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c© 2009 Birkhäuser Verlag Basel/Switzerland

DOI 10.1007/s00025-009-0004-x Results in Mathematics

A Characterization of Certain Elation
Laguerre Planes in Terms
of Kleinewillinghöfer Types
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Abstract. We characterize the non-classical 4-dimensional elation
Laguerre planes as precisely those 4-dimensional Laguerre planes of
Kleinewillinghöfer type I.D.1. Furthermore, in the class of 2- or 4-dimen-
sional Laguerre planes or finite Laguerre planes of odd order, the non-
miquelian elation Laguerre planes are precisely the Laguerre planes of
Kleinewillinghöfer type D.
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1. Introduction

Elation Laguerre planes are characterized by the existence of a group of auto-
morphisms that acts trivially on the set of parallel classes and regularly on the
set of circles. They can be described in terms of dual pseudo-ovals thus gener-
alizing ovoidal Laguerre planes; see [8,13]. Knarr [11] further characterized ela-
tion Laguerre planes geometrically by a certain degeneration, M2, of Miquel’s
configuration. In fact, Bröcker [1] showed that M2 is the only degeneration of
Miquel’s configuration on eight or seven points that leads to a non-miquelian
Laguerre plane. In that respect elation Laguerre planes are the closest thing
one can get to miquelian Laguerre planes. For a 4-dimensional Laguerre plane
to be an elation Laguerre plane it suffices that the kernel is large enough or
is transitive on the set of circles; see [22] or [24, Theorem 2.7]. Furthermore,
the first examples of non-classical 4-dimensional Laguerre planes found were
elation Laguerre planes. All of this shows that elation Laguerre planes form a
nice and important subclass of Laguerre planes.
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In this paper we investigate the possible Kleinewillinghöfer types of
4-dimensional elation Laguerre planes, see [9,16] or Sect. 3 for these types, and
show that type D characterizes non-classical elation Laguerre planes among
4-dimensional Laguerre planes. This extends an analogous characterization
of ovoidal 2-dimensional Laguerre planes; see [17, Corollary 4.5]. More pre-
cisely, we show that the non-classical 4-dimensional elation Laguerre planes
are exactly the 4-dimensional Laguerre planes of Kleinewillinghöfer type I.D.1.

2. 2n-Dimensional Elation Laguerre Planes

A 2n-dimensional Laguerre plane, n = 1, 2, is a Laguerre plane L = (P, C, ||)
whose point set P and circle set C carry Hausdorff topologies such that P
is 2n-dimensional locally compact and such that the geometric operations of
joining three points by a circle, of intersecting two different circles, parallel
projection and touching are continuous with respect to the induced topologies
on their respective domains of definition. In this case the circle set C is homeo-
morphic to R

3n, and elements of C are homeomorphic to the n-sphere Sn. For
more information about topological Laguerre planes we refer to [5,6,16,23].
The classical real or complex Laguerre plane is the miquelian Laguerre plane
over F = R, C (with suitable topologies) and can be obtained as the geome-
try of non-trivial plane sections of an elliptic cone in 3-dimensional projective
space over F with its vertex removed. By replacing the elliptic cone in the
construction of the classical real Laguerre plane by a cone over an arbitrary
oval, i.e., a convex, differentiable simply closed curve in R

2, we also obtain
2-dimensional Laguerre planes. These are the so-called 2-dimensional ovoidal
Laguerre planes. There is no 4-dimensional analogue because every closed oval
in the Desarguesian complex projective plane is a conic; compare [18, 55.13].

An automorphism of a Laguerre plane is a permutation of the point set
such that parallel classes are mapped to parallel classes and circles are mapped
to circles. The kernel T of a Laguerre plane consists of all automorphisms that
fix each parallel class. This collection of automorphisms is a normal subgroup
of the group of all automorphisms. The collection of all continuous automor-
phisms of a 2n-dimensional Laguerre plane L is a Lie group with respect to
the compact-open topology, the automorphism group Γ of L, see [4, Satz 3.9]
or [21], and T is a closed normal subgroup of Γ.

A Laguerre plane is an elation Laguerre plane if there exists a group ∆
of automorphisms in the kernel T that acts regularly on the set of circles. The
2-dimensional elation Laguerre planes are precisely the 2-dimensional ovoi-
dal Laguerre planes. A 4-dimensional Laguerre plane L is an elation Laguerre
plane if and only if the collection of all automorphisms in T that fix no circle,
plus the identity, which is a closed normal subgroup of T , acts transitively
on the set of circles, see [22]. 2n-dimensional elation Laguerre planes can be
characterized in terms of transitivity properties or the dimension of T ; see [22],
[24, Theorem 2.7], and [16, Section 5.4.2].
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The stabilizer ∆p of a point p induces elations of the derived projective
plane Pp at p, that is, the projective completion of the derived affine plane
Ap = (Ap,Lp) at p whose point set Ap ≈ R

2n consists of all points of L that
are not parallel to p and whose line set Lp consists of all restrictions to Ap of
circles of L passing through p and of all parallel classes not passing through
p. All these elations have the common centre ω, the point at infinity of lines
that come from parallel classes of the Laguerre plane. In fact, each derived
projective plane of a 2n-dimensional Laguerre plane is a topological locally
compact connected 2n-dimensional projective plane and, in case of an elation
Laguerre plane, even a dual translation plane with centre ω.

In an elation Laguerre plane there is for each parallel class G a subgroup
∆G of the elation group ∆ that acts trivially on G and regularly on each other
parallel class. These kinds of groups, among others, were used by Kleinewill-
inghöfer in her classification of Laguerre planes, see the following section.

3. Kleinewillinghöfer Types of 4-Dimensional Elation Laguerre
Planes

Similar to the Lenz–Barlotti classification of projective planes Kleinewilling-
höfer classified Laguerre planes with respect to groups of central automor-
phisms, that is, automorphisms such that at least one point is fixed and central
collineations are induced in the derived projective plane at one of the fixed
points. More precisely, one considers linearly transitive groups of central auto-
morphisms, that is, the induced groups of central collineations are transitive on
each central line except for the obvious fixed points, the centre and the point
of intersection with the axis. Note that, because each collineation induced by
an automorphism of the Laguerre plane fixes the line W at infinity, one has
that the centre of the collineation is on W or the axis equals W . We say that
a Laguerre plane L is of Kleinewillinghöfer type X if the full automorphism
group of L is of type X, see [9,10] or [16] for the definitions of the various
Kleinewillinghöfer types.

One particular kind of central automorphisms of a Laguerre plane L are
Laguerre translations. These are automorphisms of L that fix a point p and all
points on the parallel class |p| of p and induce translations in the derived affine
plane at p. If, moreover, each parallel class is fixed, one speaks of a |p|-trans-
lation. (There are other kinds of Laguerre translations, those fixing each circle
in a touching pencil B(p,C) = {C ′ ∈ C | C ′ touches C at p} with support p
for some point p and circle C � p.) In each derived projective plane at one of
the fixed points we have an elation with axis the line at infinity.

With respect to Laguerre translations Kleinewillinghöfer obtained 11
types, labelled A to K; see [9, Satz 3.3] or [10, Satz 2]. In case of elation
Laguerre planes the set of all parallel classes G for which the group of all
G-translations is linearly transitive equals the set Π of all parallel classes of L.
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Hence only types D, J and K are possible. More precisely, let E denote the
set of all parallel classes for which the automorphism group Γ of the Laguerre
plane is linearly transitive and let B denote the set of all touching pencils
B(p,C) for which the automorphism group is linearly transitive. Then in type
D one has |E| ≥ 3 and B = ∅, in type J one has E = Π and there is a parallel
class G such that B consists of all touching pencils with support on G, and in
type K one has E = Π and B consists of all touching pencils.

In types J and K there are linearly transitive groups of Laguerre transla-
tions that induce elations in some derived projective plane with centre different
from ω, the point at infinity of vertical lines (parallel classes). Hence such a
derived plane is a translation plane and also a dual translation plane.

Proposition 3.1. There is no 4-dimensional elation Laguerre plane of Kleine-
willinghöfer type J and a 4-dimensional elation Laguerre plane of type K is
classical.

Proof. Let L be a 4-dimensional elation Laguerre plane such that there is a
touching pencil B(p,C) with respect to which the group of Laguerre transla-
tions of L is linearly transitive. The derived projective plane at p then is both
a 4-dimensional translation plane and a 4-dimensional dual translation plane.
Hence this derived plane must be Desarguesian by [18, Theorem 72.11]. But
then L is the classical complex Laguerre plane by [12, Corollary 2.5]. Indeed,
the classical complex Laguerre plane is of Kleinewillinghöfer type VII.K.13
and thus type J is not possible in 4-dimensional elation Laguerre planes. �

The description of type D as given by Kleinewillinghöfer does not directly
relate to elation Laguerre planes because |E| ≥ 3 may not imply E = Π. How-
ever, in the 4-dimensional case, we can conclude that we must have an elation
Laguerre plane, see also [25, Corollary 3.5], where the same result is implicitly
obtained although along a different method.

Proposition 3.2. If the set E of all parallel classes for which the 4-dimensional
Laguerre plane L is linearly transitive contains at least 3 parallel classes, then
L is an elation Laguerre plane.

Proof. Let G1, G2, G3 be three distinct parallel classes in E . The Gi-transla-
tions form a normal subgroup ∆i in the kernel T of L. Since by assumption
∆i is linearly transitive, ∆i is 2-dimensional. Furthermore, ∆i ∩∆j = {id} for
i �= j, so that ∆i and ∆j generate a normal 4-dimensional subgroup ∆ij of T .

Assume that there are γi ∈ ∆i, i = 1, 2, 3, and a circle C of L such that
γ1γ2γ3 fixes C. Consider the circles C1 = γ−1

1 (C) and C3 = γ3(C). Then Ci

touches C in pi = C ∩ Gi for i = 1, 3 and, because C1 = γ2(C3), the circle C1

also touches C3 in p2 = C3 ∩ G2. We consider the Lie geometry Q associated
with L. This geometry has points the points of L plus the circles of L plus
one additional point at infinity ∞; the lines of Q are the extended parallel
classes G ∪ {∞} for G ∈ Π and the extended tangent pencils B(p,C) ∪ {p}
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with incidence being the natural one (compare [20, Chapter 3] or [19]). The
circles C, C1, C3 give rise to three points in Q, any two of which are collinear.
But Q is a generalized quadrangle by [20, Theorem 3.4], so that no proper
triangles exist in Q. Therefore two of the points (i.e., circles in L) must be the
same which then implies γ1 = γ2 = γ3 = id.

This shows that ∆3 ∩ ∆12 = {id}. Hence ∆1, ∆2, ∆3 generate a normal
6-dimensional subgroup ∆123 of T . But ∆123 consists of elations of L so that
the elation group of L is 6-dimensional. Thus L is an elation Laguerre plane
by [22, Proposition 4.1]. �

The following two Corollaries are immediate consequences of Propositions 3.1
and 3.2 because Laguerre planes of Kleinewillinghöfer types J and K contain
three parallel classes as in Proposition 3.2.

Corollary 3.3. There is no 4-dimensional Laguerre plane of Kleine-willinghöfer
type J and a 4-dimensional Laguerre plane of type K is classical.

Note the subtle but important difference between the above Corollary
and Proposition 3.1. The proposition is about 4-dimensional elation Laguerre
planes whereas Corollary 3.3 deals with 4-dimensional Laguerre planes that
are not necessarily assumed to be elation Laguerre planes.

Corollary 3.4. A non-classical 4-dimensional Laguerre plane is an elation
Laguerre plane if and only if it is of Kleinewillinghöfer type D.

The first part of Corollary 3.3 can be strengthened to exclude Kleinewill-
inghöfer type I as well thus providing an alternative proof for the exclusion of
type J.

Proposition 3.5. There is no 4-dimensional Laguerre plane of Kleine-
willinghöfer type I or J.

Proof. In type I there is a parallel class G such that E = {G} and B consists
of all touching pencils with support on G. Let p and q be two distinct points
on G. The derived projective planes Pp and Pq at p and q, respectively, are
4-dimensional translation planes. Furthermore, each of the translations of Pp

and Pq is induced by a Laguerre translation. Let Σp and Σq be the group of all
Laguerre translations that induces the translation group of Pp and Pq, respec-
tively. An automorphism α ∈ Σp ∩Σq but not in T fixes a circle through p and
a circle through q and thus the intersection of these two circles. However in a
4-dimensional Laguerre plane any two distinct circles have at least one point in
common (and at most two such points). This implies that α fixes a point and
thus must be the identity in contradiction to α /∈ T . Hence Σp ∩ Σq ≤ T and
the two groups are distinct. Since Σq acts trivially on G by the definition of
Laguerre translations, we see that Σq induces a 4-dimensional abelian group
of collineations of Pp. Hence Pp admits two distinct 4-dimensional abelian
groups of collineations. By [18, Theorem 72.12], therefore Pp is Desarguesian.
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But then L is classical and thus of type K. This shows that type I is not
possible in 4-dimensional Laguerre planes.

Since type J contains a configuration as in type I, Kleinewillinghöfer type
J is not possible either. �

Kleinewillinghöfer further investigated two other kinds of central Laguerre
automorphisms, Laguerre homologies and Laguerre homotheties. A Laguerre
homology of a Laguerre plane L is an automorphism of L that is either the
identity or fixes precisely the points of a circle. One then speaks of a C-homol-
ogy if C is the circle that is fixed pointwise. In each derived projective plane
at one of the fixed points we have a homology with axis the line induced by C
and centre the point ω. In particular, each Laguerre homology belongs to the
kernel of L. With respect to Laguerre homologies Kleinewillinghöfer obtained
seven types, labelled I–VII. Since the elation group of an elation Laguerre
plane is transitive on the set of circles C, the set of all circles C for which the
group of all C-homologies is linearly transitive is either empty or all of C in
case of an elation Laguerre plane. Hence only types I and VII are possible in
elation Laguerre planes.

In Kleinewillinghöfer type VII each derived projective plane Pp is (ω,L)-
transitive for each line L �� ω of Pp and hence is Desarguesian by [15, 3.2.27].
For a 4-dimensional elation Laguerre plane we thus obtain, as before, the clas-
sical complex Laguerre plane.

Proposition 3.6. A 4-dimensional Laguerre plane of type VII is classical and
a non-classical 4-dimensional elation Laguerre plane is of type I.

Finally, a Laguerre homothety of L is an automorphism of L that fixes
two non-parallel points and induces a homothety in the derived affine plane
at each of these two fixed points. One then speaks of a {p, q}-homothety if p,
q are the two fixed points. In each derived projective plane at one of the fixed
points we have a homology with axis the line at infinity and centre the other
fixed point (a homothety of the derived affine plane). With respect to Laguerre
homotheties Kleinewillinghöfer obtained 13 types, labelled 1–13.

The transitivity of the elation group on the set of circles implies that the
set of all unordered pairs of non-parallel points {p, q} for which the group of
all {p, q}-homotheties is linearly transitive is either empty or contains all unor-
dered pairs {x, y} with x ∈ G, y ∈ H for two distinct parallel classes G and H
(e.g., G = |p| and H = |q|) in case of an elation Laguerre plane. Hence only
types 1, 8, 12 or 13 are possible in elation Laguerre planes. More precisely, let
H denote the set of all unordered pairs of non-parallel points {p, q} for which
the group of all {p, q}-homotheties is linearly transitive. Then in types 1, 8, 12
and 13 one has H = ∅, H = {{p, q} | p ∈ G, q ∈ H} for two distinct parallel
classes G and H, H = {{p, q} | p ∈ G, q /∈ G} for a parallel class G, and H all
pairs of non-parallel points, respectively. Type 13 characterizes the miquelian
Laguerre planes, see [7, Satz 7].
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Proposition 3.7. There is no 4-dimensional elation Laguerre plane of Kleine-
willinghöfer type 8 or 12 and a 4-dimensional Laguerre plane of type 13 is
classical.

Proof. In a 4-dimensional elation Laguerre plane L that contains an unordered
pair of non-parallel points {p, q} for which the automorphism group of L is
linearly transitive, the derived projective plane at p is a dual translation plane
that admits a 2-dimensional group of homologies with an affine centre. The
dual of [18, Theorem 72.11], then implies that the derived plane is Desargue-
sian so that L is again classical. �

Since, as seen above, only types I, D and 1 are possible for non-classical
4-dimensional elation Laguerre planes with respect to Laguerre homologies,
Laguerre translations and Laguerre homotheties, respectively, we finally obtain
the following.

Theorem 3.8. A non-classical 4-dimensional Laguerre plane is an elation
Laguerre plane if and only if it is of Kleinewillinghöfer type I.D.1. The 4-
dimensional elation Laguerre planes are precisely the 4-dimensional Laguerre
planes of Kleinewillinghöfer types I.D.1 and VII.K.13.

4. A Look at other Laguerre Planes

In [17] the possible Kleinewillinghöfer types of 2-dimensional Laguerre planes
where determined. Since the 2-dimensional elation Laguerre planes are pre-
cisely the ovoidal Laguerre planes, [17, Lemma 3.1], characterizes the 2-dimen-
sional elation Laguerre planes as those 2-dimensional Laguerre planes of
Kleinewillinghöfer type VII and Corollary 4.5 characterizes the non-classical
ones as those 2-dimensional Laguerre planes of Kleinewillinghöfer type D.
There are no 2-dimensional Laguerre planes of type 12; see [17, Corollary 5.3].
However, there are non-classical 2-dimensional elation Laguerre planes of
combined Kleinewillinghöfer types VII.D.1 and VII.D.8. This shows that
Theorem 3.8 does not generalize to a characterization of elation Laguerre
planes among arbitrary Laguerre planes.

Combining the results of [17] and Corollary 3.4 we obtain the following.

Theorem 4.1. A non-classical 2n-dimensional Laguerre plane, n = 1, 2, is an
elation Laguerre plane if and only if it is of Kleinewillinghöfer type D.

Although Theorem 4.1 is still valid for finite Laguerre planes of odd order,
see the remarks below, it seems hard to extend it beyond the class of 2- or
4-dimensional Laguerre planes or finite Laguerre planes of odd order. To do
so and following the same route for such a class of Laguerre planes as in the
4-dimensional case pursued here requires to overcome three problems. Firstly,
find an analogue of Proposition 3.2. In its proof we used that the Lie geometry
of the Laguerre plane is a generalized quadrangle which is not true for every
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Laguerre plane. Using order arguments, however, this was avoided in the 2-
dimensional case but could have been done in exactly the same way as in the
proof of Proposition 3.2 (halving all the dimensions being referred to in the
proof). Secondly, we used repeatedly that translation plane and dual transla-
tion plane implies Desarguesian. This of course is not true in general. There
are many examples of semifields that are not skew fields; these then coordi-
natise non-Desarguesian planes that are both translation and dual translation
planes, see for example [3, Section 5.3]. Thirdly, we used several times that a
Desarguesian derivation implies that the Laguerre plane is miquelian. Again
this is not true in general as ovoidal Laguerre planes show but one can get
around this in the 2-dimensional case.

For finite Laguerre planes of odd order, the first and third properties can
be verified, compare [14, VII.1 and VII.2] or [2], but certainly the second prop-
erty need not be true. (Note however that no non-miquelian finite Laguerre
planes of odd order are known but it seems that elation Laguerre planes are
the best candidates so far to find some.) So the proof of Proposition 3.2 goes
through. In order to still obtain the analogous result of Corollary 3.3 for these
finite planes Hartmann [7] used functional identities for circle describing func-
tions; see [7, Satz 3]. But then Corollary 3.4 also follows (where 4-dimensional
is replaced by finite of odd order).

Theorem 4.2. A non-miquelian finite Laguerre plane of odd order is an elation
Laguerre plane if and only if it is of Kleinewillinghöfer type D.
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