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Abstract. This note deals with the following question: How many planes of a linear space(P,L)

must be known as projective planes to ensure that(P,L) is a projective space? The following answer
is given: If for any subsetM of a linear space(P,L) the restriction(M,L(M)) is locally complete,
and if for every planeE of (M,L(M)) the planeE generated byE is a projective plane, then(P,L)
is a projective space. Or more generally: If for any subsetM of P the restriction(M,L(M)) is locally
complete, and if for any two distinct coplanar linesG1,G2 ∈ L(M) the linesG1,G2 ∈ L generated
byG1,G2 have a nonempty intersection andG1 ∪G2 satisfies the exchange condition, then(P,L)
is a generalized projective space.
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1. Introduction

For a subsetM ⊂ P of a linear space(P,L) let L(M) := {L ∩M : L ∈ L and
|L ∩M| > 2}. We call the linear space(M,L(M)) a restrictionof (P,L), i.e., the
lines of(M,L(M)) are exactly parts of the lines ofL.

An embeddingφ: M → P of a linear space(M,M) in a linear space(P,L)
is an injective mapping which maps collinear points onto collinear points and
noncollinear points onto noncollinear points. For an embeddingφ: M → P we
haveφ(M) := {φ(G) : G ∈ M} = L(φ(M)); this means,(φ(M), φ(M)) is a
restriction of(P,L). Usually we identifyM andφ(M) for an embeddingφ, hence
(φ(M), φ(M)) = (M,L(M)).

We call a restriction(M,L(M)) of (P,L) locally complete, if for every nonempty
subspaceT of (M,L(M)) there exists exactly one subspaceU of (P,L) with
T = M ∩ U (cf. [4, 8]).

For a restrictionM of (P,L) we consider in this paper the following property
that for every planeE of M the plane ofP generated byE is a projective plane
(property (P1) of Section 3), or as a generalization, that for any two coplanar lines
G1,G2 of E the lines ofP generated byG1,G2 have a nonempty intersection
(property (P4) of Section 3).
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44 ALEXANDER KREUZER

In this paper it is proved that for every locally complete restrictionM of (P,L)
satisfying (P1), or one of the equivalent properties (P2) or (P3) (cf. Section 3) the
linear space(P,L) is a generalized projective space, and(M,L(M)) is locally
generalized projective and satisfies the Bundle Theorem.

Thereby a linear space(M,M) is calledlocally (generalized) projective, if for
every pointx ∈ M the lines and planes of(M,M) containingx form a (gen-
eralized) projective space. We recall a result of O. Wyler [10, Theorem 6.2] and
L. M. Batten [1]:

LEMMA 1.1. A locally generalized projective space is a locally projective space
or a generalized projective space.

The Bundle Theoremstates that for four linesA,B,C,D ∈ M, no three in a
common plane, the coplanarities of{A,B}, {A,C}, {A,D}, {B,C}, {B,D} imply
the coplanarity of{C,D}.

There is a close connection of the result mentioned above to the classical Em-
bedding Theorems of O. Wyler [10], W. M. Kantor [3], J. Kahn and many oth-
ers, which state that every locally generalized projective linear space (M,M) of
dim M > 3 satisfying the Bundle Theorem is embeddable in a generalized pro-
jective space. For dimM = 3 the result is due to J. Kahn [2] (cf. also [5]). For
these embeddings the so-calledbundle space(P ′,L′) is constructed. The points
of P ′ are defined bybundlesof b ⊂ M, whereby any two lines of a bundle are
coplanar and every point ofM is incident with a line of every bundle (cf. [8]). For
y ∈ M let [y] := {G ∈M : y ∈ G}. For any two bundlesa, b of the bundle space
the connecting line[a, b] consists of all bundlesx, for which the unique lines of
a, b, x through every pointy ∈ M with [y] 6= a, b, x are coplanar.

The mappingφ: M → P ′, x 7→ [x] embedsM in its bundle spaceP ′. It is easy
to show thatφ(M) is a locally complete restriction ofP . Hence we have a situation
similar to that of this paper.

We want to mention the paper [9] in which it is proved that a linear space is an
affine or projective space, if every plane is an affine or projective plane.

2. The Dimension of a Locally Complete Restriction

Let (P,L) denote alinear spacewith the point setP and the line setL. A subspace
is a subsetU ⊂ P such that for all distinct pointsx, y ∈ U the unique line passing
throughx andy, denoted byx, y, is contained inU . Let U denote the set of all
subspaces. For every subsetX ⊂ P we define the followingclosure operation

: P(P )→ U, X 7→ X by X :=
⋂
U∈U
X⊂U

U (1)

ForU ∈ U we call dimU := inf{|X| − 1 : X ⊂ U andX = U } the dimension
of U . A subspace of dimension two is aplane. A subsetX ⊂ P is independent, if
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x 6∈ X \ {x} for everyx ∈ X, and is abasisof a subspaceU , if X is independent
andX = U.

A linear space is ageneralized projective plane, if any two lines have a nonempty
intersection, and aprojective plane, if in addition every line contains at least three
points. A linear space is a(generalized) projective space, if every plane is a (gener-
alized) projective plane. A generalized projective space can be defined equivalently
by the Axiom of Veblen–Young.

A linear space(P,L) satisfies theexchange conditionif for S ⊂ P and
x, y ∈ P with x ∈ S ∪ {y} \ S , it follows thaty ∈ S ∪ {x}.

ForM ⊂ P , let (M,L(M)) be always a restriction of the linear space(P,L).
We denote byX 7→ X the closure of(P,L) and byX 7→ 〈X〉 the closure of
(M,L(M)). By [4, (1.1)] and [6, Lemma 2.3]:

LEMMA 2.1. (1) For every subspaceU of (P,L), U ∩ M is a subspace of
(M,L(M)).

(2) For a subsetX ⊂ M it holds that〈X〉 ⊂ X and〈X〉 = X.
(3) If a subsetX ⊂ M is independent inP , thenX is also independent inM.
(4) If M = P , thendim M > dim P .

By [4, (1.5)]:

LEMMA 2.2. For a restriction(M,L(M)) of (P,L), the following statements are
equivalent:

(1) (M,L(M)) is locally complete.
(2) For every subspaceT ofM and for every subspaceU of P withU ∩M 6= ∅

it holds:

U = U ∩M and T = T ∩M. (2)

(3) The properties(G) and(E) are both satisfied, whereby

(G) For every lineL ∈ L, |L ∩M| 6= 1.
(E) For every planeE ofM, E = E ∩M.

By Lemma 2.2(2)P = P ∩M = M. Hence:

LEMMA 2.3. If (M,L(M)) is a locally complete restriction of(P,L), then
M = P .

THEOREM 2.4. Let (M,L(M)) be a locally complete restriction of(P,L). Then
dim P + 1> dim M > dim P.

Proof. By 2.3 and 2.1(4) dimM > dim P. LetX ⊂ P be a generating subset
of P anda ∈ M \ X. By (G) there exists for everyx ∈ X a pointbx ∈ x, a ∩ M
with bx 6= a, hence alsoB := {bx : x ∈ X} ∪ {a} is a generating subset ofP
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46 ALEXANDER KREUZER

with B ⊂ M and|B| = |X| + 1. Hence by 2.1(2),〈B〉 = 〈B〉 ∩ M = B ∩M =
P ∩M = M, sinceM is a locally complete restriction. ThereforeB is a generating
subset ofM and we have dimM 6 1+ dim P. 2

Remark 1. We remark that property (E) cannot be omitted in Theorem 2.4.
In [7] an example of an embedding of a high-dimensional projective space in a
Desarguesian projective plane satisfying (G) is given (which by 2.4 cannot satisfy
(E))

In [6] it is shown that for anyn, s ∈ N, n > 2, every Pappian projective space
(M,M) of dim M = n+ s is embeddable in a Pappian projective space(P,L) of
dim P = n, i.e., we can find every Pappian projective spaceM of dim M = n+s as
a restriction of ann-dimensional Pappian projective space(P,L). The restriction
has the property that for every subspaceT of M of dim T 6 n − 1 it holds that
T = T ∩M. In particular forn > 2, (E) is satisfied (but not (G)).

We recall (cf. [6, Lemma 2.5]:

LEMMA 2.5. If (M,L(M)) is a locally complete restriction of a linear space
(P,L) satisfying the exchange condition, thendim M = dim P .

3. The Planes of a Locally Complete Restriction

For a restrictionM of (P,L) we consider now the following properties:

(P1) For every planeE of (M,L(M)) ,E is a generalized projective plane.

(P2) For every planeE of (M,L(M)) and any linesG ⊂ E,L ⊂ E it holds
G ∩ L 6= ∅.

(P3) For every planeE of (M,L(M)) and any linesG1,G2 ⊂ E, it holdsG1 ∩
G2 6= ∅, andE satisfies the exchange condition.

(P4) For every planeE of (M,L(M)) and any linesG1,G2 ⊂ E, it holdsG1 ∩
G2 6= ∅.

Clearly (P1) implies (P2) and (P3), and (P4) is a consequence of every (Pi),
i = 1,2,3.

ForM ⊂ P , let (M,L(M)) be in the following a locally complete restriction of
the linear space(P,L) satisfying (P4). We recall thatX 7→ X denotes the closure
of (P,L) andX 7→ 〈X〉 the closure of(M,L(M)). We shall abuse the notation
when the set is listed{a, b, c, . . .} and writea, b, c, . . . and〈a, b, c, . . .〉.

LEMMA 3.1. (1) If a, b, c ∈ M are not collinear points, thena, b, c = ⋃x∈b,c a, x
and〈a, b, c〉 =⋃x∈b,c a, x ∩M.

(2). Every planeE ofM satisfies the exchange condition.
Proof. (1) Sincea, b, c ∈ a, b, c and since for any pointx ∈ a, b, c it holds

a, x ⊂ a, b, c we have
⋃
x∈b,c a, x ⊂ a, b, c. Let y ∈ a, b, c \ {a}, thena, y ∩
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M ⊂ 〈a, b, c〉 by (E) and (G), hencea, y ∩ M and〈b, c〉 are coplanar inM. By
(P4)p = b, c ∩ a, y exists anda, y = a, p, hencey ∈ a, p ⊂ ⋃

x∈b,c a, x and
a, b, c ⊂ ⋃x∈b,c a, x. By (E), 〈a, b, c〉 = a, b, c ∩M =⋃x∈b,c a, x ∩M.

(2) There area, b, c ∈ E with E = 〈a, b, c〉. Let d ∈ E \ 〈b, c〉, then by
(1) there is anx ∈ 〈b, c〉 with d ∈ 〈a, x〉, hencea ∈ 〈d, x〉 ⊂ 〈b, c, d〉 and
E = 〈b, c, d〉. 2
LEMMA 3.2. LetE,F ⊂ M be distinct planes ofM containing distinct common
pointsx, y ∈ E ∩ F . Then for every lineG ⊂ E it holdsG ∩ F 6= ∅.

Proof. If x ∈ M or y ∈ M, thenx, y ∩M ∈ L(M) by (G). Hence (P4) implies
G ∩ x, y 6= ∅ and thereforeG ∩ F 6= ∅. Now we assumex, y 6∈ M. By (P4)
for distinct pointsa, b ∈ G there existsz = a, x ∩ b, y. Let c ∈ F \ E and
d ∈ (c, x ∩M) \ {c}.

By (E) and (G),〈a, d〉, c, z ∩M ⊂ a, c, x are coplanar inM, hencev = a, d ∩
c, z exists. Again by (E) and (G),b, v ∩ M, c, y ∩ M ⊂ b, c, y are coplanar in
M, hencew = b, v ∩ c, y exists. Nowv,w ∈ a, b, d andp = a, b ∩ d,w exist.
Becausep ∈ a, b = G andp,w ∈ d, c, y ⊂ F we havep ∈ G ∩ F . 2
LEMMA 3.3. (1) For any four independent pointsa, b, c, d ∈ M it holds that
a, b, c, d =⋃x∈b,c,d a, x and〈a, b, c, d〉 = ⋃x∈b,c,d a, x ∩M.

(2) Every3-dimensional subspaceT ofM satisfies the exchange condition.
Proof (1) Let U := ⋃

x∈b,c,d a, x. Clearly b, c, d ⊂ a, b, c, d and a, x ⊂
a, b, c, d for everyx ∈ b, c, d, henceU ⊂ a, b, c, d .

Clearlya, b, c, d ∈ U . We proof thatU is a subspace ofP . Then it follows that
a, b, c, d ⊂ U = U . For distinct pointsx, y ∈ b, c, d let ax ∈ a, x, ay ∈ a, y with
a 6= ax, ay . HenceE := a, x, y ∩M andF := b, c, d ∩M are distinct planes ofM
with x, y ∈ E∩F . By Lemma 3.2 for everyq ∈ ax, ay it follows thatp = a, q ∩ F
exists. Henceq ∈ a, p ⊂ U , ax, ay ⊂ U andU is a subspace. SinceM is a locally
complete restriction ofP , a, b, c, d ∩ M = 〈a, b, c, d〉 ∩ M = 〈a, b, c, d〉 =
U ∩M =⋃x∈b,c,d a, x ∩M by 2.1(2).

(2) There area, b, c, d ∈ T with T = 〈a, b, c, d〉. Leta′ ∈ 〈a, b, c, d〉\〈b, c, d〉
be any point witha 6= a′. By (1) there exists anx ∈ 〈b, c, d〉 with a′ ∈ a, x, hence
a ∈ (a′, x ∩M) ⊂ 〈a′, b, c, d〉 by (1). 2
THEOREM 3.4. LetM be a locally complete restriction of(P,L) satisfying(P4).
LetE,F be any planes ofM with dim〈E ∪F 〉 = 3 andE ∩F 6= ∅. ThenE ∩F ∈
L(M) is a line.

Proof Let b ∈ E ∩ F , c, d ∈ E with E = 〈b, c, d〉, henceE = b, c, d. Let a ∈
F \E, i.e.,a, b, c, d are independent and by Lemma 3.3(2),〈E∪F 〉 = 〈a, b, c, d〉.
By Lemma 3.3(1),F ⊂ ⋃

x∈E a, x ∩ M. Hence for a pointz ∈ F \ 〈a, b〉, i.e.
F = 〈a, b, z〉, there is a pointx ∈ E with z ∈ a, x ∩ M. By (G), there exists
p ∈ x, b ∩ M with p 6= b. We havep ∈ E = E ∩M andp ∈ F = 〈a, b, z〉 =
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a, b, z ∩M. Therefore〈b, p〉 ⊂ F ∩ E. Since dim〈E ∪ F 〉 = 3 , we haveE 6= F ,
hence〈b, p〉 = F ∩ E. 2
THEOREM 3.5 LetM be a locally complete restriction of(P,L). If dimM > 3,
then(P2) implies(P1).

Proof. Since (P2) implies (P4), we can use Theorem 3.4 and Lemma 3.2. Let
E ⊂ M be a plane andL1, L2 ⊂ E be distinct lines. Since dimM > 3 there is a
point a ∈ M \ E. By (E), Fi = Li ∪ {a} ∩M are planes ofM for i = 1,2. By
Theorem 3.4, the planesF1, F2 ⊂ 〈E ∪ {a}〉 intersect in a lineG = F1 ∩ F2. By
(P2),xi = G ∩ Li exist for i = 1,2. Sincea 6= E we have|G ∩ E| = 1, hence
x1 = x2 ∈ L1 ∩ L2. 2
THEOREM 3.6. LetM be a locally complete restriction of(P,L). If dimM > 3
and if

(∗) for any distinct planesE,F ⊂ M containing distinct pointsx, y ∈ E,F it
holds thatE ∩ F = x, y,

is satisfied, then (P4) implies (P1).
Proof. Let E ⊂ M be a plane andL1, L2 ⊂ E be distinct lines. Since

dimM > 3 there is a pointa ∈ M \E. By (E),Fi = Li ∪ {a} ∩M are planes ofM
for i = 1,2 which by Theorem 3.4 intersect in a lineG = F1∩ F2. By Lemma 3.2
x = G ∩ E exists and by (∗) it follows x ∈ F i ∩ E = Li for i = 1,2. Hence
x ∈ L1 ∩ L2. 2
COROLLARY 3.7. Let M be a locally complete restriction of(P,L). If
dim M > 3, then(P3) implies(P1).

Proof If E satisfies the exchange condition for every planeE ⊂ M, obviously
the property (∗) of Theorem 3.6 holds. 2

We summarize 3.5 and 3.7:

THEOREM 3.8. Let (M,L(M)) be a locally complete restriction of(P,L) of
dim M > 3. Then the properties(P1), (P2) and (P3)are pairwise equivalent.

4. Characterization of a Locally Complete Restriction

In this section we consider properties which imply that(P,L) is a generalized
projective space.

THEOREM 4.1. Let (M,L(M)) be a locally complete restriction of(P,L) which
satisfies(P1),or (P2),or (P3),respectively. Ifdim P > 3, then(P,L) is a gene-
ralized projective space.
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Proof. By Theorem 2.4, dimP > 3 implies dimM > 3, hence by Theorem 3.8,
(P1), (P2) and (P3) are equivalent.

We show the Veblen–Young–Axiom forP . Let x1, y1, x2, y2, z ∈ P be distinct
points withx1, y1, z collinearx2, y2, z collinear andx1, y1 6= x2, y2. We have to
show thatx1, x2 ∩ y1, y2 6= ∅.

Since dimP > 3 andM = P by Lemma 2.3, there exists a pointa ∈ M \
x1, x2, z. Let bi ∈ a, xi ∩M \ {a}, ci ∈ a, yi ∩M \ {a} for i = 1,2 andd ∈ a, z ∩
M \ {a} (cf. (G)), thenc1, c2 ∈ 〈a, b1, b2, d〉 = a, b1, b2, d ∩M = a, x1, x2, z∩M.

Since dim〈a, b1, b2, d〉 = 3, by Theorem 3.4 there is a pointe ∈ 〈a, b1, b2, d〉 \
{a} with 〈a, b1, b2〉 ∩ 〈a, c1, c2〉 = 〈a, e〉. Hencea, e ⊂ a, b1, b2 = a, x1, x2 and
a, e ⊂ a, c1, c2 = a, y1, y2. By (P2) the pointswx = a, e ∩ x1, x2 andwy =
a, e ∩ y1, y2 exist.

Sincea 6∈ x1, x2, z = x1, x2, y1, y2 it follows that |a, e ∩ x1, x2, y1, y2| = 1 and
w := wx = wy . Hencew ∈ x1, x2, y1, y2, this is,x1, x2 ∩ y1, y2 = w. 2

The existence of a pointa 6∈ x1, x2, z is necessary for this proof. Therefore we
must know that dimP > 3. Since by Theorem 2.4 we have dimP > dim M − 1,
we obtain:

COROLLARY 4.2. Let (M,L(M)) be a locally complete restriction of(P,L)
satisfying(P1), or (P2), or (P3), respectively. Ifdim M > 4, then (P,L) is a
projective space.

THEOREM 4.3. Let (M,L(M)) be a locally complete restriction of(P,L) of
dim M > 3 which satisfies(P1),or (P2),or (P3),respectively. Then the following
statements are equivalent:

(1) (P,L) is a generalized projective space.

(2) (P,L) satisfies the exchange condition.

(3) The planes of(P,L) satisfy the exchange condition.

(4) dim P = dim M.

(5) dim P > 3.

Proof. As is known, a generalized projective space satisfies the exchange con-
dition, hence it suffices to show (i) ‘2⇒ 4⇒ 5⇒ 1’ and (ii) ‘3⇒ 5’.

(i) By 2.5, if (P,L) satisfies the exchange condition, then dimP = dim M,
hence dimP > 3. By Theorem 4.1, dimP > 3 implies that(P,L) is a
generalized projective space.

(ii) For a planeE of M we have by (E),E ∩ M = E. Therefore dimM > 3
impliesE 6= M andE 6= P . Hence, if the planes ofP satisfy the exchange
condition, we have dimP > 3. 2
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COROLLARY 4.4. Let (M,L(M)) be a locally complete restriction of a general-
ized projective space(P,L). If for every planeE ofM, the planeE is a projective
plane, then(P,L) is a projective space.

Proof. Let L ∈ L anda ∈ M \ L. ThenL ∪ {a} is a projective plane, hence
|L| > 3. 2

The question if(P,L) also for dimM = 3 satisfies the exchange condition,
if dim M = dim P or if (P,L) is a generalized projective space, respectively, is
answered in the next section.

5. Projective Embedding

To handle the case dimM = 3, we will use Kahn’s Theorem which state that
every locally projective linear space (M,M) of dim M = 3 satisfying the Bundle
Theorem is embeddable in a projective space. We recall that a subsetb ⊂ L(M)

is called a bundle if any two linesL,G ∈ b are coplanar in(M,L(M)) and if for
every pointa ∈ M there is a lineL ∈ b with a ∈ L.

LEMMA 5.1. Let (M,L(M)) be a locally complete restriction of(P,L) of
dim M > 3 which satisfies(P4).Then:

(1) LetA,B,L ∈ L(M) be pairwise coplanar lines not in a common plane, then
A ∩ B = A ∩ L = B ∩ L 6= ∅.

(2) For everyy ∈ P , [y] := {y, a ∩M : a ∈ M} is a bundle of(M,L(M)).
(3) Let b ⊂ L(M) be a bundle, then there is a pointx ∈ P with b = {x, a ∩M :

a ∈ M \ {x}} = [x].
Proof. (1) By (P4),x = A ∩ B exists andA ∩L 6= ∅ 6= B ∩L. SinceA,B,L

are not coplanar, by (E) alsoL 6⊂ A ∪ B, hence|L ∩ A ∪ B| 6 1. It follows that
x = A ∩ L = B ∩ L

(2) Fora, b ∈ M \ {y}, the linesa, y, b, y are coplanar, by (G)a, y ∩M,b, y ∩
M ∈ L(M), and by (E),a, y ∩M,b, y ∩M are coplanar inM.

(3) Leta, b ∈ M with [a], [b] 6= b, and letA,B ∈ b with a ∈ A, b ∈ B. Since
dim M > 3 there is a pointc ∈ M \ 〈A ∪ B〉 and a lineC ∈ b with c ∈ C. The
linesA,B,C are not coplanar. Hence by (1),x = A∩B = A∩C = B ∩C exists.
For every lineG ∈ b ,G is not coplanar withA,B, orA,C, orB,C, respectively.
Therefore by (1),x ∈ G. Hence by (G),b = [x].

THEOREM 5.2. Let (M,L(M)) be a locally complete restriction of(P,L) of
dim M > 3 which satisfies(P4).Then:

(1) (M,L(M)) is locally generalized projective.
(2) (M,L(M)) satisfies the Bundle Theorem.
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Proof. (1) Let x ∈ M. For a subspaceE of M we denote bŷE := {〈a, x〉 :
a ∈ E \ {x}} a subset of[x]. Let Lx := {Ê : E a plane ofM with x ∈ E}. Since
the planes of(M,L(M)) satisfy by 3.1(2) the exchange condition,([x],Lx) is a
linear space. For a subspaceT ⊂ M of dim T = 3 containingx let a, b, c ∈ T
with T = 〈a, b, c, x〉 (cf. 3.3 (2)). ClearlyT̂ is a subspace of([x],Lx) which is
generated by〈a, x〉, 〈b, x〉, 〈c, x〉, since for any two lines ofT the plane generated
by the lines is contained inT . ThereforêT is a plane of([x],Lx). By Theorem 3.4,
T̂ is a generalized projective plane.

(2) Let A,B,C,D ∈ L(M), no three in a common plane, and let{A,B},
{A,C}, {A,D}, {B,C}, and{B,D} be pairwise coplanar. By 5.1(1),x = A ∪ B
exists withx ∈ C andx ∈ D, hencex = C ∩D. By (E),C,D are coplanar. 2

We defineP ′ := {b : b is a bundle of(M,L(M))}. For any two bundlesx, y ∈
P ′ let [x, y] := {z ∈ P ′ : for everya ∈ M with [a] 6= x, y, z the lines ofx, y, z
througha are coplanar in(M,L(M))}.

We defineL′ := {[x, y] : x, y ∈ P ′ distinct }.
By the Theorem of Kahn and by 1.1 we know that(P ′,L′) is a generalized

projective space, if(M,L(M)) is locally generalized projective, if(M,L(M))
satisfies the Bundle Theorem, and if dimM > 3 (cf. [2, 5]).

LEMMA 5.3. Let (M,L(M)) be a locally complete restriction of(P,L) of
dim M > 3 which satisfies(P1),or (P2),or (P3), respectively. Then three points
x, y, z ∈ P are collinear inP if and only if for everya ∈ M \ {x, y, z} the lines
a, x ∩M, a, y ∩M, a, z ∩M are coplanar in(M,L(M)).

Proof. If x, y, z are collinear andx 6= y, thenz ∈ a, x, y and by (E) the lines
a, x ∩M, a, y ∩M, a, z ∩M are coplanar.

Assumez 6∈ x, y. Let a ∈ M \ x, y, thenE := a, x, y ∩M is a plane ofM.
Since dimM > 3, there existsb ∈ M \ E = M \ E andF := b, x, y ∩ M is
a plane ofM. By Theorem 3.8, (P1) is satisfied andE,F are projective planes.
Sinceb 6∈ E, E ∩ F = x, y. Hencez 6∈ x, y implies z 6∈ E or z 6∈ F . Therefore
a, z 6⊂ E or b, z 6⊂ F , anda, x ∩ M, a, y ∩ M, a, z ∩ M are not coplanar, or
b, x ∩M, b, y ∩M, b, z ∩M are not coplanar. 2
THEOREM 5.4. Let (M,L(M)) be a locally complete restriction of(P,L) of
dim M > 3 which satisfies(P1), or (P2), or (P3), respectively, and let(P ′,L′)
denote the bundle space. Thenφ: P → P ′ , y 7→ [y] is an isomorphism.

Proof. By 5.1(2), for everyy ∈ P, [y] is a bundle. Clearly[y] 6= [z] for y 6= z.
By 5.1(3), for every bundleb there exists a pointx ∈ P with b = [x], hence
φ: P → P ′ , y 7→ [y] is a bijection. By 5.3 three pointsx, y, z ∈ P are collinear
if and only if for everya ∈ M \ {x, y, z} the linesa, x ∩M, a, y ∩M, a, z ∩M
are coplanar in(M,L(M)). This is equivalent to the collinearity of the bundles
[x], [y], [z] in (P ′,L′) by definition and by 5.1(2). 2
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THEOREM 5.5. Let (M,L(M)) be a locally complete restriction of(P,L) of
dim M > 3 satisfying(P1),or (P2),or (P3),respectively. Then(P,L) is a gener-
alized projective space.

Proof. We know by Theorem 5.2 that(M,L(M)) is locally generalized pro-
jective and satisfies the Bundle Theorem. Hence the bundle space(P ′,L′) of M is
a generalized projective space by [2, 5] and Lemma 1.1. By Lemma 5.4,(P ′,L′)
and(P,L) are isomorphic. 2
COROLLARY 5.6. Let (M,L(M)) be a locally complete restriction of(P,L). If
for every planeE ofM the planeE ofP generated byE is a projective plane, then
(P,L) is a projective space.

Proof. For dimM = 2,M = P is a projective plane. For dimM > 3, (P,L)
is a projective space by Theorem 5.5 and Corollary 4.4.
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