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16-dimensional compact projective planes with a large
group fixing two points and two lines

By

Hermann Hähl and Helmut Salzmann

H e r r n P r o f e s s o r O t t o H . K e g e l z u m 7 0. G e b u r t s t a g

Abstract. We determine all planes having the properties of the title with a group of dimension
at least 33.

Let P = (P, L) be a topological projective plane with a compact point set P of finite
(covering) dimension d = dim P > 0. A systematic treatment of such planes can be found
in the book Compact Projective Planes [21]. Each line L ∈ L is homotopy equivalent to
a sphere S� with � | 8, and d = 2� , see [21, (54.11)]. In all known examples, L is in fact
homeomorphic (≈ ) to S� . Taken with the compact-open topology, the automorphism group
Σ = Aut P (of all continuous collineations) is a locally compact transformation group of P

with a countable basis [21, (44.3)]. The covering dimension dim Σ is an important para-
meter for characterizations of such planes. (For readers which are more familiar with the
inductive dimension, we remark that for a locally compact group Λ, the inductive dimen-
sion ind Λ coincides with dim Λ and with the dimension of the connected component Λ1 ,
cf. [21, (93.5, 6)].

The classical examples are the planes PK over the 3 locally compact, connected fields
K with � = dim K and the 16-dimensional Moufang plane O = PO over the octonion
algebra O . If P is a classical plane, then Aut P is an almost simple Lie group of dimension
C� , where C1 = 8, C2 = 16, C4 = 35, and C8 = 78.

In all other cases, dim Σ � 1
2C� +1 � 5� . Planes with small groups abound, those with

a group of dimension sufficiently close to 1
2C� can be described explicitly. More precisely,

the classification program seeks to determine all pairs (P, ∆) , where ∆ is a connected
closed subgroup of Aut P and b� � dim ∆ � 5� for a suitable bound b� � 4� − 1. This
has been accomplished for � � 2 and also for b4 = 17. Results in the case � = 8 are as
yet less satisfactory, and it is this case that will be considered here.

Mathematics Subject Classification (2000): 51H10, 51A35, 12K99.
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Most theorems that have been obtained so far require additional assumptions on the
structure and/or the action of ∆ . If dim ∆ � 27, and in the relevant dimension range
in particular, ∆ is always a Lie group [15]. By the structure theory of Lie groups, ∆ is
semi-simple, or ∆ contains a central torus subgroup, or ∆ has a minimal normal vector
subgroup, cf. [21, (94.26)]. The first two cases are understood fairly well:

(a) If ∆ is semi-simple and dim ∆ > 28 , then there are the following cases: P ∼= O , or
∆ ∼= SL3H has no fixed point and no fixed line and P is a Hughes plane (as described
in [21, § 86]), or ∆ ∼= Spin9(R, r) with r � 1 contains a central reflection, whose
center and axis are the only fixed point and the only fixed line of ∆ , see [13] , [14].

(b) If ∆ contains a central torus, and if dim ∆ > 30 , then the commutator subgroup
∆′ is isomorphic to SL3H and (a) applies to ∆′ , see [17].

In the third case, ∆ fixes a point or a line, cf. [5, (XI.10.19)] together with [21, (83.4, 6)].
Hence (a) and (b) imply

(c) If dim ∆ > 30 and ∆ has no fixed element, then P is a Hughes plane or P ∼= O .

The case that ∆ fixes exactly one element has been treated in [19]:

(d) If dim ∆ � 35 and if ∆ fixes one line and no point, then P is a translation plane.
All these translation planes have been determined in [6], [7], [9]. The classification
shows that either P ∼= O or dim ∆ = 35.

Little progress has been made in the cases where ∆ fixes exactly two elements, necessarily
a point and a line. If dim ∆ � 40, then P and its dual are translation planes [21, (87.7)],
and all translation planes with dim ∆ � 38 are described in [21, (82.28)].

From now on, assume that 33 ��� dim ∆∆∆ <<< 40 and that ∆∆∆ fixes 2 points.

The stiffness theorems in [21, (83.23 or 26)] show that the stabilizer � of a triangle
satisfies dim � � 30. Therefore, under the above assumption, either ∆ fixes exactly one
line (which then contains all fixed points), or ∆ fixes exactly two points and two lines. The
present paper deals with the latter case. The case of only one fixed line and exactly two
fixed points will be discussed elsewhere. The case of more than two fixed points is already
settled:

(e) If ∆ fixes (at least) 3 points, then dim ∆ � 37 and P ∼= O , see [20].

In the octonion plane, a semi-simple subgroup of Σ fixing two points has dimension at
most 28, see [21, (12.17, 17.13)]. Therefore, under the general assumption above, the next
result follows from [18] together with (a). It is crucial for the subsequent arguments.

Lemma. Up to duality, ∆ has a minimal normal subgroup Θ ∼= R
t consisting of axial

collineations with a common axis W , and Θ is a group of translations, or t = 1 .
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Bödi’s improvement [1] of [21, (83.23)] is particularly important:

(�) If the fixed elements of the connected Lie group Λ form a connected subplane E ,
then Λ is isomorphic to the 14 -dimensional compact group G2 or its subgroup SU3C

or dim Λ < 8 . If E is a Baer subplane (dim E = 8), then Λ is a subgroup of SU2C .
Moreover, Λ ∼= G2 implies dim E = 2.

The following shall be proved here:

Theorem 1. If dim ∆ � 33 and if ∆ fixes exactly 2 points u, v and 2 lines W = uv and
Y = av , where the points a, u, v form a triangle, then the translation group T = ∆[v,W ]

is transitive, the complement ∆a of T has a compact commutator group Φ ∼= Spin8R ,
and dim ∆ � 36 . If even dim ∆ � 38 , then P ∼= O .

Corollary. If a non-classical plane P has a group ∆ as in Theorem 1 , then the full
automorphism group Σ of P has dimension at most 37 .

All planes satisfying the conditions of this theorem will be described in Theorem 2.

It seems quite unlikely that the classification problem in the case of 2 fixed points and
2 fixed lines has a reasonable solution for a lower bound of dim ∆ than 33. In fact, the
assumption dim ∆ � 33 is needed in the lemma and it is used repeatedly in the proof of
Theorem 1 in an essential way. Moreover, for other fixed configurations, even larger bounds
are required for obtaining classification results.

The dimension formula [21, (96.10)] has a useful corollary for solvable groups:

R e m a r k. Assume that Γ is a solvable Lie subgroup of ∆ . Then Γ has a chain of
normal subgroups Γκ with dim Γκ+1/Γκ � 2, see [2, I § 5, Th. 1, Cor. 4, p. 46]. If κ is
the largest index such that aΓκ = a , if N = Γκ+1 and a �= x ∈ aN , then dim xΓa � 2.
In fact, xΓa � aN and dim xΓa � dim N/Na � dim N/Γκ .

Another fact that will be needed repeatedly is the

Observation. If a maximal semi-simple subgroup Ψ of ∆ (a Levi complement of the
radical

√
∆) has a subgroup Λ ∼= G2 , then Ψ is almost simple, and Ψ = Λ or there is a

group Υ ∼= Spin7R with Λ < Υ � Ψ . The central involution α ∈ Υ is a reflection.

P r o o f. If Ψ is not almost simple, then some factor of Ψ contains a subgroup Γ ∼= Λ .
Since W Γ = W , the involutions in Γ are planar, or else Γ would contain a reflection
with axis W and Γ would not be simple. According to [21, (55.6)], the line W is an
8-sphere, and then the fixed elements of Γ form a 2-dimensional subplane E by [21,
(96.35)]. There is an almost simple factor of Ψ which centralizes Γ and acts non-trivially
on E , but such a group never fixes two distinct points of E , see [21, (38.3)]. Hence Ψ is
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almost simple. Inspection of the lists [21, (94.33 and 95.10)] of almost simple groups and
their representations shows that the only possibilities in dimension at most 39 are groups
of type B or D or the complexification of G2 . By [21, (96.35) and (94.34)], the latter group
would fix all elements of the plane E , but this contradicts (�). Because the group SO5R

does not act non-trivially on any compact projective plane [21, (55.40)], we conclude that
Ψ ∼= Spinn(R, r) with 0 � r � n − 7. The central involution α ∈ Υ is not planar, or
else Υ would induce a group SO7R on the fixed plane of α . By [21, (55.29)] it follows
that α is a reflection. �

N o t a t i o n. If the point set S contains a quadrangle, then 〈S〉 denotes the smallest closed
subplane of P containing S . As customary, PW means the affine plane obtained from P by
removing the line W , see [21, (21.9)]. Let L2 = {(t 	→ at+b) : R → R | a > 0, b ∈ R}
be the unique non-commutative, 2-dimensional connected Lie group. The commutator
subgroup Γ′ of the group Γ should not be confused with the connected component Γ1 .

P r o o f o f T h e o r e m 1. According to the Lemma, ∆ has a minimal normal subgroup
Θ ∼= R

t of axial collineations with a common axis, and this axis is a fixed line of ∆ .
1) Assume first that the elements of Θ have axis Y = av . Then Θ � ∆[u,Y ] is a group

of homologies, and t = 1 by [21, (61.2)]. The connected component of ∆a will be denoted
by � . Let c ∈ Y � {a, v} and w ∈ W � {u, v} .

2) If Λ is the connected component of the stabilizer �c,w, then Γ = Λ ∩ Cs Θ fixes the
orbit wΘ pointwise. Hence the fixed elements of Γ form a connected subplane F and (�)
applies. The dimension formula gives dim Λ � 33 − 3·8, and Λ/Γ � Aut Θ implies that
dim Γ � dim Λ − 1 � 8. Therefore, F is at most 4-dimensional by (�). The fixed plane
E of Λ is a closed subplane of F , and E is connected by [21, (55.4a)]. Now the stiffness
theorem (�) shows that Λ ∼= G2 , and this is true for each admissible choice of c and w .

3) Consider the connected component Ω of ∆w and assume that Λ is a Levi complement
of the radical

√
Ω . Then dim

√
Ω � 11, and the Remark shows that dim (Λ ∩

√
Ω) > 0

for a suitable choice of c , but Λ is a simple group. Hence, according to the Observation,
Ω has a subgroup Υ ∼= Spin7R . Because Ω fixes 3 points on W , the reflection α ∈ Υ has
axis W and some center x ∈ Y . Since x∆ �= x , the conjugacy class α∆ has positive dimen-
sion, and, by a well-known fact, α∆α is contained in the translation group T = ∆[v,W ] .

4) The group T might be non-abelian. By [21, (55.28)], each finite subgroup of T is
trivial. In particular, T has no torus subgroup, and the connected component T1 of T is
a simply connected Lie group, cf. [21, (93.10 and 94.31)]. If T1 has a radical P �= 1l ,
then one term of the derived series of P is a normal vector subgroup of ∆ . If T1 is semi-
simple, however, then T1 has an almost simple factor X which is isomorphic to the simply
connected covering group of SL2R , see [21, (94. 28 and 37)]. In this case, the infinite
center Z of X is contained in the center of ∆ , and Ωa fixes each point of the orbit aZ .
In particular, Ωa fixes a quadrangle. Since dim Ωa � 33−2·8, this contradicts the stiffness
theorem [21, (83.23)].
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5) Consequently, there exists always a minimal normal vector subgroup Θ � T =
∆[v,W ] . If R ∼= Π � Θ and 1l �= � ∈ Π , and if c = a� ∈ Y , then the connected
component Λ of Ωa,c centralizes Π and hence fixes a connected subplane E pointwise,
and dim Λ � 17 − t > 8. The stiffness theorem (�) gives Λ ∼= G2 and t � 3. The group
Θ ∩ Cs Λ contains Π and acts as a one-dimensional translation group on the 2-dimensional
plane E . Therefore, Λ has a non-trivial representation on Θ and dim Θ > 7, see [21,
(95.10)]. It follows that Θ = T ∼= R

8 .
6) The group Π can be chosen arbitrarily. Hence Ωa is an irreducible subgroup of Aut T .

By [21, (95.6b)], the commutator group Ωa
′ is semi-simple, and 16 � dim Ωa

′ � 22. From
[21, (95.10)] or the Observation it follows that Ωa

′ ∼= Spin7R , in particular, dim Ωa � 21.
7) Consider the stabilizer � = ∆a of the triangle a, u, v and remember that

dim � � 30. By [21, (96.35)], there is an orbit zΛ ≈ S6 in W . Interchanging the
rôles of z and w shows dim w� � 6. Since dim �w = dim Ωa , step 6) and the dimen-
sion formula give dim � � 27. The kernel K = � ∩ Cs T of the action of � on T is
a group of homologies with axis Y . The connected component of K is either compact or
two-ended, and a two-ended group is isomorphic to R × C where C is compact, see [21,
(61.2)]. Therefore, K contains a compact, connected normal subgroup Ψ of � such that
dim(K/Ψ) � 1. Moreover, dim Ψ < 8, or Ψ would be transitive on uv � {u, v} . Either
the commutator [Λ, Ψ] = 1l , or Λ acts faithfully on Ψ and induces an irreducible represen-
tation on the Lie algebra of Ψ . In the latter case, dim Ψ = 7, and Ψ is not semi-simple. It
follows that Ψ has a torus factor ([21, (94.31c)]) and then that Ψ is itself a torus, but this
would imply [Λ, Ψ] = 1l after all, cf. [21, (93.19)]. We conclude that [K, Λ] = 1l , and K
leaves the subplane E invariant. Consequently, dim K � 1.

8) By [21, (95.6)], the commutator group (�/K)′ is a semi-simple subgroup of Aut T
which contains Spin7R , and dim(�/K)′ � 25. From the list [21, (95.10)], it follows that
(�/K)′ ∼= SO8(R, r) with r � 1, and then �′ ∼= Spin8(R, r) . (Remember that ∆ has no
subgroup SO5R , so that �′ �∼= SO8(R, r) ).

9) We may assume that ∆ = �′T , and then dim ∆ = 36 and � ∼= Spin8(R, r), r � 1.
The possibility r = 1 will lead to a contradiction. If r = 1, then � induces on T and on
the line av the orthogonal group SO8(R, 1) , and � leaves some cone in T invariant.

10) The group Γ = (�w)1 acts faithfully on T and Γ′ ∼= Spin7R by step 6). The
stiffness results [5, XI.9.9] or (�) imply Γ1

c
∼= G2 for each c ∈ av � {a, v} . It follows

that Γ′ has only 7-dimensional orbits on the sphere S consisting of the rays in the vector
group T . Hence �w is transitive on S and there is no �- invariant cone.

11) Now let dim ∆ � 38. The stiffness theorem implies dim � = 30 and dim ∆ = 38.
Moreover, for each point x /∈ D := au ∪ av ∪ uv , the stabilizer �x fixes a quadrangle
and satisfies dim �x = 14. Hence dim x� = 16 and x� is open in P by [21, (96.11)].
Consequently, � is transitive outside of D , and ∆ induces on av � {v} a doubly transitive
group ∆/K . Because �′ ∼= Spin8R , it follows from [21, (95.6 and 10) or (96.16)] or
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from [23] that �/K ∼= eR×SO8R . The kernel of the action is K = ∆[u,av] ∼= R
× . In the

next step it will follow that K is contained in the center of ∆ .
12) Whenever E is the (2-dimensional) fixed plane of a subgroup Λ ∼= G2 of � , the

radical P = √� acts faithfully on E , and P ∼= R
2 by [21, (33.10)]. In fact, P is contained

in the center of � since � = P × �′ . Consequently, the stabilizer Pw fixes each point
of the orbit w� = W � {u, v} , and Pw � �[W ] . The action of P on E shows Pw

∼= R .
There is a unique reflection α with axis W in �′ and �[W ] = Pw×〈α〉 ∼= R

× . Dually,
R ∼= Pb < �[v]

∼= R
× for b ∈ au � {a, u} .

13) By steps 5) and 11), the group ∆ is transitive on the set F of all flags (p, H) with
p /∈ W, Y and u, v /∈ H . Letting H = aw , where a ∈ Y , we find that H := ∆H = �w =
P[a] × �′

w . Dually, Π := ∆p = �ξ
b for a suitable ξ ∈ T . Note that H′ ∼= Π′ ∼= Spin7R

by step 3). The geometry which has F as incidence relation can be reconstructed from the
triple (∆, H, Π) by a procedure due to Freudenthal [3, § 6], cf. also [22]. This geometry
is obtained from the projective plane P by deleting two lines and two pencils and thus
uniquely determines P .

14) Since ∆ is isomorphic to the stabilizer of two points and two lines (with the same
incidence relations as in the theorem) of the classical Moufang plane, it suffices to show that
the automorphism group A = Aut ∆ is transitive on the set of all admissible pairs (H, Π)

in ∆ in order to prove that P ∼= O . This will be done in the next steps.
15) A subgroup Φ ∼= Spin8R of ∆ has a center of order 4 containing 3 reflections.

Therefore, Φ fixes a triangle, and we may assume that Φ = �′ . The action of Φ on the
Moufang plane O is described in detail in [21, (17.16)]. In particular, Φ has 3 conjugacy
classes of subgroups Spin7R , and these are permuted cyclically by the triality automor-
phism. All groups in the conjugacy class of the group Υ from step 3) have the reflection α

with center a and axis W in common. They induce the group SO7R on W and act faith-
fully on the other two sides of the fixed triangle D . By [21, (96.36)], the action of Υ on
W is linear, and the fixed elements of Υ on W form a circle. Since Aut O is transitive on
quadrangles, see [21, (17.6)], it follows that A is transitive on the set of all pairs (H′, Π′)
of commutator groups of admissible pairs (H, Π) .

16) If (H, Π) is admissible, then H ∩ Π = Λ ∼= G2 , and the fixed elements of Λ form
a 2-dimensional subplane E . For a given intersection Λ , each of the 3 conjugacy classes
mentioned in step 15) contains a unique group Υ ∼= Spin7R such that Λ < Υ < Φ .

17) Consider the one-parameter group Ξ = T ∩ Cs Λ and the 3-dimensional group
Γ = Ξ P . Because Λ contains commuting Baer involutions, it follows from [21, (83.10)]
that the kernel of the action of Γ on E is compact and hence trivial, moreover, Ξ = Γ′
(since Ξ Pw

∼= L2 and Γ/Ξ ∼= P is commutative). Planes E admitting such a group have
been determined in [16], see also [21, § 37]. The existence of 3 reflections in the center
of Φ implies that E ∼= PR .

18) On the affine plane E � W ∼= R
2 the elements of Γ induce the maps

γ (r, s, t) : (x, y) 	→ (erx, esy + t).
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The center Z of Γ is characterized by s = t = 0 and the commutator group Γ′ by r = s = 0.
Any complement of Γ′Z in Γ is of the form E(d, q) = {γ (ds, s, q(es−1)) | s ∈ R} . One
can easily verify that the following maps are automorphisms of Γ :

γ (r, s, t) 	→ γ (f r + gs, s, ht + k(es−1)) where f, g, h, k ∈ R and f h �= 0.

19) If p = (1, 1) and H = ap , then HE = H ∩ Cs Λ = E(1, 0) is a group of homo-
logies with axis W and center a = H ∩ Y , dually, ΠE = Π ∩ Cs Λ = E(0, −1) consists of
homologies with center v and axis pu . Such complements of Γ′Z are never conjugate;
since a /∈ pu , they do not centralize each other. Consequently, these properties express
the fact that (HE , ΠE ) is an admissible pair. The automorphism group of Γ is transitive on
the set of admissible pairs of complements of Γ′Z . In fact, the automorphisms of Γ induce
linear mappings of the parameters d and q which characterize these complements.

20) It remains to be shown that the automorphisms of Γ extend to automorphisms of ∆ .
This is obvious except for automorphisms of the form γ (r, s, t) 	→ γ (r, s, t + k(es−1)) .
Remember that ∆ = �T and that �′ induces on T ∼= R

8 the group SO8R , and consider
the inner automorphism η̂ of ∆ induced by η = γ (0, 0, k) ∈ T ∩ Cs Λ = Ξ . Obviously,
η̂ induces on Γ = Ξ P the automorphism in question. Since Λη = Λ , it follows from 16)
that η̂ fixes the pair (H′, Π′) . Together with step 15), this completes the proof. �

P r o o f o f t h e C o r o l l a r y. It suffices to show that Σ fixes the points u, v and
the line Y . Suppose first that vΣ �= v . Then Σ has Lenz type at least IV (see [21, (64.18)
and § 24]), and P ∼= O by [21, (81.19)]. Hence vΣ = v and, dually, WΣ = W . If
YΣ �= Y , the action of Φ shows that YΣ is open in the pencil Lv , see [21, (96.25)]. Con-
sequently, dim Σ = dim ΣY + 8 � dim ∆ + 8 � 44. Moreover, aΣ is open in P since
T is transitive on Y . There is a reflection α with center a in Φ , and [21, (61.20)] implies
that P is a translation plane. Again P is classical by [21, (81.19)]. Dually, it follows that
uΣ = u . �

In the next theorem, all planes admitting a connected group ∆ such that dim ∆ � 33
and ∆ fixes exactly two points and two lines will be described by coordinate methods.
Remember from [8, VI 3], [5, XI.4.2] or [21, (24.4)] that an affine plane with a transi-
tive group of ‘vertical’ translations can be coordinatized by a so-called1) Cartesian field
(K, +, •) . This means that (K, +) is a group and that each non-vertical line is given by
an equation y = s •x + t . The other algebraic properties of a Cartesian field just express
the fact that these lines together with the vertical ones indeed yield an affine plane. In the
situation considered here, the additive group of K may be identified with (O, +) and mul-
tiplication is continuous. According to [21, (43.6)], this suffices for the projective closure
of the affine plane over K to be a compact topological plane.

1) Several authors write Cartesian group for a linear ternary field with associative addition even though such

a structure is like a ring rather than a group.
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Theorem 2. Let (R, +, ∗, 1) be a topological Cartesian field with unit element 1 and
assume that (−r) ∗ s = − r ∗ s = r ∗ (−s) holds identically. Define a new multiplication
on the octonion algebra (O, +,) by

a ◦ x = |a|∗|x| (|a| |x|)−1ax f or a, x �= 0 and 0 ◦ x = a ◦ 0 = 0.

Then (O, +, ◦) is a topological Cartesian field. A plane P can be coordinatized by such
a Cartesian field if and only if P satisfies the hypotheses of Theorem 1.

R e m a r k s. 1) An analogous construction can be applied to C and to H instead of O .
2) The Hurwitz ternary fields of Plaumann and Strambach [10] are isomorphic to certain

of the Cartesian fields defined in Theorem 2. In [10] a new addition ⊕ is introduced on
K ∈ {C, H, O} by means of a suitable homeomorphism � : [ 0, ∞) ≈ [ 0, ∞) and the
associated homeomorphism �̂ : K ≈ K , where �̂(x) = �(|x|) |x|−1x for x �= 0 and
�̂(0) = 0. The radial distorsion of the ordinary addition of K is given by �̂(a ⊕ b) =
�̂(a) + �̂(b) . Reversing this transformation yields a topological Cartesian field (K, +, ◦)

with

a ◦ b = �̂ (�̂−1(a) �̂−1(b)) = �(�−1(|a|)�−1(|b|)) (|a||b|)−1 ab for a, b �= 0,

corresponding to the real Cartesian field (R, +, ∗) , where

r ∗ s = sgn r· sgn s · � (�−1(|r|) �−1(|s|)).
Such a representation is possible if, and only if, the multiplication ∗ is associative. (Note
that any group ((0, ∞), ∗) is isomorphic as a topological group to the ordinary group of
positive real numbers.)

P r o o f o f T h e o r e m 2. A) Suppose first that P has the properties of Theorem 1.
1) If P is coordinatized with respect to the quadrangle 0 = a, u, v, e in the usual way

(as in [21, § 22]), then, by the remarks above, the coordinate structure is a Cartesian field
(O, +, ◦) .

2) According to Theorem 1, there is a group Φ ∼= Spin8R in the stabilizer of the triangle
a, u, v , and Φ induces on T� ∆ the group SO8R . Consequently, T ∼= R

8 is commutative.
3) For c ∈ Y � {a, v} , it follows with (�) that Φc

∼= Spin7R has orbits homeomorphic
to Spin7/G2 ≈ S7 on W as well as on au . By [12, Th. a], the group Φ acts linearly on
all 3 sides of the fixed triangle. The center of Φ contains 3 reflections with axes au , av ,
and uv , and Φ induces on each of these lines a group SO8R .

4) The reflections with centers a or v invert each translation in T . Hence the maps in
the center of Φ have the form (x, y) 	→ (±x, ±y) . For the multiplication this gives the
identity (−r) ◦ s = −(r ◦ s) = r ◦ (−s) .

5) The group Φe
∼= G2 centralizes a one-parameter subgroup E < T . The fixed

elements of Φe form a 2-dimensional subplane E , and E induces a transitive group of
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vertical translations on E . Therefore, E is coordinatized by a Cartesian field (R, +, ∗) ,
in fact, by a Cartesian subfield of (O, +, ◦) , so that ∗ is a restriction of the multiplication ◦
and satisfies the identity of Theorem 2.

6) A copy of the group Φ ∼= Spin8R acts in the standard way on the Moufang plane O .
This action is discussed in [21, (17.12–16)]. In particular, the triality automorphism per-
mutes the 3 central involutions of Φ . Any element of Φ acts on the point set O×O of the
affine plane in the form (x, y) 	→ (Ax, By) , where A and B belong to a triad (A, B, C)

such that A, B, C ∈ SO8R and identically B(s·x) = Cs·Ax with respect to the ordinary
multiplication of O . There are 3 conjugacy classes of subgroups isomorphic to Spin7R ;
indeed, two such subgroups are conjugate if, and only if, they contain the same central
involution of Φ .

7) Because Φ acts linearly on the sides of the triangle a, u, v , the point set of the affine
plane Puv can be identified with O×O in such a way that the sets {x} × O and O × {y}
are lines of P and Φ acts as on the affine Moufang plane.

8) Put w = ae ∩ uv . Up to conjugacy, the elements of Φw
∼= Spin7R are given by

all triads of the form (A, A, C) : we may assume, in fact, that Φw fixes the line with the
equation y = x in O . This implies C(1) = 1 and B = A ∈ Spin7R .

9) There is a homeomorphism f : O → O satisfying f (0) = 0 and f (1) = 1 such
that the affine line ae in P is the point set {(x, f (x)) | x ∈ O} . Since ae is Φw -invariant,
Af (x) = f (Ax) for all A ∈ Spin7R and x ∈ O . The group Spin7R acts transitively on
each sphere of constant norm in O ; the subgroup G2 = Aut O ∼= Φe fixes exactly the
reals. It follows that f induces a homeomorphism on R . Writing x = A|x| , we see that
f (x) = Af (|x|) = f (|x|)|x|−1x .

10) Rescale the first coordinates by writing f (x) instead of x . In the new coordinates,
the line ae is given by the equation y = x . The orbits of Φ on the axes are still spheres
of constant norm, but the action of Φ on au need not be linear anymore. As stated at the
beginning of the proof, the new coordinates form a Cartesian field (O, +, ◦) . Remember
from step 4) that the fixed plane E of Φe is coordinatized by a Cartesian field (R, +, ∗) .
It remains to express the multiplication ◦ by ∗ .

11) The condition B(sx) = CsAx for triads holds also in the new coordinates, since
rescaling affected only the x -coordinate and changed each x by a positive scalar. By
[21, (17.6)], the group Aut O is transitive on quadrangles of the Moufang plane, and the
action of Φ on O shows that each pair of elements s, x ∈ O can be represented in the form
s = C|s| and x = A|x| for some triad (A, B, C) . It follows that sx = |s||x|B(1) , and the
geometric interpretation of ◦ implies s ◦ x = C|s| ◦ A|x| = B(|s|◦|x|) = B(|s|∗|x|) =
|s|∗|x|B(1) , hence s ◦ x = |s|∗|x|(|s||x|)−1sx , as claimed above.

B) The construction in Theorem 2 always yields a (topological) Cartesian field.

Continuity of ◦ being obvious, it suffices to show that the map x 	→ a ◦ x − b ◦ x is
bijective whenever a �= b ; since both factors play symmetric rôles, s 	→ s ◦ a − s ◦ b
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is then also a bijective map of O . We write x = |x|x1 with |x1| = 1 and distinguish 3
cases:

1) b = 0. The condition a ◦ x = |a|∗|x| a1x1 = d (�= 0) implies |a|∗|x| = |d| .
By assumption, (R, +, ∗) is a Cartesian field. Hence |x| is uniquely determined
by a, d , and then also x from a1x1 = d1 . Analogously, x 	→ x ◦ c is bijective
for each c �= 0.

2) a1 = b1 (and then |a| �= |b| ). Using the last part of case 1), we may assume that
a ◦x −b ◦x = d �= 0. It follows that |a|∗|x|− |b|∗|x| = |d| . Again |x| ist uniquely
determined, and x1 = a−1

1 d1 .
3) a1 �= b1 (and |a| � |b| ). Let a ◦ x − b ◦ x = d �= 0, put h = a1b1 + b1a1 =

2 Re a1b
−1
1 , and note that a1 �= b1 implies h < 2. We obtain

dd = (|a|∗|x|)2 + (|b|∗|x|)2 − (|a|∗|x|)(|b|∗|x|) h := q(|x|).
Because (R, +, ∗) is a Cartesian field,

r 	→ q(r) = (|a|∗r − |b|∗r)2 + (2 − h)(|a|∗r)(|b|∗r)

defines a strictly increasing bijection of [0, ∞) . Hence q(r) = |d|2 has a unique
solution, and x is given by |x| = r and ((|a|∗r)a1 − (|b|∗r)b1)x1 = d .

C) If the plane P is coordinatized by a Cartesian field (O, +, ◦) , where multiplication
is defined as in Theorem 2, then Aut P has a subgroup Φ ∼= Spin8R , and Φ fixes a triangle.

In fact, each triad (A, B, C) with respect to the ordinary multiplication of O satisfies

B(s ◦ x) = |s|∗|x| Cs1·Ax1 = |Cs|∗|Ax| (Cs)1(Ax)1 = Cs ◦ Ax.

Hence the maps (x, y) 	→ (Ax, By) are automorphisms of the affine plane PW . They
form a group Φ ∼= Spin8R . Obviously, Φ fixes the coordinate axes. �

R e m a r k. If P is not classical, then dim ∆ � 37 by Theorem 1. The case
dim ∆ = 37 can be described more precisely. As in step A5), we consider a subgroup
Λ ∼= G2 of Φ , the fixed plane E of Λ , the ‘vertical’ translation group E = T ∩ Cs Λ ,
and the coordinatizing Cartesian field (R, +, ∗) of E . The reflection in Φ with center u

will be denoted by σ . If dim ∆ = 37, then the connected group � = ∆a is a direct
product E×Φ with E = √� ∼= R , and P is either a group of homologies of P with
axis av or P induces on T ∼= R

8 a group of homotheties (because Φ acts irreducibly
on T ). Each element of P acts on the affine plane Euv in the form (ξ, η) 	→ (α(ξ), rη) ,
where α : R → R is a homeomorphism fixing 0 and r > 0. A map of this form is
a collineation of E if, and only if, r(s ∗ x) = s′ ∗ α(x) for some s′ . It then extends
to an element of Cs∆Φ . (Put α̃(x) = α(|x|)x1 . Using the definition of ◦ , it can easily
be verified that (x, y) 	→ (̃α(x), ry) is indeed an automorphism of P which commutes
with Φ .) It remains to determine those planes E which admit a 2-dimensional group EP .
This has been accomplished by Groh and others, see [21, (38.5)].
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D i g r e s s i o n. Suppose that dim ∆ > 37. Then dim ∆ = 38 by the stiffness
theorem (�), and E(� ∩ Cs Λ) induces on E a 3-dimensional group. Such planes are known
explicitly, cf. [21, § 37]. If E is not classsical, then Aut E does not contain two commuting
reflections ([21, (37.6)]), but the center of Φ does. Consequently, E is classical, (R, +, ∗)

is a field, and ◦ coincides with the ordinary multiplication of the octonions. This shows
again that dim ∆ � 38 implies P ∼= O .

We return to non-classical planes with dim ∆ = 37. There are two cases:

(I) If EP ∼= R
2 , then P fixes aE pointwise and P〈σ 〉 is a transitive group of homologies

of E . Hence, the multiplication ∗ is associative and P is a plane over a Hurwitz
ternary field as discussed in the remarks following Theorem 2, see [4] or [11, 2.7.11.3]
for a geometric description of the corresponding planes E .

(II) EP ∼= L2 . The points u and v and the lines av and uv are fixed by EP . All
further fixed points must lie on uv , all further fixed lines must pass through v .
There cannot be a further fixed point and a further fixed line at the same time, since
then P would fix a quadrangle of E , which contradicts [21, (32.10)]. The planes
E where EP has just two fixed points and two fixed lines have been determined by
I. Schellhammer, see [11, 2.7.11.4]. The case where EP has more than two fixed
points (and consequently just two fixed lines) has been dealt with by H.-J. Pohl, see
[11, 2.7.11.5]. If EP has more than two fixed lines, then E is dual to one of the
planes determined by Pohl.

A typical class of examples for the planes found by Schellhammer may be described
as follows: Let f be a homeomorphism of [0, ∞) . Put h(x) = ∫ x

0 f (t)dt and
h(−x) = −h(x) for x � 0. Then the lines of Euv are the parallels to the axes, the set
L = {(x, h(x)) | x ∈ R} and all its images under the maps (x, y) 	→ (± ax, ay+b)

with a > 0, b ∈ R .
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