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A characterization of Lorentz boosts

Walter Benz and Jens Schwaiger

Summary. Suppose that X is a real inner product space of (finite or infinite) dimension at
least 2. The following result will be proved in this note. A bijection λ 6= id of the space-time
Z = X ⊕ R is an orthochronous Lorentz boost if, and only if,

(i) There exists e 6= 0 in X and τ : X → R \ {0} with

λ
(
x,

√
1 + x2

)
=

(
x + τ(x)e,

√
1 + (x + τ(x)e)2

)

for all x ∈ X, and
(ii) l(v, w) = 0 implies l (λ(v), λ(w)) = 0 for all v, w ∈ Z where l(z1, z2) designates the Lorentz–

Minkowski distance of z1, z2 ∈ Z.
Moreover, we characterize (general) Lorentz boosts by distance invariance and the behavior on
certain subspaces of Z.

Mathematics Subject Classification (2000). 39B52, 51F25, 51P05, 83A05.

Keywords. Real inner product spaces, Lorentz transformations, Lorentz boosts, functional
equations.

1. Introduction

Let X be a (finite- or infinite-dimensional) real inner product space, i.e., a real
vector space equipped with an inner product

σ : X × X → R, σ(x, y) =: xy,

satisfying xy = yx, x(y + z) = xy + xz, α(xy) = (αx)y for all x, y, z ∈ X, α ∈ R,
and moreover, x2 = xx > 0 for all x 6= 0 in X. We assume that dim X ≥ 2. Define
the vector space Z = X ⊕ R consisting of all (x, γ) with x ∈ X and γ ∈ R. If
y = (y, y0), z = (z, z0) are elements of Z, put

yz := y z − y0z0, (1)

and observe z1z2 = z2z1, z1(z2 + z3) = z1z2 + z1z3, α(z1z2) = (αz1)z2 for all
z1, z2, z3 ∈ Z and α ∈ R. The Lorentz–Minkowski distance of y, z ∈ Z is defined
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by
l(y, z) = (y − z)2 = (y − z)2 − (y0 − z0)

2. (2)

The mapping λ : Z → Z is called a Lorentz transformation of Z if, and only if,

l(y, z) = l (λ(y), λ(z))

holds true for all y, z ∈ Z. Special Lorentz transformations are the so-called
Lorentz boosts. Suppose that p ∈ X satisfies p2 < 1, and k ∈ R the equation
k2(1 − p2) = 1. Define Ap(z) := (z0p, zp) and

Bp,k(z) = z + kAp(z) +
k2

k + 1
A2

p(z)

=

(
z +

(
kz0 +

k2

k + 1
zp

)
p, k(z0 + zp)

) (3)

for k 6= −1 and z = (z, z0) ∈ Z. Moreover, put B0,−1(z) := (z,−z0). The Lorentz
boosts

z 7→ Bp,k(z)

are bijective Lorentz transformations of Z, they are linear and they satisfy

Bp,k · B−p,k = id (4)

with id (z) := z for all z ∈ Z. The boost Bp,k is said to be orthochronous or proper
provided k > 0, i.e. k ≥ 1, since k2(1 − p2) = 1. If k < 0, i.e. k ≤ −1, Bp,k is
called improper. All Lorentz transformations λ of Z are given by

λ(z) = Bp,k (ω (z) , z0) + λ(0) (5)

for all z = (z, z0) ∈ Z where Bp,k is a Lorentz boost and ω : X → X a linear and
orthogonal transformation of X. For these and many other informations in our
context and our notations, see the book [4].

2. A functional equation

We would like to show that proper Lorentz boosts λ : Z → Z, λ 6= id, satisfy the
following functional equation.

Find all f : Z → Z such that there exist e 6= 0 in X and τ : X → R \ {0} with

f
(
x,

√
1 + x2

)
=

(
x + τ(x)e,

√
1 + (x + τ(x)e)

2

)
(6)

for all x ∈ X.
In fact! Suppose that Bp,k is a Lorentz boost with k ≥ 1. Observe p 6= 0,

because otherwise Bp,k = id would hold true, in view of k = 1 from k2(1−p2) = 1.
Put p =: ‖p‖e and

τ(x) := k‖p‖
√

1 + x2 + (k − 1)xe.
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Hence, by (3) and k2p2 = k2 − 1,

Bp,k

(
x,

√
1 + x2

)
=

(
x + τ(x)e, k

√
1 + x2 + k‖p‖xe

)
.

Observe τ(x) 6= 0 for all x ∈ X, because otherwise

k2p2(1 + x2) =
(
k‖p‖

√
1 + x2

)2

= ((1 − k)xe)
2 ≤ (1 − k)2x2

would hold true, in view of the inequality of Cauchy–Schwarz, i.e., by k2p2 = k2−1,

(k2 − 1)(1 + x2) ≤ (1 − k)2x2.

But this is a contradiction, on account of k > 1. Moreover, applying the inequality
of Cauchy–Schwarz again, we get

A : = k
√

1 + x2 + k‖p‖xe = k
(√

1 + x2 + xp
)

≥ k
(√

1 + x2 − ‖p‖‖x‖
)
≥ k

(√
1 + x2 −

√
x2

)
> 0.

Notice, finally

A2 = 1 + (x + τ(x)e)
2
.

Remark. Suppose that Bp,k, k > 1, is a Lorentz boost, and define f : Z → Z by

f(z) := Bp,k(z), z = (z, z0),

for z0 =
√

1 + z2, and by f(z) := z otherwise. Obviously, f is a bijection of Z, it
solves (6), but is not a Lorentz boost. So we need something more than a bijective
solution of (6), in order to characterize boosts. The further and, moreover, mild
requirement that f preserves distance 0 turns out to be sufficient for this purpose.

3. All bijective solutions preserving distance zero

We now are interested in all bijective solutions λ of the functional equation (6) of
Section 2 satisfying

l(v, w) = 0 ⇒ l (λ(v), λ(w)) = 0 (7)

for all v, w ∈ Z.

Theorem 1. A bijection λ 6= id of Z = X ⊕R is an orthochronous Lorentz boost,
if (7) holds true for all v, w ∈ Z, and if there exists e 6= 0 in X and τ : X → R\{0}
satisfying

λ
(
x,

√
1 + x2

)
=

(
x + τ(x)e,

√
1 + (x + τ(x)e)

2

)
(8)

for all x ∈ X.
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Proof. Because of Theorem 2 in Section 4.1 of the book [4], λ must be of the form

λ(z) = σ · Bp,k (ω (z) , z0) + d (9)

for all z = (z, z0) in Z where d ∈ Z, p ∈ X, k ∈ R with k2(1− p2) = 1, 0 6= σ ∈ R,
and where ω : X → X is supposed to be linear, orthogonal and bijective (see also
[5]). Observe dim Z ≥ 3, because of dim X ≥ 2. Theorem 2 ([4, Section 4.1]) was
proved under the stronger assumptions dimZ < ∞ and that λ and λ−1 preserve
Lorentz–Minkowski distance 0 by A. D. Alexandrov (see [1, 2, 3]), however not
precisely in the form (9), but in the form λ = σλ′ with

l(v, w) = l (λ′(v), λ′(w))

for all v, w ∈ Z.
1) We will show that it is sufficient to assume σ > 0 in (9).
With ω̂ = ω ◦ (−id

∣∣
X ) we obtain

−Bp,k (ω(z), z0) = Bp,k (ω̂ (z) ,−z0) = Bp,k (B0,−1 (ω̂(z), z0)) .

Thus, by Theorem 1 of Section 4.1 in [4],

−Bp,k (ω(z), z0) = Bp′,k′ (ω′ (z) , z0) + d̂

for all z ∈ Z, where p′2 < 1, k′2(1 − p′2) = 1, d̂ ∈ R and where ω′ : X → X is a
linear and orthogonal bijection. Accordingly, for σ < 0, we get for all z ∈ Z

λ(z) = σBp,k

(
ω (z) , z0

)
+ d = |σ|

(
Bp′,k′ (ω′ (z) , z0) + d̂

)
+ d

= |σ|Bp′,k′ (ω′ (z) , z0) + d′,

where d′ = |σ|d̂ + d.
2) k2 must be 6= 1 in (9), and hence p 6= 0 because of k2(1 − p2) = 1.
Assume k2 = 1 in (9). Take arbitrarily j ∈ X with j2 = 1. Hence, by

Bp,k = B0,k and (8), (9)
(

j + τ(j)e,

√
1 + (j + τ(j)e)

2

)
= λ(j,

√
2)

= σ ·
(
ω(j), k

√
2
)

+ d,

i.e. j + τ(j)e = σω(j) + d with d = (d, d0), and

1 +
(
σω(j) + d

)2

=
(
kσ

√
2 + d0

)2

.

This equation also holds true for −j instead of j. Hence σω(j)d = 0 for all j ∈ X,
j2 = 1. Since ω is linear and bijective, this implies that dx = 0 for all x ∈ X and
thus d = 0. Similarly,

(
τ(0)e,

√
1 + (τ(0)e)

2

)
= λ(0, 1) = σ · (0, k) +

(
d, d0

)
,
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i.e. with respect to the first components, τ(0)e = d = 0. But τ(x) 6= 0 for all
x ∈ X.

3) d = 0 and σ = 1.
Take arbitrary t ∈ R and j ∈ X with j2 = 1. With the abbreviations s := sinh t,

c := cosh t and by (8), (9), we obtain
(

A(t, j),

√
1 + (A(t, j))

2

)
= λ

(
sω−1(j), c

)

= σ · Bp,k(sj, c) + d

where we put
A(t, j) := sω−1(j) + τ

(
sω−1(j)

)
e.

Hence, by (3) and k2(1 − p2) = 1, i.e. (k2p2)/(k + 1) = k − 1,

A(t, j) = d + σsj + σckp + σs(k − 1)
jp

p2
p,

√
1 + (A(t, j))

2
= d0 + σskjp + σck.

(10)

Thus we obtain

(d0 + σskjp + σck)
2 − 1 =

(
d + σsj + σckp + σs(k − 1)

jp

p2
p

)2

(∗)

for all t ∈ R and all j ∈ X satisfying j2 = 1.
Choose, especially, j ∈ p⊥ := {x ∈ X

∣∣ xp = 0}. Then (∗) implies

(d0 + σck)2 − 1 =
(
d + σsj + σckp

)2

, (11)

a formula which also holds true, if we replace j by −j. Hence, by j ∈ p⊥,

0 = (d + σckp)σsj = σsdj

for all t ∈ R. Thus dj = 0 for all j ∈ p⊥. Now (11) implies

d2

0 + 2σckd0 = 1 + d
2 − σ2 + 2σckdp

for all t ∈ R, i.e. for all c ≥ 1. Hence d0 = dp and d2
0 = 1 + d

2 − σ2. Observe

w := d − dp

p2
p ∈ p⊥ (12)

and wj = 0 for all j ∈ p⊥, j2 = 1, since dj = 0. Hence w = 0, since otherwise
wj = 0 for j = w/‖w‖. Thus, by (12),

d = αp, α :=
dp

p2
, d0 = dp = αp2, (13)

and, moreover, by d2
0 = 1 + d

2 − σ2,

α2 =
σ2 − 1

p2(1 − p2)
. (14)
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Looking again at formula (∗), but now under the restriction jp 6= 0, we get with
(13),

((
αp2 + σck

)
+ σskjp

)2 − 1

=

((
(α + σck) + σs(k − 1)

jp

p2

)
p + σsj

)2

.

This formula also holds true, if we replace j by −j. This yields

(αp2 + σck)σskjp = (α + σck)σs(k − 1)jp + (α + σck)σspj,

i.e. αp2σks = ασsk, i.e., by t 6= 0,

α(1 − p2) = 0.

Hence α = 0, i.e. d = αp = 0, d0 = αp2 = 0. Thus d = 0, and, by (14), σ2 = 1,
i.e. σ = 1 since σ > 0.

4) Up till now, we know that (9) has the form

λ(z) = Bp,k (ω(z), z0) (15)

with k2 6= 1 and p 6= 0 (see 2), 3)). We would like to show that λ must be
orthochronous. In order to be sure that λ is orthochronous, we must prove k ≥ 1
(see [4, Theorem 5, Chapter 4]). If we apply (10) for j ∈ p⊥ and t = 0, we obtain,
by observing d = 0, i.e. d0 = 0, and σ = 1,

k =

√
1 + [A(0, j)]

2 ≥ 1.

Hence from k 6= 1,
k > 1. (16)

5) Put p =: ‖p‖ · b, by observing p 6= 0, and k =: cosh t with t > 0. Note that
t > 0 is uniquely determined by k. Also here we will apply the earlier notation

c := cosh t, s := sinh t.

Observe k2p2 = k2 − 1 = sinh2 t = s2, i.e.

‖p‖ = tanh t, p = b tanh t.

From (15) we get

λ
(
x,

√
1 + x2

)
= Bb tanh t,cosh t

(
ω(x),

√
1 + x2

)
(17)

for all x ∈ X; i.e. λ
(
x,

√
1 + x2

)
is given by

(
ω(x) +

(
s
√

1 + x2 + (c − 1)ω(x)b
)

b, c
√

1 + x2 + sω(x)b
)

,

in view of (3). Hence, by (8),

ω(x) +
(
ω(x)b(c − 1) +

√
1 + x2s

)
b = x + τ(x)e

ω(x)bs +
√

1 + x2c =

√
1 + (x + τ(x)e)

2
.

(18)
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Without loss of generality we may assume e2 = 1, since otherwise we would work
with

τ ′(x) := τ(x) · ‖e‖, e′ := e/‖e‖
instead of τ(x) and e. For x = 0 we obtain from (18) that sb = τ(0)e and that
c =

√
1 + τ(0)2, i.e.

e = b for τ(0) > 0 and e = −b for τ(0) < 0.

Again, without loss of generality, we may choose a special situation, namely e = b,
since otherwise we would work with

τ ′′(x) := −τ(x), e′′ := −e

instead of τ(x) and e. From (18) we get

ω(x) − x = µ(x) · e (19)

for all x ∈ X with a suitable function µ : X → R. If µ(x) = 0 for all x ∈ X, we
obtain the solution ω = id from (19).

6) There is exactly one linear, orthogonal, bijective solution ω 6= id of (19),
namely

ω(x) = x − 2(xe)e. (20)

Obviously, this ω is linear and orthogonal. ω 6= id follows from ω(e) = −e. Since ω
is involutorial, it must be bijective. Assume now that ω′ 6= id is a linear, bijective
and orthogonal solution of (19). Then there exists r ∈ X with ω′(r) 6= r. From

x2 = ω′(x)ω′(x) = x2 + 2µ(x)xe + µ2(x),

we get µ(x) = 0 or µ(x) = −2(xe). By assumption, µ(r) 6= 0. Thus 0 6= µ(r) =
−2(re). Then, for arbitrary x ∈ X, we have

xr = ω′(x)ω′(r) = (x + µ(x)e)(r − 2(re)e)

which, by re 6= 0 implies µ(x) = −2(xe), i.e. ω′ satisfies (20).
7) If we are able to show that ω(x) = x for all x ∈ X, i.e. that ω = id, the

proof of the theorem will be finished. So assume that ω of (17) (see also (15)) is
given by (20),

ω(x) = x − 2(xe)e.

Define x′ := e sinh(t/2). Hence, by (18), b = e (see step 5)), (20) and ω(x′) = −x′,

x′ + τ(x′)e = −x′ +
(
−x′e(c − 1) +

√
1 + x′2 s

)
e

= (−c sinh(t/2) + s cosh(t/2)) e

= e sinh(t/2) = x′

holds true, i.e. τ(x′)e = 0. But τ : X → R \ {0}. Hence ω of (17) has not the form
(20). Thus ω = id, and from (15) it follows that

λ(z) = Bp,k(z)

with k > 1, in view of (16). ¤
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4. How to find the form of Lorentz boosts

Lorentz boosts play a crucial role in the description of all isometries of Z (see [4,
Theorem 61, Chapter 3] and also the results from the previous sections). So one
might wonder about the definition of Bp,k in (3) which could appear to be rather
far from being obvious. In this section we want to find some “natural” conditions
ensuring that an isometry λ : Z → Z is of the form (3).

Let q := (0, 1) ∈ Z, let p ∈ X and let k ∈ R. Looking at the proof of
Theorem 61 in [4] one realizes that the following properties of λ = Bp,k : Z → Z
are used:

i) λ(j) = j for all j ∈ p⊥ := {x ∈ X
∣∣ xp = 0}

ii) λ (Rp + Rq) ⊆ Rp + Rq

iii) λ satisfies l(y, z) = l (λ(y), λ(z)) for all y, z ∈ Z.

iv) λ(q) = k(p + q).

λ = Bp,k also satisfies

v) λ(q − p) ∈ Rq.

It is clear that Z = p⊥ ⊕ Rp ⊕ Rq. Thus every z ∈ Z may be written uniquely
as

z = z̃ + ρp + σq, z̃ ∈ p⊥, ρ, σ ∈ R (21)

if p 6= 0. Concerning the first three properties we may state the following theorem.

Theorem 2. A mapping λ : Z → Z satisfies i)–iii) if, and only if, λ = B0,±1 in
the case p = 0 or if

λ(z̃ + ρp + σq) = z̃ + (ρα + σγ)p + (ρβ + σδ)q

for all z̃ ∈ p⊥, ρ, σ ∈ R in the case p 6= 0, where with arbitrary β ∈ R and arbitrary
ε1, ε2 ∈ {±1} the numbers α, γ, δ ∈ R are given by

α = ε1

√
1 + β2/p2, γ = ε2

β

p2
, δ = ε1ε2

√
1 + β2/p2. (22)

Proof. In the case p = 0 it is clear that B0,±1 satisfy i)–iii). Moreover, if, still for
p = 0, λ : Z → Z satisfies i)–iii), we get, by 0 ∈ p⊥ = X that λ(0) = 0 and thus
by [4, Theorem 61, Chapter 3] that λ has to be linear. Thus

λ(z̃ + σq) = z̃ + σαq

for all z̃ ∈ X, all σ ∈ R and for some α ∈ R. Property iii) for y = z̃ + σq with
σ 6= 0 and z̃ = 0 yields α2 = 1, i.e. λ = B0,±1.

Now, let p 6= 0, and assume first, that λ satisfies i)–iii). Then we again have
λ(0) = 0. So λ is linear also in this case. Moreover

λ(z̃ + ρp + σq) = z̃ + (ρα + σγ)p + (ρβ + σδ)q (23)
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for some α, β, γ, δ ∈ R, all z̃ ∈ p⊥ and all ρ, σ ∈ R. Property iii) together with
z̃p = 0 implies

(ρα + σγ)2p2 − (ρβ + σδ)2 = ρ2p2 − σ2

for all real numbers ρ and σ. Thus

α2p2 − β2 = p2, γ2p2 − δ2 = −1 and αγp2 − βδ = 0. (24)

For α′ := α
√

p2, β′ := β, γ′ := γ
√

p2 and δ′ := δ this means

α′2 − β′2 = p2, γ′2 − δ′2 = −1 and α′γ′ − β′δ′ = 0. (25)

The first two equations of (25) imply α′2 ≥ p2 > 0, i.e. α′ 6= 0, and δ′2 = 1+γ′2 ≥ 1,
i.e. |δ′| ≥ 1 (and δ′ 6= 0).

The third equation in (25) means that the vectors (α′, β′) and (δ′, γ′) are lin-
early dependent. Thus with κ := δ′/α′, which is well-defined and 6= 0,

(δ′, γ′) = κ(α′, β′).

This, together with the second equation of (25), implies κ2(β′2 −α′2) = −1. Now,
from the first equation, we get

p2 = α′2 − β′2 = 1/κ2, κ = ± 1√
p2

.

Thus α′, β′, γ′, δ′ satisfying (25) also satisfy

α′ = ε1

√
p2 + β′2, δ′ = ε2

1√
p2

α′, γ′ = ε2

1√
p2

β′ (26)

where ε1, ε2 ∈ {±1}. It is obvious that for arbitrary β′ ∈ R and arbitrary ε1, ε2 ∈
{±1} the values given by (26) indeed solve (25). Thus, using the connection
between α and α′ etc., we see that α, β, γ, δ satisfy (24) iff there is some β0 ∈ R

and there are ε1, ε2 ∈ {±1} such that

α = ε1

√
1 + β2

0
/p2, β = β0, γ = ε2

β0

p2
, δ = ε1ε2

√
1 + β2

0
/p2. (27)

Thus (22) is fulfilled.
If, on the other hand and still for p 6= 0,

λ(z̃ + ρp + σq) = z̃ + (ρα + σγ)p + (ρβ + σδ)q

and if (22) is satisfied with some real β and some ε1, ε2 ∈ {±1}, then it is obvious
that properties i)–iii) hold true. ¤

The proof of Theorem 61 in [4] already uses the properties of the lorentz boosts
Bp,k. A theorem similar to our Theorem 2 may be proved independently of The-
orem 61 of [4] when iii) is replaced by

iii’) λ is a linear isometry, i.e., λ is linear and satisfies l(0, z) = l (0, λ(z)) for
all z ∈ Z.
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The same remark applies to the following theorem.

Theorem 3. Given p ∈ X and k ∈ R a mapping λ : Z → Z satisfies conditions
i)–iv) if, and only if, k2(1 − p2) = 1 (which implies p2 < 1) and λ = Bp,k or, if

p 6= 0, λ = Bp,k ◦ω′, where ω′(z, z0) :== (z−2 zp

p2 p, z0) for all z = (z, z0) ∈ X ⊕R.

λ = Bp,k holds true if, and only if, v) is satisfied, too.

Proof. Obviously λ = Bp,k with k2(1 − p2) = 1 satisfies i)–v). If, on the other
hand, λ : Z → Z satisfies conditions i)–iv), we have, by Theorem 2, λ = B0,±1 if
p = 0. Otherwise we know, also by Theorem 2, that

λ(z̃ + ρp + σq) = z̃ + (ρα + σγ)p + (ρβ + σδ)q

where for β ∈ R and ε1, ε2 ∈ {±1}

α = ε1

√
1 + β2/p2, γ = ε2

β

p2
, δ = ε1ε2

√
1 + β2/p2.

Condition iv) implies γ = δ = k. Thus ε2
β

p2 = ε1ε2

√
1 + β2/p2 implying (1 −

p2)β2 = (p2)2 > 0 and therefor p2 < 1. Moreover γ2 = k2 = β2/(p2)2 = (1−p2)−1

or k = ε 1√
1−p2

with some ε ∈ {±1}. So k2(1 − p2) = 1 holds true. Then

k = δ = ε1ε2

√
1 + β2

p2 implies ε = ε1ε2. Accordingly

α = ε2k, β = ε2p
2k, γ = δ = k

holds true.
Since λ(q − p) = k(p + q)− (αp + βq) = (k − ε2k)p + (k − ε2p

2k)q condition v)
implies ε2 = 1.

If condition v) is not satisfied ε2 = −1 holds true.
Note, finally, that for ε2 = 1

λ(z̃) = Bp,k(z̃) = z̃

for all z̃ ∈ p⊥ and that, using (3),

λ(p) = (kp, kp2) = Bp,k(p), λ(q) = k(p + q) = Bp,k(q).

If ε2 = −1

λ(z̃) = (Bp,k ◦ ω′) (z̃) = z̃

for all z̃ ∈ p⊥ and

λ(p) = −(kp, kp2) = (Bp,k ◦ ω′) (p), λ(q) = k(p + q) = (Bp,k ◦ ω′) (q). ¤

Acknowledgement. The authors would like to thank both reviewers for several
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