane.
- (2) Let $A, B, C, D \in \mathfrak{L}(M)$, no three in a common plane, and let $\{A, B\}$, $\{A, C\}$, $\{A, D\}$, $\{B, C\}$, and $\{B, D\}$ be pairwise coplanar. By 5.1(1), $x = \overline{A} \cup \overline{B}$ exists with $x \in \overline{C}$ and $x \in \overline{D}$, hence $x = \overline{C} \cap \overline{D}$. By (E), C, D are coplanar.

We define $P' := \{ \mathfrak{b} : \mathfrak{b} \text{ is a bundle of } (M, \mathfrak{L}(M)) \}$. For any two bundles $\mathfrak{x}, \mathfrak{y} \in P' \text{ let } [\mathfrak{x}, \mathfrak{y}] := \{ \mathfrak{z} \in P' : \text{ for every } a \in M \text{ with } [a] \neq \mathfrak{x}, \mathfrak{y}, \mathfrak{z} \text{ the lines of } \mathfrak{x}, \mathfrak{y}, \mathfrak{z} \text{ through } a \text{ are coplanar in } (M, \mathfrak{L}(M)) \}$.

We define $\mathfrak{L}' := \{ [\mathfrak{x}, \mathfrak{y}] : \mathfrak{x}, \mathfrak{y} \in P' \text{ distinct } \}.$

By the Theorem of Kahn and by 1.1 we know that (P', \mathfrak{L}') is a generalized projective space, if $(M, \mathfrak{L}(M))$ is locally generalized projective, if $(M, \mathfrak{L}(M))$ satisfies the Bundle Theorem, and if dim $M \ge 3$ (cf. [2, 5]).

LEMMA 5.3. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) of dim $M \ge 3$ which satisfies (P1), or (P2), or (P3), respectively. Then three points $x, y, z \in P$ are collinear in P if and only if for every $a \in M \setminus \{x, y, z\}$ the lines $\overline{a, x} \cap M$, $\overline{a, y} \cap M$, $\overline{a, z} \cap M$ are coplanar in $(M, \mathfrak{L}(M))$.

Proof. If x, y, z are collinear and $x \neq y$, then $z \in \overline{a, x, y}$ and by (E) the lines $\overline{a, x} \cap M$, $\overline{a, y} \cap M$, $\overline{a, z} \cap M$ are coplanar.

Assume $z \notin \overline{x, y}$. Let $a \in M \setminus \overline{x, y}$, then $E := \overline{a, x, y} \cap M$ is a plane of M. Since dim $M \geqslant 3$, there exists $b \in M \setminus E = M \setminus \overline{E}$ and $F := \overline{b, x, y} \cap M$ is a plane of M. By Theorem 3.8, (P1) is satisfied and \overline{E} , \overline{F} are projective planes. Since $b \notin \overline{E}$, $\overline{E} \cap \overline{F} = \overline{x, y}$. Hence $z \notin \overline{x, y}$ implies $z \notin \overline{E}$ or $z \notin \overline{F}$. Therefore $\overline{a, z} \notin E$ or $\overline{b, z} \notin F$, and $\overline{a, x} \cap M$, $\overline{a, y} \cap M$, $\overline{a, z} \cap M$ are not coplanar, or $\overline{b, x} \cap M$, $\overline{b, y} \cap M$, $\overline{b, z} \cap M$ are not coplanar.

THEOREM 5.4. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) of dim $M \geqslant 3$ which satisfies (P1), or (P2), or (P3), respectively, and let (P', \mathfrak{L}') denote the bundle space. Then $\phi: P \rightarrow P'$, $y \mapsto [y]$ is an isomorphism.

Proof. By 5.1(2), for every $y \in P$, [y] is a bundle. Clearly $[y] \neq [z]$ for $y \neq z$. By 5.1(3), for every bundle $\mathfrak b$ there exists a point $x \in P$ with $\mathfrak b = [x]$, hence $\phi \colon P \to P'$, $y \mapsto [y]$ is a bijection. By 5.3 three points $x, y, z \in P$ are collinear if and only if for every $a \in M \setminus \{x, y, z\}$ the lines $\overline{a, x} \cap M$, $\overline{a, y} \cap M$, $\overline{a, z} \cap M$ are coplanar in $(M, \mathfrak L(M))$. This is equivalent to the collinearity of the bundles [x], [y], [z] in $(P', \mathfrak L')$ by definition and by 5.1(2).

THEOREM 5.5. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) of dim $M \ge 3$ satisfying (P1), or (P2), or (P3), respectively. Then (P, \mathfrak{L}) is a generalized projective space.

Proof. We know by Theorem 5.2 that $(M, \mathfrak{L}(M))$ is locally generalized projective and satisfies the Bundle Theorem. Hence the bundle space (P', \mathfrak{L}') of M is a generalized projective space by [2,5] and Lemma 1.1. By Lemma 5.4, (P', \mathfrak{L}') and (P, \mathfrak{L}) are isomorphic.

COROLLARY 5.6. Let $(M, \mathfrak{L}(M))$ be a locally complete restriction of (P, \mathfrak{L}) . If for every plane E of M the plane \overline{E} of P generated by E is a projective plane, then (P, \mathfrak{L}) is a projective space.

Proof. For dim M=2, $\overline{M}=P$ is a projective plane. For dim $M\geqslant 3$, (P,\mathfrak{L}) is a projective space by Theorem 5.5 and Corollary 4.4.

References

- Batten, L. M.: Locally generalized projective lattices satisfying a bundle theorem, Geom. Dedicata 22 (1987), 363–369.
- Kahn, J.: Locally projective-planar lattices which satisfy the bundle theorem, Math. Z. 175 (1980), 219–247.
- 3. Kantor, W. M.: Dimension and embedding theorems for geometric lattices, *J. Combin. Theory Ser. A* 17 (1974) 173–195.
- 4. Kreuzer, A.: Zur Einbettung von Inzidenzräumen und angeordneten Räumen, *J. Geom.* **35** (1989), 132–151.
- Kreuzer, A.: Locally projective spaces which satisfy the bundle theorem, J. Geom. 56 (1996), 87–98.
- 6. Kreuzer, A.: Projective embedding of projective spaces, *Bull. Belg. Math. Soc.* **5** (1998) 363–372
- 7. Kreuzer, A.: On isomorphisms of Grassmann spaces, Aequationes. Math. 56 (1998), 243-250.
- 8. Sörensen, K.: Projektive Einbettung angeordneter Räume, *Beiträge zur Geometrie und Algebra* (TUM-Bericht M 8612, TU München), **15** (1986), 8–15.
- 9. Teirlinck, L.: On linear spaces in which every plane is either projective or affine, *Geom. Dedicata* **4** (1975), 39–44.
- 10. Wyler, O.: Incidence geometry, *Duke Math. J.* **20** (1953), 601–610.