A characterization of Lorentz boosts

Walter Benz and Jens Schwaiger

Summary. Suppose that X is a real inner product space of (finite or infinite) dimension at least 2. The following result will be proved in this note. A bijection $\lambda \neq \mathrm{id}$ of the space-time $Z=X \oplus \mathbb{R}$ is an orthochronous Lorentz boost if, and only if,
(i) There exists $e \neq 0$ in X and $\tau: X \rightarrow \mathbb{R} \backslash\{0\}$ with

$$
\lambda\left(x, \sqrt{1+x^{2}}\right)=\left(x+\tau(x) e, \sqrt{1+(x+\tau(x) e)^{2}}\right)
$$

for all $x \in X$, and
(ii) $l(v, w)=0$ implies $l(\lambda(v), \lambda(w))=0$ for all $v, w \in Z$ where $l\left(z_{1}, z_{2}\right)$ designates the LorentzMinkowski distance of $z_{1}, z_{2} \in Z$.
Moreover, we characterize (general) Lorentz boosts by distance invariance and the behavior on certain subspaces of Z.

Mathematics Subject Classification (2000). 39B52, 51F25, 51P05, 83A05.
Keywords. Real inner product spaces, Lorentz transformations, Lorentz boosts, functional equations.

1. Introduction

Let X be a (finite- or infinite-dimensional) real inner product space, i.e., a real vector space equipped with an inner product

$$
\sigma: X \times X \rightarrow \mathbb{R}, \sigma(x, y)=: x y
$$

satisfying $x y=y x, x(y+z)=x y+x z, \alpha(x y)=(\alpha x) y$ for all $x, y, z \in X, \alpha \in \mathbb{R}$, and moreover, $x^{2}=x x>0$ for all $x \neq 0$ in X. We assume that $\operatorname{dim} X \geq 2$. Define the vector space $Z=X \oplus \mathbb{R}$ consisting of all (x, γ) with $x \in X$ and $\gamma \in \mathbb{R}$. If $y=\left(\bar{y}, y_{0}\right), z=\left(\bar{z}, z_{0}\right)$ are elements of Z, put

$$
\begin{equation*}
y z:=\bar{y} \bar{z}-y_{0} z_{0}, \tag{1}
\end{equation*}
$$

and observe $z_{1} z_{2}=z_{2} z_{1}, z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}, \alpha\left(z_{1} z_{2}\right)=\left(\alpha z_{1}\right) z_{2}$ for all $z_{1}, z_{2}, z_{3} \in Z$ and $\alpha \in \mathbb{R}$. The Lorentz-Minkowski distance of $y, z \in Z$ is defined

[^0]by
\[

$$
\begin{equation*}
l(y, z)=(y-z)^{2}=(\bar{y}-\bar{z})^{2}-\left(y_{0}-z_{0}\right)^{2} . \tag{2}
\end{equation*}
$$

\]

The mapping $\lambda: Z \rightarrow Z$ is called a Lorentz transformation of Z if, and only if,

$$
l(y, z)=l(\lambda(y), \lambda(z))
$$

holds true for all $y, z \in Z$. Special Lorentz transformations are the so-called Lorentz boosts. Suppose that $p \in X$ satisfies $p^{2}<1$, and $k \in \mathbb{R}$ the equation $k^{2}\left(1-p^{2}\right)=1$. Define $A_{p}(z):=\left(z_{0} p, \bar{z} p\right)$ and

$$
\begin{align*}
B_{p, k}(z) & =z+k A_{p}(z)+\frac{k^{2}}{k+1} A_{p}^{2}(z) \\
& =\left(\bar{z}+\left(k z_{0}+\frac{k^{2}}{k+1} \bar{z} p\right) p, k\left(z_{0}+\bar{z} p\right)\right) \tag{3}
\end{align*}
$$

for $k \neq-1$ and $z=\left(\bar{z}, z_{0}\right) \in Z$. Moreover, put $B_{0,-1}(z):=\left(\bar{z},-z_{0}\right)$. The Lorentz boosts

$$
z \mapsto B_{p, k}(z)
$$

are bijective Lorentz transformations of Z, they are linear and they satisfy

$$
\begin{equation*}
B_{p, k} \cdot B_{-p, k}=\mathrm{id} \tag{4}
\end{equation*}
$$

with $\operatorname{id}(z):=z$ for all $z \in Z$. The boost $B_{p, k}$ is said to be orthochronous or proper provided $k>0$, i.e. $k \geq 1$, since $k^{2}\left(1-p^{2}\right)=1$. If $k<0$, i.e. $k \leq-1, B_{p, k}$ is called improper. All Lorentz transformations λ of Z are given by

$$
\begin{equation*}
\lambda(z)=B_{p, k}\left(\omega(\bar{z}), z_{0}\right)+\lambda(0) \tag{5}
\end{equation*}
$$

for all $z=\left(\bar{z}, z_{0}\right) \in Z$ where $B_{p, k}$ is a Lorentz boost and $\omega: X \rightarrow X$ a linear and orthogonal transformation of X. For these and many other informations in our context and our notations, see the book [4].

2. A functional equation

We would like to show that proper Lorentz boosts $\lambda: Z \rightarrow Z, \lambda \neq \mathrm{id}$, satisfy the following functional equation.

Find all $f: Z \rightarrow Z$ such that there exist $e \neq 0$ in X and $\tau: X \rightarrow \mathbb{R} \backslash\{0\}$ with

$$
\begin{equation*}
f\left(x, \sqrt{1+x^{2}}\right)=\left(x+\tau(x) e, \sqrt{1+(x+\tau(x) e)^{2}}\right) \tag{6}
\end{equation*}
$$

for all $x \in X$.
In fact! Suppose that $B_{p, k}$ is a Lorentz boost with $k \geq 1$. Observe $p \neq 0$, because otherwise $B_{p, k}=\mathrm{id}$ would hold true, in view of $k=1$ from $k^{2}\left(1-p^{2}\right)=1$. Put $p=:\|p\| e$ and

$$
\tau(x):=k\|p\| \sqrt{1+x^{2}}+(k-1) x e
$$

Hence, by (3) and $k^{2} p^{2}=k^{2}-1$,

$$
B_{p, k}\left(x, \sqrt{1+x^{2}}\right)=\left(x+\tau(x) e, k \sqrt{1+x^{2}}+k\|p\| x e\right) .
$$

Observe $\tau(x) \neq 0$ for all $x \in X$, because otherwise

$$
k^{2} p^{2}\left(1+x^{2}\right)=\left(k\|p\| \sqrt{1+x^{2}}\right)^{2}=((1-k) x e)^{2} \leq(1-k)^{2} x^{2}
$$

would hold true, in view of the inequality of Cauchy-Schwarz, i.e., by $k^{2} p^{2}=k^{2}-1$,

$$
\left(k^{2}-1\right)\left(1+x^{2}\right) \leq(1-k)^{2} x^{2}
$$

But this is a contradiction, on account of $k>1$. Moreover, applying the inequality of Cauchy-Schwarz again, we get

$$
\begin{aligned}
A: & =k \sqrt{1+x^{2}}+k\|p\| x e=k\left(\sqrt{1+x^{2}}+x p\right) \\
& \geq k\left(\sqrt{1+x^{2}}-\|p\|\|x\|\right) \geq k\left(\sqrt{1+x^{2}}-\sqrt{x^{2}}\right)>0 .
\end{aligned}
$$

Notice, finally

$$
A^{2}=1+(x+\tau(x) e)^{2} .
$$

Remark. Suppose that $B_{p, k}, k>1$, is a Lorentz boost, and define $f: Z \rightarrow Z$ by

$$
f(z):=B_{p, k}(z), z=\left(\bar{z}, z_{0}\right),
$$

for $z_{0}=\sqrt{1+\bar{z}^{2}}$, and by $f(z):=z$ otherwise. Obviously, f is a bijection of Z, it solves (6), but is not a Lorentz boost. So we need something more than a bijective solution of (6), in order to characterize boosts. The further and, moreover, mild requirement that f preserves distance 0 turns out to be sufficient for this purpose.

3. All bijective solutions preserving distance zero

We now are interested in all bijective solutions λ of the functional equation (6) of Section 2 satisfying

$$
\begin{equation*}
l(v, w)=0 \Rightarrow l(\lambda(v), \lambda(w))=0 \tag{7}
\end{equation*}
$$

for all $v, w \in Z$.
Theorem 1. A bijection $\lambda \neq \mathrm{id}$ of $Z=X \oplus \mathbb{R}$ is an orthochronous Lorentz boost, if (7) holds true for all $v, w \in Z$, and if there exists $e \neq 0$ in X and $\tau: X \rightarrow \mathbb{R} \backslash\{0\}$ satisfying

$$
\begin{equation*}
\lambda\left(x, \sqrt{1+x^{2}}\right)=\left(x+\tau(x) e, \sqrt{1+(x+\tau(x) e)^{2}}\right) \tag{8}
\end{equation*}
$$

for all $x \in X$.

Proof. Because of Theorem 2 in Section 4.1 of the book [4], λ must be of the form

$$
\begin{equation*}
\lambda(z)=\sigma \cdot B_{p, k}\left(\omega(\bar{z}), z_{0}\right)+d \tag{9}
\end{equation*}
$$

for all $z=\left(\bar{z}, z_{0}\right)$ in Z where $d \in Z, p \in X, k \in \mathbb{R}$ with $k^{2}\left(1-p^{2}\right)=1,0 \neq \sigma \in \mathbb{R}$, and where $\omega: X \rightarrow X$ is supposed to be linear, orthogonal and bijective (see also [5]). Observe $\operatorname{dim} Z \geq 3$, because of $\operatorname{dim} X \geq 2$. Theorem 2 ([4, Section 4.1]) was proved under the stronger assumptions $\operatorname{dim} Z<\infty$ and that λ and λ^{-1} preserve Lorentz-Minkowski distance 0 by A.D. Alexandrov (see [1, 2, 3]), however not precisely in the form (9), but in the form $\lambda=\sigma \lambda^{\prime}$ with

$$
l(v, w)=l\left(\lambda^{\prime}(v), \lambda^{\prime}(w)\right)
$$

for all $v, w \in Z$.

1) We will show that it is sufficient to assume $\sigma>0$ in (9).

With $\widehat{\omega}=\omega \circ\left(-\left.\mathrm{id}\right|_{X}\right)$ we obtain

$$
-B_{p, k}\left(\omega(\bar{z}), z_{0}\right)=B_{p, k}\left(\widehat{\omega}(\bar{z}),-z_{0}\right)=B_{p, k}\left(B_{0,-1}\left(\widehat{\omega}(\bar{z}), z_{0}\right)\right)
$$

Thus, by Theorem 1 of Section 4.1 in [4],

$$
-B_{p, k}\left(\omega(\bar{z}), z_{0}\right)=B_{p^{\prime}, k^{\prime}}\left(\omega^{\prime}(\bar{z}), z_{0}\right)+\widehat{d}
$$

for all $z \in Z$, where $p^{\prime 2}<1, k^{\prime 2}\left(1-p^{\prime 2}\right)=1, \widehat{d} \in \mathbb{R}$ and where $\omega^{\prime}: X \rightarrow X$ is a linear and orthogonal bijection. Accordingly, for $\sigma<0$, we get for all $z \in Z$

$$
\begin{aligned}
\lambda(z) & =\sigma B_{p, k}\left(\omega(\bar{z}), z_{0}\right)+d=|\sigma|\left(B_{p^{\prime}, k^{\prime}}\left(\omega^{\prime}(\bar{z}), z_{0}\right)+\widehat{d}\right)+d \\
& =|\sigma| B_{p^{\prime}, k^{\prime}}\left(\omega^{\prime}(\bar{z}), z_{0}\right)+d^{\prime}
\end{aligned}
$$

where $d^{\prime}=|\sigma| \widehat{d}+d$.
2) k^{2} must be $\neq 1$ in (9), and hence $p \neq 0$ because of $k^{2}\left(1-p^{2}\right)=1$.

Assume $k^{2}=1$ in (9). Take arbitrarily $j \in X$ with $j^{2}=1$. Hence, by $B_{p, k}=B_{0, k}$ and (8), (9)

$$
\begin{aligned}
\left(j+\tau(j) e, \sqrt{1+(j+\tau(j) e)^{2}}\right) & =\lambda(j, \sqrt{2}) \\
& =\sigma \cdot(\omega(j), k \sqrt{2})+d
\end{aligned}
$$

i.e. $j+\tau(j) e=\sigma \omega(j)+\bar{d}$ with $d=\left(\bar{d}, d_{0}\right)$, and

$$
1+(\sigma \omega(j)+\bar{d})^{2}=\left(k \sigma \sqrt{2}+d_{0}\right)^{2}
$$

This equation also holds true for $-j$ instead of j. Hence $\sigma \omega(j) \bar{d}=0$ for all $j \in X$, $j^{2}=1$. Since ω is linear and bijective, this implies that $\bar{d} x=0$ for all $x \in X$ and thus $\bar{d}=0$. Similarly,

$$
\left(\tau(0) e, \sqrt{1+(\tau(0) e)^{2}}\right)=\lambda(0,1)=\sigma \cdot(0, k)+\left(\bar{d}, d_{0}\right)
$$

i.e. with respect to the first components, $\tau(0) e=\bar{d}=0$. But $\tau(x) \neq 0$ for all $x \in X$.
3) $d=0$ and $\sigma=1$.

Take arbitrary $t \in \mathbb{R}$ and $j \in X$ with $j^{2}=1$. With the abbreviations $s:=\sinh t$, $c:=\cosh t$ and by (8), (9), we obtain

$$
\begin{aligned}
\left(A(t, j), \sqrt{1+(A(t, j))^{2}}\right) & =\lambda\left(s \omega^{-1}(j), c\right) \\
& =\sigma \cdot B_{p, k}(s j, c)+d
\end{aligned}
$$

where we put

$$
A(t, j):=s \omega^{-1}(j)+\tau\left(s \omega^{-1}(j)\right) e
$$

Hence, by (3) and $k^{2}\left(1-p^{2}\right)=1$, i.e. $\left(k^{2} p^{2}\right) /(k+1)=k-1$,

$$
\begin{align*}
A(t, j) & =\bar{d}+\sigma s j+\sigma c k p+\sigma s(k-1) \frac{j p}{p^{2}} p \tag{10}\\
\sqrt{1+(A(t, j))^{2}} & =d_{0}+\sigma s k j p+\sigma c k .
\end{align*}
$$

Thus we obtain

$$
\begin{equation*}
\left(d_{0}+\sigma s k j p+\sigma c k\right)^{2}-1=\left(\bar{d}+\sigma s j+\sigma c k p+\sigma s(k-1) \frac{j p}{p^{2}} p\right)^{2} \tag{*}
\end{equation*}
$$

for all $t \in \mathbb{R}$ and all $j \in X$ satisfying $j^{2}=1$.
Choose, especially, $j \in p^{\perp}:=\{x \in X \mid x p=0\}$. Then ($*$) implies

$$
\begin{equation*}
\left(d_{0}+\sigma c k\right)^{2}-1=(\bar{d}+\sigma s j+\sigma c k p)^{2} \tag{11}
\end{equation*}
$$

a formula which also holds true, if we replace j by $-j$. Hence, by $j \in p^{\perp}$,

$$
0=(\bar{d}+\sigma c k p) \sigma s j=\sigma s \bar{d} j
$$

for all $t \in \mathbb{R}$. Thus $\bar{d} j=0$ for all $j \in p^{\perp}$. Now (11) implies

$$
d_{0}^{2}+2 \sigma c k d_{0}=1+\bar{d}^{2}-\sigma^{2}+2 \sigma c k \bar{d} p
$$

for all $t \in \mathbb{R}$, i.e. for all $c \geq 1$. Hence $d_{0}=\bar{d} p$ and $d_{0}^{2}=1+\bar{d}^{2}-\sigma^{2}$. Observe

$$
\begin{equation*}
w:=\bar{d}-\frac{\bar{d} p}{p^{2}} p \in p^{\perp} \tag{12}
\end{equation*}
$$

and $w j=0$ for all $j \in p^{\perp}, j^{2}=1$, since $\bar{d} j=0$. Hence $w=0$, since otherwise $w j=0$ for $j=w /\|w\|$. Thus, by (12),

$$
\begin{equation*}
\bar{d}=\alpha p, \alpha:=\frac{\bar{d} p}{p^{2}}, d_{0}=\bar{d} p=\alpha p^{2}, \tag{13}
\end{equation*}
$$

and, moreover, by $d_{0}^{2}=1+\bar{d}^{2}-\sigma^{2}$,

$$
\begin{equation*}
\alpha^{2}=\frac{\sigma^{2}-1}{p^{2}\left(1-p^{2}\right)} . \tag{14}
\end{equation*}
$$

Looking again at formula $(*)$, but now under the restriction $j p \neq 0$, we get with (13),

$$
\begin{aligned}
& \left(\left(\alpha p^{2}+\sigma c k\right)+\sigma s k j p\right)^{2}-1 \\
& \quad=\left(\left((\alpha+\sigma c k)+\sigma s(k-1) \frac{j p}{p^{2}}\right) p+\sigma s j\right)^{2}
\end{aligned}
$$

This formula also holds true, if we replace j by $-j$. This yields

$$
\left(\alpha p^{2}+\sigma c k\right) \sigma s k j p=(\alpha+\sigma c k) \sigma s(k-1) j p+(\alpha+\sigma c k) \sigma s p j
$$

i.e. $\alpha p^{2} \sigma k s=\alpha \sigma s k$, i.e., by $t \neq 0$,

$$
\alpha\left(1-p^{2}\right)=0
$$

Hence $\alpha=0$, i.e. $\bar{d}=\alpha p=0, d_{0}=\alpha p^{2}=0$. Thus $d=0$, and, by (14), $\sigma^{2}=1$, i.e. $\sigma=1$ since $\sigma>0$.
4) Up till now, we know that (9) has the form

$$
\begin{equation*}
\lambda(z)=B_{p, k}\left(\omega(\bar{z}), z_{0}\right) \tag{15}
\end{equation*}
$$

with $k^{2} \neq 1$ and $p \neq 0$ (see 2), 3)). We would like to show that λ must be orthochronous. In order to be sure that λ is orthochronous, we must prove $k \geq 1$ (see $\left[4\right.$, Theorem 5, Chapter 4]). If we apply (10) for $j \in p^{\perp}$ and $t=0$, we obtain, by observing $d=0$, i.e. $d_{0}=0$, and $\sigma=1$,

$$
k=\sqrt{1+[A(0, j)]^{2}} \geq 1
$$

Hence from $k \neq 1$,

$$
\begin{equation*}
k>1 \tag{16}
\end{equation*}
$$

5) Put $p=:\|p\| \cdot b$, by observing $p \neq 0$, and $k=: \cosh t$ with $t>0$. Note that $t>0$ is uniquely determined by k. Also here we will apply the earlier notation

$$
c:=\cosh t, s:=\sinh t
$$

Observe $k^{2} p^{2}=k^{2}-1=\sinh ^{2} t=s^{2}$, i.e.

$$
\|p\|=\tanh t, p=b \tanh t
$$

From (15) we get

$$
\begin{equation*}
\lambda\left(x, \sqrt{1+x^{2}}\right)=B_{b \tanh t, \cosh t}\left(\omega(x), \sqrt{1+x^{2}}\right) \tag{17}
\end{equation*}
$$

for all $x \in X$; i.e. $\lambda\left(x, \sqrt{1+x^{2}}\right)$ is given by

$$
\left(\omega(x)+\left(s \sqrt{1+x^{2}}+(c-1) \omega(x) b\right) b, c \sqrt{1+x^{2}}+s \omega(x) b\right)
$$

in view of (3). Hence, by (8),

$$
\begin{align*}
\omega(x)+\left(\omega(x) b(c-1)+\sqrt{1+x^{2}} s\right) b & =x+\tau(x) e \\
\omega(x) b s+\sqrt{1+x^{2}} c & =\sqrt{1+(x+\tau(x) e)^{2}} \tag{18}
\end{align*}
$$

Without loss of generality we may assume $e^{2}=1$, since otherwise we would work with

$$
\tau^{\prime}(x):=\tau(x) \cdot\|e\|, e^{\prime}:=e /\|e\|
$$

instead of $\tau(x)$ and e. For $x=0$ we obtain from (18) that $s b=\tau(0) e$ and that $c=\sqrt{1+\tau(0)^{2}}$, i.e.

$$
e=b \text { for } \tau(0)>0 \text { and } e=-b \text { for } \tau(0)<0
$$

Again, without loss of generality, we may choose a special situation, namely $e=b$, since otherwise we would work with

$$
\tau^{\prime \prime}(x):=-\tau(x), e^{\prime \prime}:=-e
$$

instead of $\tau(x)$ and e. From (18) we get

$$
\begin{equation*}
\omega(x)-x=\mu(x) \cdot e \tag{19}
\end{equation*}
$$

for all $x \in X$ with a suitable function $\mu: X \rightarrow \mathbb{R}$. If $\mu(x)=0$ for all $x \in X$, we obtain the solution $\omega=$ id from (19).
6) There is exactly one linear, orthogonal, bijective solution $\omega \neq \mathrm{id}$ of (19), namely

$$
\begin{equation*}
\omega(x)=x-2(x e) e \tag{20}
\end{equation*}
$$

Obviously, this ω is linear and orthogonal. $\omega \neq \mathrm{id}$ follows from $\omega(e)=-e$. Since ω is involutorial, it must be bijective. Assume now that $\omega^{\prime} \neq \mathrm{id}$ is a linear, bijective and orthogonal solution of (19). Then there exists $r \in X$ with $\omega^{\prime}(r) \neq r$. From

$$
x^{2}=\omega^{\prime}(x) \omega^{\prime}(x)=x^{2}+2 \mu(x) x e+\mu^{2}(x)
$$

we get $\mu(x)=0$ or $\mu(x)=-2(x e)$. By assumption, $\mu(r) \neq 0$. Thus $0 \neq \mu(r)=$ $-2(r e)$. Then, for arbitrary $x \in X$, we have

$$
x r=\omega^{\prime}(x) \omega^{\prime}(r)=(x+\mu(x) e)(r-2(r e) e)
$$

which, by $r e \neq 0$ implies $\mu(x)=-2(x e)$, i.e. ω^{\prime} satisfies (20).
7) If we are able to show that $\omega(x)=x$ for all $x \in X$, i.e. that $\omega=\mathrm{id}$, the proof of the theorem will be finished. So assume that ω of (17) (see also (15)) is given by (20),

$$
\omega(x)=x-2(x e) e
$$

Define $x^{\prime}:=e \sinh (t / 2)$. Hence, by (18), $b=e($ see step 5$)$), (20) and $\omega\left(x^{\prime}\right)=-x^{\prime}$,

$$
\begin{aligned}
x^{\prime}+\tau\left(x^{\prime}\right) e & =-x^{\prime}+\left(-x^{\prime} e(c-1)+\sqrt{1+x^{\prime 2}} s\right) e \\
& =(-c \sinh (t / 2)+s \cosh (t / 2)) e \\
& =e \sinh (t / 2)=x^{\prime}
\end{aligned}
$$

holds true, i.e. $\tau\left(x^{\prime}\right) e=0$. But $\tau: X \rightarrow \mathbb{R} \backslash\{0\}$. Hence ω of (17) has not the form (20). Thus $\omega=$ id, and from (15) it follows that

$$
\lambda(z)=B_{p, k}(z)
$$

with $k>1$, in view of (16).

4. How to find the form of Lorentz boosts

Lorentz boosts play a crucial role in the description of all isometries of Z (see [4, Theorem 61, Chapter 3] and also the results from the previous sections). So one might wonder about the definition of $B_{p, k}$ in (3) which could appear to be rather far from being obvious. In this section we want to find some "natural" conditions ensuring that an isometry $\lambda: Z \rightarrow Z$ is of the form (3).

Let $q:=(0,1) \in Z$, let $p \in X$ and let $k \in \mathbb{R}$. Looking at the proof of Theorem 61 in [4] one realizes that the following properties of $\lambda=B_{p, k}: Z \rightarrow Z$ are used:
i) $\lambda(j)=j$ for all $j \in p^{\perp}:=\{x \in X \mid x p=0\}$
ii) $\lambda(\mathbb{R} p+\mathbb{R} q) \subseteq \mathbb{R} p+\mathbb{R} q$
iii) λ satisfies $l(y, z)=l(\lambda(y), \lambda(z))$ for all $y, z \in Z$.
iv) $\lambda(q)=k(p+q)$.
$\lambda=B_{p, k}$ also satisfies
v) $\lambda(q-p) \in \mathbb{R} q$.

It is clear that $Z=p^{\perp} \oplus \mathbb{R} p \oplus \mathbb{R} q$. Thus every $z \in Z$ may be written uniquely as

$$
\begin{equation*}
z=\tilde{z}+\rho p+\sigma q, \tilde{z} \in p^{\perp}, \rho, \sigma \in \mathbb{R} \tag{21}
\end{equation*}
$$

if $p \neq 0$. Concerning the first three properties we may state the following theorem.
Theorem 2. A mapping $\lambda: Z \rightarrow Z$ satisfies i$)-\mathrm{iii})$ if, and only if, $\lambda=B_{0, \pm 1}$ in the case $p=0$ or if

$$
\lambda(\tilde{z}+\rho p+\sigma q)=\tilde{z}+(\rho \alpha+\sigma \gamma) p+(\rho \beta+\sigma \delta) q
$$

for all $\tilde{z} \in p^{\perp}, \rho, \sigma \in \mathbb{R}$ in the case $p \neq 0$, where with arbitrary $\beta \in \mathbb{R}$ and arbitrary $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$ the numbers $\alpha, \gamma, \delta \in \mathbb{R}$ are given by

$$
\begin{equation*}
\alpha=\varepsilon_{1} \sqrt{1+\beta^{2} / p^{2}}, \gamma=\varepsilon_{2} \frac{\beta}{p^{2}}, \delta=\varepsilon_{1} \varepsilon_{2} \sqrt{1+\beta^{2} / p^{2}} \tag{22}
\end{equation*}
$$

Proof. In the case $p=0$ it is clear that $B_{0, \pm 1}$ satisfy i)-iii). Moreover, if, still for $p=0, \lambda: Z \rightarrow Z$ satisfies i)-iii), we get, by $0 \in p^{\perp}=X$ that $\lambda(0)=0$ and thus by [4, Theorem 61, Chapter 3] that λ has to be linear. Thus

$$
\lambda(\tilde{z}+\sigma q)=\tilde{z}+\sigma \alpha q
$$

for all $\tilde{z} \in X$, all $\sigma \in \mathbb{R}$ and for some $\alpha \in \mathbb{R}$. Property iii) for $y=\tilde{z}+\sigma q$ with $\sigma \neq 0$ and $\tilde{z}=0$ yields $\alpha^{2}=1$, i.e. $\lambda=B_{0, \pm 1}$.

Now, let $p \neq 0$, and assume first, that λ satisfies i)-iii). Then we again have $\lambda(0)=0$. So λ is linear also in this case. Moreover

$$
\begin{equation*}
\lambda(\tilde{z}+\rho p+\sigma q)=\tilde{z}+(\rho \alpha+\sigma \gamma) p+(\rho \beta+\sigma \delta) q \tag{23}
\end{equation*}
$$

for some $\alpha, \beta, \gamma, \delta \in \mathbb{R}$, all $\tilde{z} \in p^{\perp}$ and all $\rho, \sigma \in \mathbb{R}$. Property iii) together with $\tilde{z} p=0$ implies

$$
(\rho \alpha+\sigma \gamma)^{2} p^{2}-(\rho \beta+\sigma \delta)^{2}=\rho^{2} p^{2}-\sigma^{2}
$$

for all real numbers ρ and σ. Thus

$$
\begin{equation*}
\alpha^{2} p^{2}-\beta^{2}=p^{2}, \quad \gamma^{2} p^{2}-\delta^{2}=-1 \quad \text { and } \quad \alpha \gamma p^{2}-\beta \delta=0 \tag{24}
\end{equation*}
$$

For $\alpha^{\prime}:=\alpha \sqrt{p^{2}}, \beta^{\prime}:=\beta, \gamma^{\prime}:=\gamma \sqrt{p^{2}}$ and $\delta^{\prime}:=\delta$ this means

$$
\begin{equation*}
\alpha^{\prime 2}-\beta^{\prime 2}=p^{2}, \quad \gamma^{\prime 2}-\delta^{\prime 2}=-1 \quad \text { and } \quad \alpha^{\prime} \gamma^{\prime}-\beta^{\prime} \delta^{\prime}=0 \tag{25}
\end{equation*}
$$

The first two equations of (25) imply $\alpha^{\prime 2} \geq p^{2}>0$, i.e. $\alpha^{\prime} \neq 0$, and $\delta^{\prime 2}=1+\gamma^{\prime 2} \geq 1$, i.e. $\left|\delta^{\prime}\right| \geq 1$ (and $\delta^{\prime} \neq 0$).

The third equation in (25) means that the vectors $\left(\alpha^{\prime}, \beta^{\prime}\right)$ and $\left(\delta^{\prime}, \gamma^{\prime}\right)$ are linearly dependent. Thus with $\kappa:=\delta^{\prime} / \alpha^{\prime}$, which is well-defined and $\neq 0$,

$$
\left(\delta^{\prime}, \gamma^{\prime}\right)=\kappa\left(\alpha^{\prime}, \beta^{\prime}\right)
$$

This, together with the second equation of (25), implies $\kappa^{2}\left(\beta^{2}-\alpha^{\prime 2}\right)=-1$. Now, from the first equation, we get

$$
p^{2}=\alpha^{\prime 2}-\beta^{\prime 2}=1 / \kappa^{2}, \kappa= \pm \frac{1}{\sqrt{p^{2}}}
$$

Thus $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ satisfying (25) also satisfy

$$
\begin{equation*}
\alpha^{\prime}=\varepsilon_{1} \sqrt{p^{2}+\beta^{\prime 2}}, \delta^{\prime}=\varepsilon_{2} \frac{1}{\sqrt{p^{2}}} \alpha^{\prime}, \gamma^{\prime}=\varepsilon_{2} \frac{1}{\sqrt{p^{2}}} \beta^{\prime} \tag{26}
\end{equation*}
$$

where $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$. It is obvious that for arbitrary $\beta^{\prime} \in \mathbb{R}$ and arbitrary $\varepsilon_{1}, \varepsilon_{2} \in$ $\{ \pm 1\}$ the values given by (26) indeed solve (25). Thus, using the connection between α and α^{\prime} etc., we see that $\alpha, \beta, \gamma, \delta$ satisfy (24) iff there is some $\beta_{0} \in \mathbb{R}$ and there are $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$ such that

$$
\begin{equation*}
\alpha=\varepsilon_{1} \sqrt{1+\beta_{0}^{2} / p^{2}}, \beta=\beta_{0}, \gamma=\varepsilon_{2} \frac{\beta_{0}}{p^{2}}, \delta=\varepsilon_{1} \varepsilon_{2} \sqrt{1+\beta_{0}^{2} / p^{2}} \tag{27}
\end{equation*}
$$

Thus (22) is fulfilled.
If, on the other hand and still for $p \neq 0$,

$$
\lambda(\tilde{z}+\rho p+\sigma q)=\tilde{z}+(\rho \alpha+\sigma \gamma) p+(\rho \beta+\sigma \delta) q
$$

and if (22) is satisfied with some real β and some $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$, then it is obvious that properties i)-iii) hold true.

The proof of Theorem 61 in [4] already uses the properties of the lorentz boosts $B_{p, k}$. A theorem similar to our Theorem 2 may be proved independently of Theorem 61 of [4] when iii) is replaced by
iii') λ is a linear isometry, i.e., λ is linear and satisfies $l(0, z)=l(0, \lambda(z))$ for all $z \in Z$.

The same remark applies to the following theorem.
Theorem 3. Given $p \in X$ and $k \in \mathbb{R}$ a mapping $\lambda: Z \rightarrow Z$ satisfies conditions i)-iv) if, and only if, $k^{2}\left(1-p^{2}\right)=1$ (which implies $p^{2}<1$) and $\lambda=B_{p, k}$ or, if $p \neq 0, \lambda=B_{p, k} \circ \omega^{\prime}$, where $\omega^{\prime}\left(\bar{z}, z_{0}\right):==\left(\bar{z}-2 \frac{\bar{z} p}{p^{2}} p, z_{0}\right)$ for all $z=\left(\bar{z}, z_{0}\right) \in X \oplus \mathbb{R}$. $\lambda=B_{p, k}$ holds true if, and only if, v) is satisfied, too.

Proof. Obviously $\lambda=B_{p, k}$ with $k^{2}\left(1-p^{2}\right)=1$ satisfies i)-v). If, on the other hand, $\lambda: Z \rightarrow Z$ satisfies conditions i)-iv), we have, by Theorem $2, \lambda=B_{0, \pm 1}$ if $p=0$. Otherwise we know, also by Theorem 2 , that

$$
\lambda(\tilde{z}+\rho p+\sigma q)=\tilde{z}+(\rho \alpha+\sigma \gamma) p+(\rho \beta+\sigma \delta) q
$$

where for $\beta \in \mathbb{R}$ and $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$

$$
\alpha=\varepsilon_{1} \sqrt{1+\beta^{2} / p^{2}}, \gamma=\varepsilon_{2} \frac{\beta}{p^{2}}, \delta=\varepsilon_{1} \varepsilon_{2} \sqrt{1+\beta^{2} / p^{2}}
$$

Condition iv) implies $\gamma=\delta=k$. Thus $\varepsilon_{2} \frac{\beta}{p^{2}}=\varepsilon_{1} \varepsilon_{2} \sqrt{1+\beta^{2} / p^{2}}$ implying ($1-$ $\left.p^{2}\right) \beta^{2}=\left(p^{2}\right)^{2}>0$ and therefor $p^{2}<1$. Moreover $\gamma^{2}=k^{2}=\beta^{2} /\left(p^{2}\right)^{2}=\left(1-p^{2}\right)^{-1}$ or $k=\varepsilon \frac{1}{\sqrt{1-p^{2}}}$ with some $\varepsilon \in\{ \pm 1\}$. So $k^{2}\left(1-p^{2}\right)=1$ holds true. Then $k=\delta=\varepsilon_{1} \varepsilon_{2} \sqrt{1+\frac{\beta^{2}}{p^{2}}}$ implies $\varepsilon=\varepsilon_{1} \varepsilon_{2}$. Accordingly

$$
\alpha=\varepsilon_{2} k, \beta=\varepsilon_{2} p^{2} k, \gamma=\delta=k
$$

holds true.
Since $\lambda(q-p)=k(p+q)-(\alpha p+\beta q)=\left(k-\varepsilon_{2} k\right) p+\left(k-\varepsilon_{2} p^{2} k\right) q$ condition v) implies $\varepsilon_{2}=1$.

If condition v) is not satisfied $\varepsilon_{2}=-1$ holds true.
Note, finally, that for $\varepsilon_{2}=1$

$$
\lambda(\tilde{z})=B_{p, k}(\tilde{z})=\tilde{z}
$$

for all $\tilde{z} \in p^{\perp}$ and that, using (3),

$$
\lambda(p)=\left(k p, k p^{2}\right)=B_{p, k}(p), \lambda(q)=k(p+q)=B_{p, k}(q)
$$

If $\varepsilon_{2}=-1$

$$
\lambda(\tilde{z})=\left(B_{p, k} \circ \omega^{\prime}\right)(\tilde{z})=\tilde{z}
$$

for all $\tilde{z} \in p^{\perp}$ and

$$
\lambda(p)=-\left(k p, k p^{2}\right)=\left(B_{p, k} \circ \omega^{\prime}\right)(p), \lambda(q)=k(p+q)=\left(B_{p, k} \circ \omega^{\prime}\right)(q)
$$

Acknowledgement. The authors would like to thank both reviewers for several valuable comments and remarks.

References

[1] A. D. Alexandrov, Seminar Report, Uspehi Mat. Nauk. 5 (1950), no. 3 (37), 187.
[2] A. D. Alexandrov, A contribution to chronogeometry, Canad. J. Math. 19 (1967), 11191128.
[3] A. D. Alexandrov, Mappings of Spaces with Families of Cones and Space-TimeTransformations, Annali di Matematica 103 (1975), 229-257.
[4] W. Benz, Classical Geometries in Modern Contexts. Geometry of Real Inner Product Spaces, Birkhäuser Verlag, Basel-Boston-Berlin, 2005.
[5] W. Benz, Lie Sphere Geometry in Hilbert Spaces, Results. Math. 40 (2001), 9-36.

Walter Benz	Jens Schwaiger
Mathematsches Seminar	Institut für Mathematik
Universität Hamburg	Karl-Franzens Universität Graz
Bundesstraße 55	Heinrichstraße 36
D-20146 Hamburg	A-8010 Graz
Germany	Austria
	e-mail: jens.schwaiger@uni-graz.at

Manuscript received: June 6, 2005 and, in final form, November 30, 2005.

[^0]: The authors would like to thank the Wilhelm Blaschke Foundation (Hamburg) for financial support of this project.

